
On the Complexity of Determining Whether
there is a Unique Hamiltonian Cycle or Path

Abstract: The decision problems of the existence of a Hamiltonian cycle or of a Hamiltonian path in a given
directed or undirected graph, and of the existence of a truth assignment satisfying a given Boolean formula C,
are well-known NP-complete problems. Here we study the problems of the uniqueness of a Hamiltonian cycle or
path in an undirected, directed or oriented graph, and show that they have the same complexity, up to polynomials,
as the problem U-SAT of the uniqueness of an assignment satisfying C. As a consequence, these Hamiltonian
problems are NP-hard and belong to the class DP, like U-SAT.

Key-Words: Graph Theory, Hamiltonian Cycle, Hamiltonian Path, Complexity Theory, NP-Hardness, class DP,
Decision Problems, Polynomial Reduction, Uniqueness of Solution, Boolean Satisfiability Problems.

Received: August 19, 2021. Revised: May 11, 2022. Accepted: May 27, 2022. Published: June 17, 2022.

1 Introduction

1.1 The Hamiltonian Cycle and Path

Problems

We shall denote by G = (V,E) a finite, simple, undi-
rected graph with vertex set V and edge set E, where
an edge between x ∈ V and y ∈ V is indifferently
denoted by xy or yx. The order of the graph is its
number of vertices, |V |.

If V = {v1, v2, . . . , vn}, a Hamiltonian path
HP = < vi1vi2 . . . vin > is an ordering of all
the vertices in V , such that vijvij+1

∈ E for
all j, 1 ≤ j ≤ n− 1. The vertices vi1 and vin
are called the ends of HP. A Hamiltonian cy-
cle is an ordering HC = < vi1vi2 . . . vin(vi1) >
of all the vertices in V , such that vinvi1 ∈ E
and vijvij+1

∈ E for all j, 1 ≤ j ≤ n − 1.
Note that the same Hamiltonian cycle admits 2n
representations, e.g., < vi2vi3 . . . vinvi1(vi2) > or
< vinvin−1

. . . vi2vi1(vin) >.

A directed graph H = (X,A) is defined by its
set X of vertices and its set A of directed edges, also
called arcs, an arc being an ordered pair (x, y) of ver-
tices; with this respect, (x, y) and (y, x) are two dif-
ferent arcs and may coexist. A directed graph is said
to be oriented if it is antisymmetric, i.e., if we have,
for any pair {x, y} of vertices, at most one of the two
arcs (x, y) or (y, x); if (x, y) ∈ A, we say that y
is the out-neighbour of x, and x is the in-neighbour
of y, and we define the in-degree and out-degree of a
vertex accordingly. The notions of directed Hamil-
tonian cycle and of directed Hamiltonian path are
extended to a directed graph by considering the arcs
(vin , vi1) ∈ A and (vij , vij+1

) ∈ A in the above defi-

nitions. When there is no ambiguity, we shall often
drop the words “directed” and “Hamiltonian”.

The following six problems (stated as one) are
well known, in graph theory as well as in complexity
theory:

Problem HAMC / HAMP (Hamiltonian Cycle /
Hamiltonian Path):
Instance: An undirected, directed or oriented graph.
Question: Does the graph admit a Hamiltonian cycle
/ Hamiltonian path?

As we shall see (Proposition 2), they have been
known to be NP-complete for a long time. In this pa-
per, we shall be interested in the following problems,
and shall locate them in the complexity classes:

Problem U-HAMC[U] (Unique Hamiltonian Cycle
in an Undirected graph):
Instance: An undirected graph G = (V,E).
Question: Does G admit a unique Hamiltonian cy-
cle?

Problem U-HAMP[U] (Unique Hamiltonian Path in
an Undirected graph):
Instance: An undirected graph G = (V,E).
Question: Does G admit a unique Hamiltonian path?

Problem U-HAMC[D] (Unique directed Hamilto-
nian Cycle in a Directed graph):
Instance: A directed graph H = (X,A).
Question: Does H admit a unique directed Hamilto-
nian cycle?

Problem U-HAMP[D] (Unique directed Hamilto-
nian Path in a Directed graph):
Instance: A directed graph H = (X,A).

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.51 Olivier Hudry, Antoine Lobstein

E-ISSN: 2224-2880 433 Volume 21, 2022

OLIVIER HUDRY1, ANTOINE LOBSTEIN2 
1Institut polytechnique de Paris, T´el´ecom Paris, 91123 Palaiseau 

2Laboratoire Interdisciplinaire des Sciences du Num´erique 

(UMR 9015), CNRS, Universit´e Paris-Saclay, 91400 Orsay 

FRANCE 



Question: Does H admit a unique directed Hamilto-
nian path?

Problem U-HAMC[O] (Unique directed Hamilto-
nian Cycle in an Oriented graph):
Instance: An oriented graph H = (X,A).
Question: Does H admit a unique directed Hamilto-
nian cycle?

Problem U-HAMP[O] (Unique directed Hamilto-
nian Path in an Oriented graph):
Instance: An oriented graph H = (X,A).
Question: Does H admit a unique directed Hamilto-
nian path?

We shall prove in Section 2 that these problems have
the same complexity, up to polynomials, as the prob-
lem of the uniqueness of a truth assignment satisfying
a Boolean formula (U-SAT). As a consequence, all
are NP-hard and belong to the class DP. The closely
related problem Unique Optimal Travelling Salesman
has been investigated in [13], see Remark 8.

In similar works, we reexamine some famous
problems, from the viewpoint of uniqueness of
solution: Vertex Cover and Dominating Set (as
well as its generalization to domination within dis-
tance r) [8], r-Identifying Code together with r-
Locating-Dominating Code [9], and Graph Colouring
and Boolean Satisfiability [10]. We shall re-use here
results from [10], and modify a construction from [8].

In the sequel, we shall need the following tools,
which constitute classical definitions related to graph
theory or to Boolean satisfiability. A vertex cover
in an undirected graph G is a subset of vertices
V ∗ ⊆ V such that for every edge e = uv ∈ E,
V ∗∩{u, v} 6= ∅. We denote by φ(G) the smallest car-
dinality of a vertex cover of G; any vertex cover V ∗

with |V ∗| = φ(G) is said to be optimal.
Next we consider a set X of n Boolean variables

xi and a set C of m clauses (C is also called a Boolean
formula); each clause cj contains κj literals, a literal
being a variable xi or its complement xi. A truth
assignment for X sets the variable xi to TRUE, also
denoted by T, and its complement to FALSE (or F),
or vice-versa. A truth assignment is said to satisfy the
clause cj if cj contains at least one true literal, and
to satisfy the set of clauses C if every clause contains
at least one true literal. The following decision prob-
lems are classical problems in complexity.

Problem VC (Vertex Cover with bounded size):
Instance: An undirected graph G and an integer k.
Question: Does G admit a vertex cover of size at
most k?

