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Abstract: - We proposed new two-parameter estimators to solve the problem called multicollinearity for the 
logistic regression model in this paper. We have derived these estimators’ properties and using the mean 
squared error (MSE) criterion; we compare theoretically with some of existing estimators, namely the 
maximum likelihood, ridge, Liu estimator, Kibria-Lukman, and Huang estimators. Furthermore, we obtain the 
estimators for k and d. A simulation is conducted in order to compare the estimators' performances. For 
illustration purposes, two real-life applications have been analyzed, that supported both theoretical and a 
simulation. We found that the proposed estimator, which combines the Liu estimator and the Kibria-Lukman 
estimator, has the best performance. 
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1 Introduction 
The regression model called binary logistic is 
considered to obtain a model for getting the 
relationship between variable with a binary response 
and one or group of regressor variables. The usage 
of this model are in many areas, as biostatistics, 
finance, and medical sciences, among others. The 
maximum likelihood estimator (MLE) is considered 
for estimating the logistic model coefficients. In 
practice, we are assuming that the regressor 
variables are orthogonal. However, in real-life 
situations, the regressor variables are often in 
correlation, and this causes a multicollinearity. So, 
in this case, the MLE has unduly large variance and 
hence, it becomes inefficient.  Therefore, Hoerl and 
Kennard [1] proposed a different estimation method 
which is ridge regression (RR) in the linear model. 
Many authors have studied and made some 

improvements in RR for the linear model, to 
mention a few, [1, 2, 3, 4, 5, 6, 7, 8] among others.  
Then, Schaeffer et al. [9] have extended the RR to 
logistic model for solving the multicollinearity in 
this model. In addition, Kibria et al. [10] have 
verified some biasing parameters estimators' 
performance in RR for the logistic model. Also, 
there are different studies of the few biased 
estimators in the logistic model as: Inan and 
Erdogan [11], Nagarajah and Wijekoon [12], Asar et 
al. [13], Asar and Genc [14], and Varathan and 
Wijekoon [15]. Recently, Lukman et al. [16] have 
developed the modified version of ridge-type for the 
logistic model. Also, Abonazel and Farghali [17] 
have developed a new estimator with two-parameter 
for the multinomial logistic model. Then, Farghali et 
al. [18] have proposed two generalized estimators 
with two-parameter for the multinomial logistic 
model. As well as, Yang and Chang [19] have 
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proposed a new estimator of two-parameter based 
on the Liu [20] estimator and RR estimator.  
This paper focuses on extending the estimator 
proposed by [19] and proposing a new one for the 
binary logistic model.  
Then, the paper is like that: In Section 2, we present 
the model and the proposed estimators. We made 
the theoretical comparison among the estimators in 
Section 3. The results of simulation are given in 
Section 4 and that of real-life are illustrated in 
Section 5. In Section 6, the conclusions are stated. 
 

 

2 Statistical Methodology 
The logistic regression model, where the 
distribution of the response )(y  is Bernoulli: 

)(~ ii Bery   such that  
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where ix  is given as the ith row of X  matrix  with 
the dimension of pn  and   is unknown 
coefficients vector with the dimension of 1p . The 
transformation of logit is  
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The MLE is used widely in parameter estimation for 
this model. The function of log likelihood is  
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With the iteratively reweighted least squares 
(IRLS), equation (4) is solved. Since it is nonlinear 
in parameter. So, the MLE for the logistic model is 
defined as 

                                                               
zGXSMLE
ˆˆˆ 1                          (5) 
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In the presence of multicollinearity, Schaeffer et al. 
[9] introduced ridge regression for logistic (LRR) as 
a different method. The LRR is given by: 
 

MLELRR M  ˆˆ  ,       0k                 (6) 
 
where 11)(  SkM p  is weight matrix  and  k  
is parameter of ridge or biasing.  
Then, Mansson et al. [21] suggested Liu estimator 
for logistic (LLE) as: 
 

10,ˆˆ  dF MLEdLLE         (7) 
 
where )()( 1

ppd dSSF    is the weight 

matrix and d  is the biasing parameter.  
Huang [22] proposed the logistic two parameter 
estimator (LTPE) and is given by 

ˆ ˆ , 0, 0 1LTPE kd MLER k d         (8) 
 
where  )()( 1

ppkd dkSkSR   . 
 