Problem SAT (Satisfiability):
Instance: A set X of variables, a collection C of
clauses over X , each clause containing at least two

different literals.
Question: Is there a truth assignment for X that satis-
fies C?

The following problem is stated for any fixed integer
k ≥ 2.

Problem k-SAT (k-Satisfiability):
Instance: A set X of variables, a collection C of
clauses over X , each clause containing exactly k dif-
ferent literals.
Question: Is there a truth assignment for X that satis-
fies C?

Problem 1-3-SAT (One-in-Three Satisfiability):
Instance: A set X of variables, a collection C of
clauses over X , each clause containing exactly three
different literals.
Question: Is there a truth assignment for X such that
each clause of C contains exactly one true literal?

We shall say that a clause (respectively, a set of
clauses) is 1-3-satisfied by an assignment if this
clause (respectively, every clause in the set) contains
exactly one true literal. We shall also consider the
following variants of the above problems:

U-VC (Unique Vertex Cover with bounded size),
U-SAT (Unique Satisfiability),
U-k-SAT (Unique k-Satisfiability),
U-1-3-SAT (Unique One-in-Three Satisfiability).

They have the same instances as VC, SAT, k-SAT
and 1-3-SAT respectively, but now the question is “Is
there a unique vertex cover / truth assignment. . .?”.

We shall give in Propositions 3–7 what we need to
know about the complexities of these problems.

1.2 Some Classes of Complexity
We refer the reader to, e.g., [1], [6], [11] or [14] for
more on this topic. A decision problem is of the type
“Given an instance I and a property PR on I , is PR
true for I?”, and has only two solutions, “yes” or
“no”. The class P will denote the set of problems
which can be solved by a polynomial (time) algo-
rithm, and the class NP the set of problems which
can be solved by a nondeterministic polynomial algo-
rithm. A polynomial reduction from a decision pro-
blem π1 to a decision problem π2 is a polynomial
transformation that maps any instance of π1 into an
equivalent instance of π2, that is, an instance of π2 ad-
mitting the same answer as the instance of π1; in this
case, we shall write π1 6p π2. Cook [4] proved that
there is one problem in NP, namely SAT, to which
every other problem in NP can be polynomially re-
duced. Thus, in a sense, SAT is the “hardest” pro-
blem inside NP. Other problems share this property in
NP and are called NP-complete problems; their class
is denoted by NP-C. The way to show that a deci-
sion problem π is NP-complete is, once it is proved
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to be in NP, to choose some NP-complete problem
π1 and to polynomially reduce it to π. From a prac-
tical viewpoint, the NP-completeness of a problem
π implies that we do not know any polynomial al-
gorithm solving π, and that, under the assumption
P 6=NP, which is widely believed to be true, no such
algorithm exists: the time required can grow expo-
nentially with the size of the instance (when the in-
stance is a graph, its size is polynomially linked to its
order; for a Boolean formula, the size is polynomially
linked to, e.g., the number of variables plus the num-
ber of clauses).

The complement of a decision problem, “Given I
and PR, is PR true for I?”, is “Given I and PR,
is PR false for I?”. The class co-NP (respectively,
co-NP-C) is the class of the problems which are the
complement of a problem in NP (respectively, NP-C).

For problems which are not necessarily decision
problems, a Turing reduction from a problem π1 to a
problem π2 is an algorithm A that solves π1 using a
(hypothetical) subprogram S solving π2 such that, if
S were a polynomial algorithm for π2, then A would
be a polynomial algorithm for π1. Thus, in this sense,
π2 is “at least as hard” as π1. A problem π is NP-
hard (respectively, co-NP-hard) if there is a Turing
reduction from some NP-complete (respectively, co-
NP-complete) problem to π [6, p. 113].

Remark 1 Note that with these definitions, NP-hard
and co-NP-hard coincide [6, p. 114].

The notion of completeness can of course be ex-
tended to classes other than NP or co-NP. Observe
that NP-hardness is defined differently in [5] and [7]:
there, a problem π is NP-hard if there is a polynomial
reduction from some NP-complete problem to π; this
may lead to confusion (see Section 3).

We also introduce the classes PNP (also known
as ∆2 in the hierarchy of classes) and LNP (also de-

noted by PNP [O(logn)] or Θ2), which contain the deci-
sion problems which can be solved by applying, with
a number of calls which is polynomial (respectively,
logarithmic) with respect to the size of the instance,
a subprogram able to solve an appropriate problem in
NP (usually, an NP-complete problem); and the class
DP [15] (or DIFP [2] or BH2 [11], [17], . . .) as the
class of languages (or problems) L such that there are
two languages L1 ∈NP and L2 ∈ co-NP satisfying
L = L1 ∩ L2 (in Figure 1, DP-C and PNP -C denote
respectively the class of the DP-complete problems
and the class of the PNP -complete problems). This
class is not to be confused with NP∩ co-NP (see the
warning in, e.g., [14, p. 412]); actually, DP contains
NP∪ co-NP and is contained in LNP . See Figure 1.

Membership to P, NP, co-NP, DP, LNP or PNP

gives an upper bound on the complexity of a problem
(this problem is not more difficult than . . .), whereas

a NP-hardness result gives a lower bound (this pro-
blem is at least as difficult as any problem belonging
to NP or to co-NP). Still, such results are conditional
in the sense that we do not know whether or where
the classes of complexity collapse.

We now consider some of the problems from Sec-
tion 1.1.

Proposition 2 [12], [6, pp. 56–60 and pp. 199-200]
The decision problems HAMC and HAMP, in an undi-
rected, directed or oriented graph, are NP-complete.

♦

The problems VC, SAT and 3-SAT are also three
of the basic and most well-known NP-complete pro-
blems [4], [6, p. 39, p. 46, p. 190 and p. 259]. More
generally, k-SAT is NP-complete for k ≥ 3 and poly-
nomial for k = 2. The problem 1-3-SAT, which is ob-
viously in NP, is also NP-complete [16, Lemma 3.5],
[6, p. 259], [10, Rem. 3].

The following results will be used in the sequel.

Proposition 3 [10] For every integer k ≥ 3, the
decision problems U-SAT, U-k-SAT and U-1-3-SAT
have equivalent complexity, up to polynomials. ♦

Using the previous proposition and results from [2]
and [14, p. 415], it is rather simple to obtain the fol-
lowing two results.

Proposition 4 For every integer k ≥ 3, the deci-
sion problems U-SAT, U-k-SAT and U-1-3-SAT are
co-NP-hard and thus NP-hard by Remark 1. ♦

Proposition 5 For every integer k ≥ 3, the decision
problems U-SAT, U-k-SAT and U-1-3-SAT belong to
the class DP. ♦

Remark 6 It is not known whether these problems
are DP-complete. In [14, p. 415], it is said that “U-
SAT is not believed to be DP-complete”.

Proposition 7 [8] The decision problems U-SAT and
U-VC have equivalent complexity, up to polynomi-
als. In particular, there exists a polynomial reduction
from U-1-3-SAT to U-VC: U-1-3-SAT 6p U-VC. ♦

After the following remark is made, we shall be
ready to investigate the problems of uniqueness of
Hamiltonian cycle or path.

Remark 8 In [13], it is shown that the following
problem is PNP -complete (or ∆2-complete).

Problem U-OTS (Unique Optimal Travelling Sales-
man):
Instance: A set of n vertices, a n× n symmetric ma-
trix [cij ] of (nonnegative) integers giving the distance
between any two vertices i and j.
Question: Is there a unique optimal tour, that is, a
unique way of visiting every vertex exactly once and
coming back, with the smallest distance sum?
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At best, a polynomial reduction from any instance
G = (V,E) of U-HAMC[U] to U-OTS would show

that U-HAMC[U] belongs to PNP , but we have a bet-
ter result in Theorem 15(b), with U-HAMC[U] be-
longing to DP; no useful information for our Hamil-
tonian problems can be induced from this result on
U-OTS.

2 Locating the Problems of

Uniqueness
We prove that our six Hamiltonian problems have the
same complexity as any of the three problems U-SAT,
U-k-SAT (k ≥ 3) and U-1-3-SAT by proving the
chain of polynomial reductions given by Figure 2.

Theorem 9 There exists a polynomial reduction
from U-1-3-SAT to U-HAMP[O]: U-1-3-SAT 6p U-
HAMP[O].

Proof. A polynomial reduction from the problem U-
1-3-SAT to U-HAMP[O], via U-VC, can be found
in the Appendix; it is an elaborate variation on the
polynomial reduction from 3-SAT to VC in [12], [6,
pp. 54–56] and the polynomial reduction from VC to
HAMC[U] (see [6, pp. 56–60]). ♦

Proposition 10 There exists a polynomial reduction
from U-HAMP[O] to U-HAMC[O]: U-HAMP[O] 6p

U-HAMC[O].

Proof. We start from an oriented graph H = (X,A)
which is an instance of U-HAMP[O] and build a
graph which is an instance of U-HAMC[O] by adding
two extra vertices y, z, together with the arc (y, z)
and all the arcs (x, y) and (z, x), x ∈ X. This
transformation is polynomial and clearly preserves
the number of solutions, in particular the uniqueness.

♦

Proposition 11 There is a polynomial reduction from
U-HAMP[O] to U-HAMP[D] and from U-HAMC[O]
to U-HAMC[D]: U-HAMP[O] 6p U-HAMP[D] and
U-HAMC[O] 6p U-HAMC[D].

Proof. It suffices to consider the identity as the poly-
nomial reduction. ♦

Theorem 12 There is a polynomial reduction from
U-HAMP[D] to U-HAMP[U] and from U-HAMC[D]
to U-HAMC[U]: U-HAMP[D] 6p U-HAMP[U] and
U-HAMC[D] 6p U-HAMC[U].

Proof. The method is borrowed from [12].
Consider any instance of U-HAMP[D] or U-

HAMC[D], i.e., a directed graph H = (X,A) on n
vertices. We build the undirected graph G = (V,E),
the instance of U-HAMP[U] or U-HAMC[U], as fol-
lows: every vertex x ∈ X is triplicated into three

vertices x− ∈ V (a minus-type vertex), x∗ ∈ V (a
star-type vertex) and x+ ∈ V , linked by the edges
x−x∗ ∈ E and x∗x+ ∈ E; for every arc (x, y) ∈ A,
we create the edge x+y− in E. The graph G thus
constructed has order 3n.

We claim that there is a unique Hamiltonian cy-
cle (respectively, path) in G if and only if there is
a unique directed Hamiltonian cycle (respectively,
path) in H .

(1) Assume first that H admits a directed Hamil-
tonian cycle < x1x2 . . . xn(x1) >. Then

< x−1 x
∗
1x

+
1 x

−
2 x

∗
2x

+
2 . . . x+n−1x

−
n x

∗
nx

+
n (x

−
1 ) >

is a Hamiltonian cycle in G. Moreover, two different
directed Hamiltonian cycles in H provide two diffe-
rent Hamiltonian cycles in G.

Conversely, assume that G admits a Hamiltonian
cycle HC. This cycle must go through all the star-
type vertices x∗, so it necessarily goes through all the
edges x−x∗ and x∗x+. Without loss of generality,
HC reads:

HC =< x−1 x
∗
1x

+
1 x

−
2 x

∗
2x

+
2 . . . x+n−1x

−
n x

∗
nx

+
n (x

−
1 ) > ;

(1)
indeed, we may assume that we “start” with the edge
x−1 x

∗
1, then x∗1x

+
1 ; now, because the edges which have

no star-type vertex as one of their extremities are
necessarily of the type x+y−, the other neighbour
of x+1 is a minus-type vertex, say x−2 ; step by step,
we see that HC has necessarily the previous form (1).
Now we claim that < x1x2 . . . xn−1xn(x1) > is a
directed Hamiltonian cycle in H .

Indeed, for every i ∈ {1, . . . , n − 1}, the

edge x+i x
−
i+1 in G implies the existence of the arc

(xi, xi+1) in H; the same is true for the arc (xn, x1)
in H , thanks to the edge x+n x

−
1 in G. Furthermore,

observe that two different Hamiltonian cycles in G
provide two different directed Hamiltonian cycles
in H .

So, G admits a unique Hamiltonian cycle if and
only if H admits a unique directed Hamiltonian cy-
cle.

(2) Exactly the same argument works with paths,
apart from the fact that we need not consider the arc
(xn, x1) in H , nor the edge x+n x

−
1 in G. ♦

Proposition 13 There exists a polynomial reduction
from U-HAMP[U] to U-HAMC[U]: U-HAMP[U] 6p

U-HAMC[U].

Proof. We start from an undirected graphG = (V,E)
which is an instance of U-HAMP[U] and build a
graph which is an instance of U-HAMC[U] by adding
the extra vertex y, together with all the edges xy,
x ∈ V . This transformation is polynomial and clearly
preserves the number of solutions, in particular the
uniqueness. ♦
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Theorem 14 There exists a polynomial reduction
from U-HAMC[U] to U-SAT: U-HAMC[U] 6p U-
SAT.