Following [23], the Kibria-Lukman estimator for the 
logistic (LKL) is defined as 
 

0,ˆˆ  kMW MLELKL         (9) 
 
where )( 1 SkW p .  
Kibria and Lukman [23] proved that Kibria-Lukman 
is more efficient than ridge estimator. Recently, the 
Kibria-Lukman estimator is extended in gamma and 
beta regression models by [24, 25], respectively.  
 
2.1 New Two-Parameter Estimators 
Yang and Chang [19] have developed estimator of a 
two parameter as 

 
1 1 1ˆ ˆ( ) ( )(1 ( ) ) , 0, 0 1YC X X I X X d k X X k d                          (10) 

 
Yang and Chang [19] proved that their estimator is 
more efficient than Liu estimator as well as ridge 
estimator, meaning that combining them with Liu 
and ridge gives an effective estimator. Therefore, 

following [19], we are going to propose a new 
modified estimator of two-parameter based on Liu 
estimator and the Kibria-Lukman [23] estimator, as 
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1 1 1 1ˆ ˆ( ) ( )(1 ( ) ) (1 ( ) ) , 0, 0 1LKL X X I X X d k X X k X X k d               .      (11) 

 
Therefore, we develop the logistic version of the 
estimator of Yang and Chang [19] and the new 
estimator of two-parameter and defined as follows: 
 
- The logistic version of the Yang and Chang [19] 

(LYC) estimator is defined as 
 

10,0,ˆˆ  dkMF MLEdLYC  .    (12) 
 

- The logistic version of the new estimator 
(LLKL) estimator is defined as 
 

10,0,ˆˆ  dkMWF MLEdLLKL  .   (13) 
 

2.2 MSEM and MSE Properties of the 

Estimators 
 

The matrix form of mean squared error (MSEM) 
and the mean squared error (MSE) for an estimator 
( )  are defined respectively as follows: 

( ) ( )MSEM Cov    

   ( ) ( )Bias Bias 

       (14) 

and 

 ( ) ( )MSE trace MSEM  .         (15) 

By matrix spectral decomposition, LLHS   
where L  matrix columns and H  are the 
eigenvectors and eigenvalues of S . The estimators 
MSEMs are respectively as follows: 
  

LLHMSEM MLE
 1)ˆ(                 (16) 

 
and 

)()()ˆ( 1  

ppLRR IMIMLMHLMMSEM                             (17) 
 
where  11)(  HkM p  and  L . 

 
1121 )()()1()ˆ(   ppddLLE IHIHdLFHLFMSEM  .                          (18) 

 
where )()( 1

ppd dHHF     

][][)ˆ( 1  

pkdpkdkdkdLTPE IRIRLRHRLMSEM  .                         (19) 
 
where ][][ 1

ppkd dkHkHR   . 
 

][][)ˆ( 1  

ppLKL IMWIMWLMWHLMWMSEM  .                    (20) 
 
where ][ 1 HkIW p . 

 
][][)ˆ( 1  

pdpdddLYC IMFIMFLFMHMFLMSEM  .                   (21) 
 
and finally. 

 
][][)ˆ( 1  

pdpdddLLKL IMWFIMWFLFMWWHMFLMSEM      (22) 
 

 Lemma 2.1: [26], let V  is a positive definite matrix 
with nn  dimension, i.e. 0V , and   is a 
vector; then, 0 V  iff 11    V ,  
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Lemma 2.2: [27], suppose that yQii  , 2,1i  
are any   two linear estimators. Assume 

0)ˆ()ˆ( 21   CCD  where 2,1),ˆ( iC i  is 

î  covariance matrix and 
 )()ˆ( IXQbiasm iii  , 2,1i . 

Consequently, 

)23(0

)ˆ()ˆ(

2211
2

21





mmmmD

MSEMMSEM




  

iff 1)( 211
2

2  mmmDm   where 

iiii mmCMSEM  )ˆ()ˆ(  .   
 

 

3 Comparison of Estimators 
 

3.1. Comparison between 
MLÊ  and ˆ

LLKL .   
 
Theorem 3.1 

ˆ ˆ( ) ( ) 0MLE LLKLMSEM MSEM    if and only  
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where ih  is the ith eigenvalue of the matrix H  and 

dd FWMHMWFH   11  will be positive 
definite (pd) if and only if 

0)()()()1( 2222  khdhkhh iiii  or 
0))(())(1(  khdhkhh iiii . We 

observed that, for 0k  and 10  d , 
( 1)( ) ( )( )i i i ih h k h d h k       

(2 1 ) (1 ) 0ih k d k d     . By Lemma 2.2, the 
proof is completed. 
 