Proof. We start from an instance of U-
HAMC[U], an undirected graph G = (V,E) with

V = {x1, . . . , x|V |}; we assume that |V | ≥ 3. We
create the set of variables X = {xij : 1 ≤ j ≤ |V |,
1 ≤ i ≤ |V |} and the following clauses:

(a1) for 1 ≤ i ≤ |V |, clauses of size |V |:
{xi1, x

i
2, . . . , x

i
|V |};

(a2) for 1 ≤ i ≤ |V |, 1 ≤ j < j′ ≤ |V |, clauses
of size two: {xij , x

i
j′};

(b1) for 1 ≤ j ≤ |V |, clauses of size |V |:

{x1j , x
2
j , . . . , x

|V |
j };

(b2) for 1 ≤ i < i′ ≤ |V |, 1 ≤ j ≤ |V |, clauses of

size two: {xij , x
i′

j };

(c) for 1 ≤ i < i′ ≤ |V | such that xixi
′

/∈ E,

for 1 ≤ j ≤ |V |, clauses of size two: {xij , x
i′

j+1}

and {xi
j, x

i′

j−1}, with computations performed modu-

lo |V |;
(d1) {x11};
(d2) for 2 ≤ j < j′ ≤ |V |, clauses of size two:

{x2
j′ , x

3
j}.

Assume that we have a unique Hamiltonian cycle
in G, HC1 = < xp1xp2xp3 . . . xp|V |−1xp|V |(xp1) >.
Note that for the time being, we could also write
HC1 = < xp1xp|V |xp|V |−1 . . . xp3xp2(xp1) >, or
“start” on a vertex other than xp1 , cf. Introduction.
This is why, without loss of generality, we set p1 = 1,
i.e., we “fix” the first vertex, and we also choose the
“direction” of the cycle, by deciding, e.g., that x2 ap-
pears “before” x3 in the cycle —cf. (d1)-(d2). Define
the assignment A1 by A1(x

pq

q ) =T for 1 ≤ q ≤ |V |,
and all the other variables are set FALSE by A1. We
claim that A1 satisfies all the clauses.

(a1) for 1 ≤ i ≤ |V |, if the vertex xi has position j
in the cycle, then the variable xij satisfies the clause;

(a2) if {xi
j, x

i
j′} is not satisfied by A1 for some i, j, j′,

then A1(x
i
j) = A1(x

i
j′) =T, which means that the

vertex xi appears at least twice in the cycle;
(b1) for 1 ≤ j ≤ |V |, if the position j is occu-

pied by the vertex xi, then the variable xij satisfies

the clause; (b2) if {xi
j, x

i′

j } is not satisfied by A1 for

some i, i′, j, then two different vertices are the j-th
vertex in the cycle.

(c) If one of the two clauses is not satisfied, say the
first one, then the positions j and j + 1 in the cycle
are occupied by two vertices not linked by any edge
in G.

(d1) {x11} is satisfied by A1 thanks to the assump-
tion on the first vertex of the cycle; (d2) if for some

j < j′, the clause {x2
j′ , x

3
j} is not satisfied, then the

vertex x3 occupies a position j smaller than the posi-
tion j′ of x2, which contradicts our assumption on x2

and x3.

Is A1 unique? Assume on the contrary that an-
other assignment, A2, also satisfies the constructed
instance of U-SAT. Then by (a1) and (a2), for every
i ∈ {1, . . . , |V |}, there is at least, then at most, one
j = j(i) such that A2(x

i
j) =T; by (b1) and (b2), for

every j ∈ {1, . . . , |V |}, there is at least, then at most,
one i = i(j) such that A2(x

i
j) =T; so we have “a

place for everything and everything in its place”, with
exactly |V | variables which are TRUE by A2 and an
ordering of the vertices according to the one-to-one
correspondence given by A2: the vertex xi is in posi-
tion j if and only if A2(x

i
j) =T. Next, thanks to the

clauses (c), two vertices following each other in this
ordering, including the last and first ones, are neces-
sarily neighbours, so that this ordering is a Hamilto-
nian cycle, HC2. Since we have assumed the unique-
ness of the Hamiltonain cycle HC1 in G, the two cy-
cles can differ only by their starting points or their
“directions”. However these differences are ruled out
by the clauses (d1) and (d2), so that the two cycles
coincide vertex to vertex, and A1 = A2. So a YES
answer for U-HAMC[U] leads to a YES answer for
U-SAT.

Assume now that the answer to U-HAMC[U] is
negative. If it is negative because there are at least
two Hamiltonian cycles, then we have at least two as-
signments satisfying the instance of U-SAT: we have
seen above how to construct a suitable assignment
from a cycle, and different cycles obviously lead to
different assignments. If there is no Hamiltonian cy-
cle, then there is no assignment satisfying U-SAT, be-
cause such an assignment would give a cycle, as we
have seen above with A2. So in both cases, a NO ans-
wer to U-HAMC[U] implies a NO answer to U-SAT.

♦

Gathering all our previous results, we obtain the fol-
lowing theorem.

Theorem 15 For every integer k ≥ 3, the deci-
sion problems U-SAT, U-k-SAT and U-1-3-SAT have
the same complexity as U-HAMP[U], U-HAMC[U],
U-HAMP[O], U-HAMC[O], U-HAMP[D], and U-
HAMC[D], up to polynomials. Therefore,

(a) the decision problems U-HAMP[U], U-
HAMC[U], U-HAMP[O], U-HAMC[O], U-
HAMP[D], and U-HAMC[D] are co-NP-hard
and thus NP-hard by Remark 1;

(b) the decision problems U-HAMP[U],
U-HAMC[U], U-HAMP[O], U-HAMC[O], U-
HAMP[D], and U-HAMC[D] belong to the class DP.

♦
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Note that the membership to DP could have been
proved directly.

3 Conclusion
By Theorem 15, for every integer k ≥ 3, the three de-
cision problems U-SAT, U-k-SAT, U-1-3-SAT have
the same complexity, up to polynomials, as the pro-
blem of the uniqueness of a path or of a cycle in a
graph, undirected, directed, or oriented; all are co-
NP-hard (and NP-hard by Remark 1) and belong to
the class DP, and it is thought that they are not DP-
complete. Anyway, they can be found somewhere in
the shaded area of Figure 3.

Open problem. Find a better location for any of
these problems inside the hierarchy of complexity
classes.

In [2], the authors wonder whether
(A) U-SAT is NP-hard, but here we believe that

what they mean is: does there exist a polynomial re-
duction from an NP-complete problem to U-SAT ?
i.e., they use the second definition of NP-hardness;

finally, they show that (A) is true if and only if
(B) U-SAT is DP-complete.

So, if one is careless and considers that U-SAT is
NP-hard without checking according to which defi-
nition, one might easily jump too hastily to the con-
clusion that U-SAT is DP-complete, which, to our
knowledge, is not known to be true or not. As for U-
3-SAT, we do not know where to locate it more pre-
cisely either; in [3] the problems U-k-SAT and more
particularly U-3-SAT are studied, but it appears that
they are versions where the given set of clauses has
zero or one solution, which makes quite a difference
with our problem.

Appendix: the Proof of Theorem 9

A) From U-1-3-SAT to U-VC
From an arbitrary instance of U-1-3-SAT with m
clauses and n variables, we mimick the reduction
from 3-SAT to VC in [12], [6, pp. 54–56], and
we construct the instance GV C = (VV C , EV C)
of U-VC as follows (see Figure 4 for an exam-
ple): we construct for each clause cj a triangle
Tj = {aj , bj , dj}, and for each variable xi a com-
ponent Gi = (Vi = {xi, xi}, Ei = {xixi}). Then we
link the components Gi on the one hand, and the tri-
angles Tj on the other hand, according to which lite-
rals appear in which clauses (“membership edges”).
For each clause cj = {ℓ1, ℓ2, ℓ3}, we also add the tri-

angular set of edges E′
j = {ℓ1ℓ2, ℓ1ℓ3, ℓ2ℓ3}. Finally,

we set k = n+ 2m.
The order of GV C is 3m + 2n and its number of

edges is at most n + 9m (the edge sets E′
j are not

necessarily disjoint).

Note already that if V ∗ is a vertex cover, then each
triangle Tj contains at least two vertices, each compo-
nent Gi at least one vertex, and |V ∗| ≥ 2m+ n = k;
if |V ∗| = 2m+n, then each triangle contains exactly
two vertices, and each componentGi exactly one ver-
tex. We can also observe that, because of the edge

sets E′
j , at least two vertices among ℓ1, ℓ2, ℓ3 belong

to any vertex cover.

(a) Let us first assume that the answer to U-1-3-
SAT is YES: there is a unique truth assignment 1-
3-satisfying the clauses of C. Then, by taking, in
each Gi, the vertex corresponding to the literal which
is TRUE, and in every triangle Tj , the two vertices
which are linked to the two false literals of cj , we ob-
tain a vertex cover V ∗ whose size is equal to k. More-
over, once we have put the n vertices corresponding
to the true literals in the vertex cover V ∗ in construc-
tion, we have no choice for the completion of V ∗

with k − n = 2m vertices: when we take two ver-
tices in Tj , we must take the two vertices which cover
the membership edges linked to the two false liter-
als (in the example of Figure 4, the vertices b1, d1
and b2, d2). So, if another vertex cover V + of size k
exists, it must have a different distribution of its ver-
tices over the components Gi, still with exactly one
vertex in each Gi; this in turn defines a valid truth
assignment, by setting xi =T if xi ∈ V +, xi = F if
xi ∈ V +. Now this assignment 1-3-satisfies C, thanks
in particular to our observation on the covering of the
edges in E′

j . So we have two truth assignments 1-3-

satisfying C, contradicting the YES answer to U-1-3-
SAT; therefore, V ∗ is the only vertex cover of size k.

(b) Assume next that the answer to U-1-3-SAT is
NO: this may be either because no truth assignment
1-3-satisfies the instance, or because at least two as-
signments do; in the latter case, this would lead, us-
ing the same argument as in the previous paragraph,
to at least two vertex covers of size k, and a NO an-
swer to U-VC. So we are left with the case when the
set of clauses C cannot be 1-3-satisfied. But again, we
have already seen that this would imply that no vertex
cover of size (at most) k exists, since such a hypothet-
ical vertex cover V + would imply the existence of a
suitable assignment.

We are now ready to construct an instance of U-
HAMP[O]. In the sequel, we shall say “path” for “di-
rected Hamiltonian path”.

B) Construction of the Instance of U-HAMP[O]
We look deeper into the proof of the NP-
completeness of the problem Hamiltonian Cycle
(see [6, pp. 56–60]), which uses a polynomial reduc-
tion from VC to HAMC[U] that, due to the so-called
“selector vertices”, cannot cope with the problem of
uniqueness; step by step, we construct an oriented
graph H = (X,A) for which we will prove that:
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(i) if there is a YES answer for the instance of U-
1-3-SAT (which implies that there is a unique vertex
cover V ∗ in GV C , with cardinality at most k), then
there is a unique path in H;

(ii) if there are at least two assignments 1-3-
satisfying all the clauses (i.e., there are at least two
vertex covers in GV C , with cardinality at most k),
then there are at least two paths in H;

(iii) if there is no assignment 1-3-satisfying the
clauses (and no vertex cover in GV C with cardinality
at most k), then there is no path in H .

Step 1. For each edge e = uv ∈ EV C , we build
one component He = (Xe, Ae) with 12 vertices and
14 arcs: Xe = {(u, e, i), (v, e, i) : 1 ≤ i ≤ 6},
Ae = {((u, e, i), (u, e, i + 1)), ((v, e, i), (v, e, i + 1)) :
1 ≤ i ≤ 5} ∪ {((v, e, 3), (u, e, 1)), ((u, e, 3), (v, e, 1))}
∪{((v, e, 6), (u, e, 4)), ((u, e, 6), (v, e, 4))}; see Fi-
gure 5, which is the oriented copy of Figure 3.4 in [6,
p. 57].

In the completed construction, the only vertices
from this component that will be involved in any
additional arcs are the vertices (u, e, 1), (u, e, 6),
(v, e, 1), and (v, e, 6). This, together with the fact that
there will be two particular vertices, α1 and δ, which
will necessarily be the ends of any path, will imply
that any path in the final graph H will have to meet
the vertices in Xe in exactly one of the three con-
figurations shown in Figure 6, which is the oriented
copy of Figure 3.5, in [6, p. 58]. Thus, when the path
meets the component He at (u, e, 1), it will have to
leave at (u, e, 6) and go through either (a) all 12 ver-
tices in the component, in which case we shall say
that the component is completely visited from the u-
side, or (b) only the 6 vertices (u, e, i), 1 ≤ i ≤ 6, in
which case we shall say that the component is visited
in parallel and needs two visits, i.e., another section
of the path will re-visit the component, meeting the 6
vertices (v, e, i), 1 ≤ i ≤ 6.

Step 2. We create n vertices αi, 1 ≤ i ≤ n, and
2n arcs (αi, (xi, xixi, 1)), (αi, (xi, xixi, 1)), that is,
we link αi to the “first” vertices of the component He

whenever e = xixi. The vertices αi can be seen as
literal selectors that will choose between xi and xi.
The vertex α1 will have no other neighbours; this
means in particular that it will have no in-neighbours,
thus it will necessarily be the starting vertex of any
Hamiltonian path, if such a path exists.

We choose an arbitrary order on the 3m ver-
tices of the triangles Tj in the graph GV C ,
say OT = < a1, b1, d1, a2, . . . , dm > and
an arbitrary order on the literals xi, xi, say
Oℓ = < x1, x2, . . . , xn, x1, . . . , xn >. For each
literal ℓi equal to xi or xi, we do the following (see
Figure 7 for an example):

Rule (a): If ℓi appears q = q(ℓi) ≥ 0

times in the clauses and is linked in GV C to
t1, . . . , tq where the t’s belong to the triangles Tj

and follow the order OT , then we create the arcs
((ℓi, ℓiℓi, 6), (ℓi, ℓit1, 1)), ((ℓi, ℓit1, 6), (ℓi, ℓit2, 1)),
. . ., ((ℓi, ℓitq−1, 6), (ℓi, ℓitq, 1)).