3.2. Comparison between LRR̂  and ˆ
LLKL .   

 
Theorem 3.2 

ˆ ˆ( ) ( ) 0LRR LLKLMSEM MSEM    if and only if
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where dd FMWHMWFMHM   11  will be 
pd if and only if 

0)()()1( 2222  khdhhh iiii  or 
0)()()1(  khdhhh iiii . We observed 

that, for 0k  and 10  d , 
( 1) ( )( )i i i ih h h d h k      

( 1 ) 0ih k d kd    . By Lemma 2.2, the proof is 
completed. 
 

3.3. Comparison between LLÊ  and ˆ
LLKL .   

Theorem 3.3 

ˆ ˆ( ) ( ) 0LLE LLKLMSEM MSEM    if and only if 

1][]][][[][ 2   pdpdpdpd IMWFIFIFDIMWF                 (28) 
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where LFMWHMWFFHFLD dddd
  )( 11
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where FMWHMWFFHF ddd

  11  will be 

pd iff 0)()( 22  khkh ii  or 
0)()(  khkh ii . We had that, for 0k , 

02)()(  kkhkh ii . By Lemma 2.2, the 
proof is completed. 

 
3.4. Comparison between LKL̂  and ˆ

LLKL .   
Theorem 3.4 

ˆ ˆ( ) ( ) 0LKL LLKLMSEM MSEM    if and only  
if

1][]][][[][ 3   pdpppd IMWFIMWIMWDIMWF       (30) 
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where 

dd FMWHMWFMWHMW   11  will be pd 

iff 0)()1( 22  dhh ii  or 
0)()1(  dhh ii . We had that, for 0k , 

and 10  d , 
 01)()1(  ddhh ii . By Lemma 2.2, the 
proof is completed. 

 
3.5. Comparison between LTPÊ  and ˆ

LLKL .   
 
Theorem 3.5 

ˆ ˆ( ) ( ) 0LTPE LLKLMSEM MSEM    if and only 
if 
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where ddkdkd FMWHMWFRHR   11  will be 
pd iff 

0)()()()1( 2222  khdhkdhh iiii  or 
0))(()()1(  khdhkdhh iiii . We had 
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that, for 0k ,  and 10  d , 
( 1)( ) ( )( )i i i ih h kd h d h k       

( 1 ) 2 0ih kd k d kd     . By Lemma 2.2, the 
proof is completed. 
  

3.6. Comparison between LYĈ  and ˆ
LLKL .   

 
Theorem 3.6 

ˆ ˆ( ) ( ) 0LYC LLKLMSEM MSEM    if and only if 
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where dddd FMWHMWFFMHMF   11  

will be pd if and only if 0)( 22  khh ii  or 
0)(  khh ii . We had that, for 0k , 

0)(  kkii  . By Lemma 2.2, the proof is 
completed. 
 

3.7 Determination of the Parameters k  and 

d  for the estimators 
In this section, we suggest the biasing parameters 
for the existing and the proposed estimators.  
 
- The estimator of the biasing parameter k of 

LRR, LYC, LKL, and LTPE estimators is 
obtained as follows [4]: 
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p
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.                          (36) 

- The estimator of biasing parameter d for the Liu 
estimator and likewise the second biasing 
parameter for LYC and LTPE is obtained as 
follows [20]: 

 

 
  





























 2

2

/1
1

min,0maxˆ
ii

i

h
d




.       (37) 

 
- For the proposed LLKL estimator, the optimal 

value of k  can be obtained by choosing k  that 
minimize 
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Differentiate equation (38) with respect to k, then 
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Differentiate equation (38) with respect to d gives 
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For the purpose of simplifying the selection of the 
biasing parameters k and d we carry out the 
following: From equation (40), 
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It implies that 
     ;012 2  khhkkhh iiiii   parameter k 

is obtained as follows:              
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In this study, we take the absolute value of the 
minimum value of equation (41), the absolute value 
is taken to ensure the estimate return a positive 
value:  

 2

1 2 2

1
min

2 1
i i

i i i

h
k

h



 

 
 
  
 

             (42) 

The steps for the practical selection of the biasing 
parameters are as follows: 

1. Obtain 1̂k  by replacing 2 and 2
i  with their 

unbiased estimates.  