Rule (b): We consider the triangular sets of edges
E′

j described in the construction of GV C .

• If ℓi does not belong to any such edge, we cre-

ate the arc ((ℓi, ℓitq, 6), αi+1) – or ((ℓi, ℓiℓi, 6), αi+1)
if ℓi does not apppear in any clause – unless
i = n, in which case we create ((ℓi, ℓitq, 6), β1) or

((ℓi, ℓiℓi, 6), β1), where β1 is a new vertex that will
be spoken of at the beginning of Step 3.

• If ℓi belongs to s = s(ℓi) > 0 edges
from E′

j , which link ℓi to s literals ℓi1 , . . . , ℓis
that follow the order Oℓ, then we build
the arc ((ℓi, ℓitq, 6), (ℓi, ℓiℓi1 , 1)) – or the

arc ((ℓi, ℓiℓi, 6), (ℓi, ℓiℓi1 , 1)) if q = 0;
next, the arcs ((ℓi, ℓiℓi1 , 6), (ℓi, ℓiℓi2 , 1)),
. . ., ((ℓi, ℓiℓis−1

, 6), (ℓi, ℓiℓis , 1)) and
((ℓi, ℓiℓis , 6), αi+1), unless i = n, in which
case we create ((ℓi, ℓiℓis , 6), β1).

Remark 16 In the example of Figure 7, one can see
that if a path takes, e.g., the arc (α1, (x1, x1x1, 1)),
then it visits the vertices (x1, x1x1, 6), (x1, x1a1, 1),
(x1, x1a1, 6), and α2. If on the other hand, we use the
arc (α1, (x1, x1x1, 1)), we also go to α2. The same is
true between α2 and α3, . . ., between αn−1 and αn,
between αn and β1.

We can see that so far, α1 has (out-)degree 2,
α2, . . . , αn have degree 4 (in- and out-degrees equal
to 2), and β1 has (in-)degree 2.

Step 3. We consider the m clauses and the m corres-
ponding triangles Tj .

We create 2m vertices βj , β
′
j , 1 ≤ j ≤ m.

As we have seen in the previous step, β1 has al-
ready two in-neighbours, which can be (ℓn, ℓntq, 6),

or (ℓn, ℓnℓn, 6), or (ℓn, ℓnℓns
, 6). We also create one

more vertex δ, which will have only in-neighbours,
so that α1 and δ will necessarily be the ends of any
directed Hamiltonian path, if such a path exists.

Now for the triangle Tj = {aj , bj , dj},
1 ≤ j ≤ m, associated to the clause
cj = {ℓj1 , ℓj2 , ℓj3} in the graph GV C , we con-
sider the six corresponding components Hajbj ,
Hajdj

, Hbjdj
, Hajℓj1

, Hbjℓj2
and Hdjℓj3

. The vertices

βj and β′
j can be seen as triangle selectors, intended

to choose two vertices among three. With this in
mind, we create the following arcs (see Figure 8), for
j ∈ {1, 2, . . . ,m}:

Rule (a): (βj , (aj , ajbj, 1)),
((aj , ajbj, 6), (aj , ajdj , 1)),
((aj , ajdj , 6), (aj , ajℓj1 , 1)), ((aj , ajℓj1 , 6), β

′
j).
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Rule (b): (βj , (bj , ajbj , 1)),
(β′

j , (bj , ajbj , 1)), ((bj , ajbj, 6), (bj , bjdj , 1)),

((bj , bjdj , 6), (bj , bjℓj2 , 1)), ((bj , bjℓj2 , 6), β′
j),

plus the arc ((bj , bjℓj2, 6), βj+1), unless j = m, in
which case it is ((bj , bjℓj2 , 6), δ).

Rule (c): (β′
j , (dj , ajdj , 1)),

((dj , ajdj , 6), (dj , bjdj, 1)),
((dj , bjdj , 6), (dj , djℓj3 , 1)),
((dj , djℓj3 , 6), βj+1), unless j = m, in which
case it is ((dj , djℓj3 , 6), δ).

Remark 17 In the example of Figure 8, there are
three ways for going from β1 to β2 through the com-
ponents Ha1b1 , Ha1d1

and Hd1b1 .

• If a path starts by taking the arc (β1, (a1, a1b1, 1)),
then there are two possibilities, according to how we
visit Ha1b1:

◦ The first possibility corresponds to taking a1 and
d1, not b1, in a vertex cover: the path completely
visits the component Ha1b1 from the a1-side, then
the component Ha1d1

in parallel, then the component
Ha1x1

in a so far unspecified way, then β′
1.

Next, it takes the arc (β′
1, (d1, d1a1, 1)), re-visits

Hd1a1
in parallel, completely visits Hd1b1 from the d1-

side, then Hd1x3
, and ends this path section at β2.

One can see that the three components corresponding
to edges incident to b1 must all be completely visited
from the side opposite b1, including the x2-side.

◦ The second possibility corresponds to taking a1
and b1, not d1, in a vertex cover: the path follows
the arc (β1, (a1, a1b1, 1)), visits Ha1b1 in parallel,
visits completely Ha1d1

from the a1-side, then Ha1x1
,

and β′
1.

Next, it takes the arc (β′
1, (b1, b1a1, 1)), goes

through Hb1a1
in parallel, goes completely through

Hb1d1
from the b1-side, then Hb1x2

, and ends this path
section at β2. The component Hd1x3

is not yet visited.

• Alternatively, a path can start by taking the
arc (β1, (b1, a1b1, 1)); this corresponds to taking b1
and d1, not a1, in a vertex cover and constitutes the
third way for going from β1 to β2. The path then com-
pletely visits Hb1a1

from the b1-side, Hb1d1
in parallel,

Hb1x2
, and β′

1.
Next, it completely visits Hd1a1

from the d1-side,
Hd1b1 in parallel, Hd1x3

, and this path section ends
at β2. The component Ha1x1

is not yet visited.

It is easy to see that these are the only three ways for
going from β1 to β2 through the components Ha1b1 ,
Ha1d1

and Hd1b1 , not taking into account the ways
of going through the components Ha1x1

, Hb1x2
and

Hd1x3
(this issue will be treated later on, in the gene-

ral case): indeed, the only possibility left would be
to follow the arc (β1, (b1, a1b1, 1)) and visit Hb1a1

in parallel, but then the a1-side of Hb1a1
cannot be

reached.

The same will be true for the components Hajbj ,
Hajdj

and Hdjbj and the corresponding triangles Tj ,
1 ≤ j ≤ m, between βj and βj+1 (or between βm
and δ).

The description of the oriented graph H is complete.
Now β1 has increased its degree to 4, and β2, . . .,
βm and β′

1, . . ., β′
m have degree 4. Actually, all the

selectors but α1 have in-degree 2 and out-degree 2
in H . These n selectors αi, 1 ≤ i ≤ n, and 2m se-
lectors βj , β′

j , 1 ≤ j ≤ m, translate the choices we

have to make when constructing a vertex cover with
size 2m+ n: we have one choice among the n varia-
bles (take xi or xi); as for the m triangles Tj asso-
ciated to the clauses, Remark 17 has shown how the
selectors βj , β′

j , 1 ≤ j ≤ m, can be used to choose

two vertices among three. The number of selectors is
one reason why there is no directed Hamiltonian path
in H when the vertex covers in GV C have size at least
2m+ n+ 1.

The order of H is 12|EV C |+ n+ 2m+ 1, which
is at most 12(n + 9m) + n + 2m + 1, so that the
transformation is polynomial indeed.

We are now going to prove our claims about
the existence or non-existence, uniqueness or non-
uniqueness, of a directed Hamiltonian path in H .

C) How it Works
Assume first that there is an assignment satisfying
the instance of U-1-3-SAT, and therefore that there
is a vertex cover V ∗ in GV C with size 2m + n. We
construct a path in H in a straightforward way: every
component Huv (uv ∈ EV C) with {u, v} ⊂ V ∗ is
visited in parallel, whereas Huv is completely visited
from the u-side whenever u ∈ V ∗, v /∈ V ∗. Let us
have a closer look at how this works:

We start at α1, and visit completely the component
Hx1x1

from the x1-side if x1 =T, from the x1-side if
x1 = F (or, equivalently, if x1 ∈ V ∗ or x1 ∈ V ∗,
respectively). If, say, x1 = F, we then completely go
through all the components corresponding to trian-
gles Tj and involving x1, all from the x1-side; note
that all the components just completely visited in-
volve x1 and a vertex not in V ∗, by the very cons-
truction of the vertex cover V ∗, which is possible
because it stems from an assignment 1-3-satisfying
all the clauses. Then we go through the components
constructed from the edge sets E′

j and involving x1;

those involving a second vertex in V ∗ (i.e., a true lite-
ral) are visited in parallel, whereas those involving a
vertex not in V ∗ are completely visited from the x1-
side; then the path arrives at α2. The components
involving x1, apart from Hx1x1

, remain completely
unvisited for the time being, and the components that
have been visited in parallel will have to be re-visited.
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We act similarly between α2 and α3, . . ., αn

and β1; cf. Remark 16. When doing this, we revi-
sit all the components that had been visited only in
parallel, and completely visit the components invol-
ving a literal not in V ∗ and corresponding to edges
in E′

j . The only components not visited yet between

α1 and β1 are those corresponding to edges between
a false literal (not in V ∗) and its neighbours in the
triangles Tj .

Next, starting from β1, we use Remark 17 accor-
ding to the three possible cases:

(a) {a1, d1} ⊂ V ∗, b1 /∈ V ∗,

(b) {a1, b1} ⊂ V ∗, d1 /∈ V ∗,

(c) {b1, d1} ⊂ V ∗, a1 /∈ V ∗.

We give in detail only the third case, for the clause
c1 = {ℓ1, ℓ2, ℓ3}: we use the arc (β1, (b1, a1b1, 1))
and completely visit the component Ha1b1 from the
b1-side, then the component Hb1d1

in parallel, then
the complete component Hb1ℓ2 from the b1-side (be-
cause if b1 ∈ V ∗, then ℓ2 /∈ V ∗ and this compo-
nent had not yet been visited) and end at β′

1. Next,
we take the arc (β′

1, (d1, d1a1, 1)), we completely
visit Hd1a1

from the d1-side, re-visit Hd1b1 in paral-
lel, completely visit Hd1ℓ3 from the d1-side, and this
path section ends at β2. Note that (a) the three com-
ponents involving a1 between β1 and β2 have been
completely visited, from the b1-, d1- or ℓ1-sides (be-
cause a1 /∈ V ∗ implies that ℓ1 ∈ V ∗); (b) any so far
unvisited component involving a false literal (here,
these are ℓ2 and ℓ3) and one of the vertices of the
triangle T1 (here b1 and d1) has now been completely
visited from the triangle sides (here from the b1- and
d1-sides).

We act similarly between β2 and β3, . . ., βm and δ;
cf. the end of Remark 17. The ultimate section takes
us between βm and δ, the final vertex, and we have in-
deed built a directed Hamiltonian path, from α1 to δ,
in the oriented graph H .

Obviously, two different assignments 1-3-satisfying
all the clauses lead, following the above process, to
two different paths in H . We still want to prove
that 1) if no assignment 1-3-satisfying all the clauses
exists, then no path exists, and 2) a unique assignment
1-3-satisfying all the clauses leads to a unique path.

1) We assume that there is a directed Hamilto-
nian path HP in H , and exhibit an assignment 1-3-
satisfying all the clauses.

Let us consider the vertex α1; its two out-
neighbours in H are (x1, x1x1, 1) and (x1, x1x1, 1).
So exactly one of the arcs (α1, (x1, x1x1, 1)),
(α1, (x1, x1x1, 1)) is part of HP. The same is true
for αi, 1 < i ≤ n. As a consequence, we can define
a valid assignment of the variables xi, 1 ≤ i ≤ n, by
setting xi =T if and only if the arc (αi, (xi, xixi, 1))
belongs to HP.

Next, we address the vertices βj , 1 ≤ j ≤ m. The
construction in Steps 2 and 3 is such that each vertex
βj , 1 ≤ j ≤ m, has two out-neighbours, (aj , ajbj, 1)
and (bj , ajbj , 1).

This implies that the assignment defined above
is such that there is at least one true literal in
each clause. Indeed, if we assume that the clause
cj = {ℓj1 , ℓj2 , ℓj3} does not contain any true
literal, then the component Hajℓj1

is completely
visited by HP from the aj-side, because ℓj1 = F

implies that the arc (αj , (ℓj1 , ℓj1ℓj1 , 1)) is not part
of HP and does not give access to the ℓj1-side.
Similarly, the components Hbjℓj2

and Hdjℓj3
are

completely visited by HP from the bj- and dj-sides,
respectively. This in turn implies that in HP we
have the arcs ((aj , ajℓj1 , 6), β

′
j), (βj , (aj , ajbj, 1)),

((dj , djℓj3 , 6), βj+1) and (β′
j , (dj , djaj , 1)) —

replace βj+1 by δ if j = m. Now how does HP go
through (bj , bjℓj2 , 6)? It cannot be with the help of
the ℓj2-side of Hbjℓj2

, so there are only two possibi-

lities left: but if it is with the arc ((bj , bjℓj2 , 6), β
′
j),

then β′
j has three neighbours in HP , which is impos-

sible; and if it is with the arc ((bj , bjℓj2 , 6), βj+1),
then in HP, the vertex βj+1 has two in-neighbours,
which is impossible —including when j = m and
βj+1 is replaced by δ. From this we can conclude
that the clause cj = {ℓj1 , ℓj2 , ℓj3} contains at least
one true literal.