2. Substitute 1̂k into equation (40), and obtain the 
absolute value of the minimum value of 
equation (40):  
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Then, we suggest the following basing parameters k 
and d for the proposed LLKL estimator as follows: 

a. LLKL1: k̂ , d̂  

b. LLKL2: 2k̂ , 1d̂   
where                                                                                       

2

2 2 2

ˆ(1 )ˆ max
ˆ ˆ(2 1)
i i

i i i

h
k

h



 

 
  

  
         (44) 

c. LLKL3: 3̂k , d̂  
where  

3 2

1ˆ min
ˆ(2 (1/ ))i i

k
h

 
  

 
              (45) 

d. LLKL4: 4̂
ˆk k , 12

ˆˆ dd  . 
 
 
4 Monte Carlo Simulation  
A simulation study has been conducted to compare 
the performance of the estimators under the 
condition of multicollinearity. Literature on the 
linear regression model includes [4, 28, 29, 30, 31].  
A few available studies on the logistic regression 
model includes [14, 15, 16, 17, 18, 21, 32], among 
others. The regression coefficient is constrained 
such that β′β=1 [25, 31, 33, 34, 35, 3]. The 
explanatory variables can be obtained using the 
following simulation procedure [28, 37]: 
 

 
1/221 ,ij ij ipx w w                                        

1,2,..., ; 1,2,... ,i n j p         (46) 
 

where  is considered by many authors as the 
correlation of regressor variables. The   values are 
0.80, 0.90, 0.99, and 0.999. While the response is 
generated with the distribution of Bernoulli 𝐵𝑒(𝜋𝑖) 

where 𝜋𝑖 =
𝑒𝑋𝛽

1+𝑒𝑋𝛽. The sample size n is taken to be 
50, 100 and 200. The estimated MSE is  
 

     
1000 '

1

1ˆ ˆ ˆ
1000 il i il i

l

MSE     


       (47) 

where ˆ
il  is estimate of ith parameter in lth 

replication and βi (i=1,2, …, p) is the true parameter 
values (p is taken to be 3 and 8). The experiment is 
repeated 1000 times. The simulation results are 
presented in Tables 1 and 2. The results showed that 
increasing the sample size results in a decrease in 
estimated MSE values of estimators. However, the 
MSE values of estimators increase as correlation 
values and regressor variables number are increased. 
Furthermore, from Tables 1 and 2, it appears that 
the two proposed estimators (LYC and LLKL) are 
generally preferred to other estimators. The MLE 
performs least when there is multicollinearity in the 
data. Among the single parameter estimators, the 
LKL estimator performs better the LRR and the 
LLE estimator, especially when ρ=0.8-0.99. The 
considered two-parameter estimators in this study 
are the LYC, LTPE and LLKL. The LLKL 
performance is best followed by LYC estimator, and 
the LYC performs better the LRR, LLE, LTPE, and 
LKL estimators, especially when ρ > 0.9. Generally, 
the most preferred estimator is LLKL. Although, the 
estimator performance is a function of the biasing 
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parameter. The LLKL estimator works well with the 
biasing parameter 4

ˆ .k   
 

 

Table 1. Estimated MSE for different estimator when 𝑝 = 3 

n ρ MLE LRR LLE LTPE LKL LYC LLKL1 LLKL2 LLKL3 LLKL4 

50 0.8 
0.7794 0.4900 0.4683 0.4920 0.4855 0.3951 0.4891 0.5654 0.3999 0.3828 

 

0.9 
1.3581 0.6563 0.6128 0.6807 0.4953 0.4276 0.4679 0.5656 0.4583 0.3902 

 

0.99 
11.2305 3.2760 1.3486 4.0765 1.2697 0.6886 0.4605 1.5829 0.8124 0.4431 

 

0.999 110.0943 29.6252 11.9849 43.7412 9.7408 4.1582 0.9935 19.5853 6.0294 0.5825 

100 0.8 
0.3731 0.2654 0.2798 0.2655 0.2699 0.2362 0.2757 0.4092 0.2469 0.2233 

 

0.9 0.7071 0.3975 0.4210 0.3988 0.3317 0.2994 0.3182 0.4096 0.3333 0.2663 

 

0.99 6.4264 2.0980 0.8664 2.3859 0.9703 0.4884 0.3981 0.8770 0.5629 0.3912 

 