Assume next that one clause has at least two true
literals: without loss of generality, cj = {ℓj1 , ℓj2 , ℓj3}
is such that ℓj1 = ℓj2 =T. Then HP has no access

to the ℓj1- and ℓj2- sides of the components invol-

ving ℓj1 or ℓj2 , but, since there is the edge ℓj1ℓj2 in
GV C , this means that HP has no way of visiting
the component Hℓj1 ℓj2

. Therefore, we have just esta-

blished that the assignment derived from the path HP
1-3-satisfies all the clauses. This, together with the
fact that two assignments 1-3-satisfying the clauses
lead to two paths, shows that a NO answer to the
instance of U-1-3-SAT implies a NO answer for the
constructed instance H of U-HAMP[O].

2) We want to show that a unique assignment A
1-3-satisfying all the clauses leads to a unique path
in H . This assignment leads to a unique vertex cover
V ∗, of size n + 2m, in GV C , and to a path in H ,
as already seen. Now assume that we have a second
path, so that these two paths, which we call HP1

and HP2, both lead, with the above description in 1),
to the same A and the same V ∗.

The two paths must behave in the same way over
the components Hxixi

, 1 ≤ i ≤ n: otherwise, from
them we could define two different valid assignments,
which would both, as seen previously, 1-3-satisfy the
clauses.
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Next, consider the clause cj = {ℓj1 , ℓj2 , ℓj3} and
assume without loss of generality that A(ℓj1) =T,
A(ℓj2) = A(ℓj3) = F; this implies, for both HP1

and HP2, that the components Hℓj1ℓj1
, Hℓj2ℓj2

and

Hℓj3 ℓj3
are completely visited from the ℓj1-, ℓj2- and

ℓj3-sides, respectively, so that both paths have no ac-
cess to the ℓj2- nor ℓj3-sides. As a consequence, bet-
ween βj and βj+1 (or βm and δ), the components
Hbjℓj2

and Hdjℓj3
are completely visited from the bj-

and dj-sides, respectively. Then necessarily the fol-
lowing arcs belong to HP1 and HP2, going along the
dj-side:
((dj , djℓj3 , 6), βj+1) – or ((dj , djℓj3 , 6), δ) –,
((dj , djbj , 6), (dj , djℓj3 , 1)),
((dj , djaj , 6), (dj , djbj, 1)),
(β′

j , (dj , djaj , 1));
and going along the bj-side:
((bj , bjℓj2 , 6), β

′
j) (because βj+1 – or δ – cannot have

two in-neighbours), and ((bj , bjdj, 6), (bj , bjℓj2 , 1)),
((bj , bjaj , 6), (bj , bjdj , 1)).

The component Hbjdj
must be visited in paral-

lel, and it is (βj , (bj , bjaj, 1)) that belongs to the two
paths.

We can see that all the components containing aj ,
in particular Hajℓj1

, must be completely visited from
the sides opposite aj . So far, we have proved that the
two paths HP1 and HP2 behave identically between
βj and βj+1 (or βm and δ), including on the compo-
nents corresponding to membership edges (between
literals and triangles).

Consider now what happens between αi and αi+1

(or αn and β1). Assume without loss of generality
that, say, A(xi) =T, so that (αi, (xi, xixi, 1)) is part
of the two paths. Consider the components invol-
ving xi in H: there are first those involving vertices
of type a, b or d, which translate the membership
of xi to a certain number of clauses, and which we
called t1, . . . , tq in Step 2(a); we have already seen in
the previous paragraph that these components must
be completely visited from the xi-side.

Then we consider the components created from
the edges in E′

j , cf. Step 2(b); here, some edges in

GV C can have both ends in V ∗, but, using similar
arguments as before, we can see that the two paths
will visit all these components in the same way: con-
sider the clause cj = {ℓj1 , ℓj2 , ℓj3} and the corres-
ponding setE′

j , and assume without loss of generality

that xi = ℓj1 , so that A(ℓj1) =T, which implies that
A(ℓj2) = A(ℓj3) = F; then Hℓj1 ℓj2

and Hℓj1 ℓj3
must

be completely visited from the ℓj2- and ℓj3-sides, res-
pectively, and Hℓj2 ℓj3

in parallel, i.e., the two paths

have no choice but to behave identically on all three
components. As for the components with xi, they
must be completely visited from the side which is not

the side of xi.
So we have just proved that the two paths are iden-

tical between α1 and α2, . . ., αn and β1.
Therefore, the two paths (between α1 and δ) are

one and the same. ♦
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Figure 1: Some classes of complexity.
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Figure 2: The chain of polynomial reductions, where an arrow from π1 to π2 stands for the relation π1 6p π2.

Figure 3: Some classes of complexity: Figure 1 re-visited.
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a1 2d
1b

1d

1G
x1

membership edges
1T

GVC

Figure 4: Illustration of the undirected graph constructed for the reduction from U-1-3-SAT to U-VC, with four
variables and two clauses, c1 = {x1, x2, x3}, c2 = {x2, x3, x4}. Here, k = 8, and the black vertices form the
(not unique) vertex cover V ∗ of size eight corresponding to the (not unique) truth assignment x1 =T, x2 = F,
x3 = F, x4 = F 1-3-satisfying the clauses. As soon as we set V ∗ ∩ (V1 ∪ V2 ∪ V3 ∪ V4) = {x1, x2, x3, x4}, the
other vertices in V ∗ are forced.

(u,e,5)

(v,e,1)
(v,e,2)

(v,e,4)
(v,e,5)

(u,e,2)
(u,e,3)

(u,e,6)

(u,e,4)

(v,e,6)

(v,e,3)

u

61

(u,e,1) v

Figure 5: Two possible representations of the same component He for the edge e = uv ∈ EV C (Step 1).
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Figure 6: The three ways of going through the componentHe (Step 1). The arrows inside He are not represented.
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Figure 7: The example of the literals x1 and x1 from Figure 4 (Step 2); here, Rule (a) applies with q(x1) = 1,
q(x1) = 0, Rule (b) with s(x1) = 2. The arrows inside He are not represented.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.51 Olivier Hudry, Antoine Lobstein

E-ISSN: 2224-2880 445 Volume 21, 2022



d
1

β
1
’

x
2

β
1

61

1

b
1

b
1

61

b
1

a

a
1

6 1

1
a

x
1

1

1
d

x
3

rule (a)

rule (b)

(b)

(c)

(c)

(c)

(c)

(b)

(b)

(b)

d
1

1

1

2
β

rule (a)

6

6

3 components corresponding to membership edges

6

Figure 8: The treatment of the triangle T1 from Figure 4 (Step 3). The arrows inside He are not represented.
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