0.999 67.4281 20.9737 7.8557 28.6695 8.3799 3.5395 0.9135 11.4231 4.6993 0.3589 

200 0.8 0.1851 0.1705 0.1703 0.1705 0.1873 0.1675 0.1921 0.3354 0.1668 0.1626 

 

0.9 0.3172 0.2397 0.2588 0.2397 0.2371 0.2195 0.2377 0.3135 0.2325 0.2058 

 

0.99 2.9718 1.0669 0.6862 1.1323 0.5465 0.3860 0.3379 0.5623 0.4521 0.3163 

 

0.999 29.7578 8.6876 3.0615 11.4073 3.3366 1.4092 0.6317 0.9534 1.8151 0.3547 
 

Table 2. Estimated MSE for different estimator when 𝑝 = 8 

n ρ MLE LRR LLE LTPE LKL LYC LLKL1 LLKL2 LLKL3 LLKL4 

50 0.8 3.8735 1.8766 2.2775 1.8766 1.5930 1.5529 1.5460 1.9549 1.7948 1.4297 

 

0.9 5.9781 2.2989 2.4691 2.2989 1.6288 1.5643 1.4795 1.9162 1.8782 1.4026 

 

0.99 43.5254 10.1309 2.2022 10.4985 3.6542 1.4956 1.3583 2.0035 1.7285 1.4557 

 

0.999 429.4912 91.8397 6.1904 102.1948 24.8774 2.4958 1.4318 17.7479 3.6082 1.5450 

100 0.8 2.9662 1.5984 2.1144 1.5984 1.1738 1.3505 1.1485 1.4098 1.6780 1.1572 

 

0.9 4.7487 2.0107 2.4012 2.0107 1.1989 1.3654 1.1025 1.4359 1.7900 1.2564 

 

0.99 35.6395 9.5175 2.9062 9.6573 2.8575 1.3884 1.3109 1.4746 1.8667 1.3089 

 

0.999 343.8151 84.8848 3.6548 91.0053 19.8508 1.8033 1.4761 7.6382 2.5354 2.0172 

200 0.8 1.8607 1.3546 1.6996 1.3546 1.1463 1.2964 1.1384 1.2466 1.4909 1.2621 

 

0.9 2.4909 1.4925 2.0163 1.4925 1.2133 1.3369 1.2904 1.2715 1.6554 1.2959 

 

0.99 13.1361 4.0705 2.4493 4.0707 1.5544 1.3382 1.3319 1.3202 1.7924 1.3148 

 

0.999 121.4520 30.9715 4.7055 31.9513 6.9551 1.4571 1.9756 1.8326 1.8762 1.4766 
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5 Applications 
 

5.1. Pena Data 
The dataset was originally adopted by [38, 39]. Pena 
et al. [38] employed logistic model to examine the 
regressors of temperature effect, pH, as well soluble 
solids concentration with the nisin concentration on 
the response of Alicyclobacillus growth probability 
for apple Juice. The eigenvalues of the XGX ˆ matrix 
are 12373.8, 1313.949, 46.54678, 3.4102, and 
0.0475. Consequently, the condition number 
evaluates as 260293.8 which revealed presence of 
multicollinearity in the model. The estimated values 
of regression coefficient from each of the estimators 

and their corresponding mean squared error are 
available in Table 3.   
From Table 3, we note that the estimated 
coefficients of some variables differ from one 
estimator to another, so we can use the MSE as a 
good criterion for judging the efficiency of the 
estimation. The MLE is not giving any good 
performance as known. The efficiency of bias 
estimators depends on the selected values of k and d. 
The estimator has the least estimated MSE is 
LLKL4. This result as same as simulation result.  
Through this application, we verify the theoretical 
conditions of theorems 3.1 to 3.6 as follows: 

 

Table 3. Regression coefficients with MSE for Pena data 
Coef. MLE LRR LLE LTPE LKL LYC LLKL1 LLKL2 LLKL3 LLKL4 

1̂  -7.246 -2.449 -0.244 -0.029 2.348 -2.449 0.187 0.257 -0.133 0.318 

2̂  1.886 1.267 0.790 0.744 0.648 1.267 0.697 -0.674 0.772 0.595 

3̂  -0.066 -0.051 -0.042 -0.041 -0.037 -0.051 -0.040 -0.018 -0.041 -0.038 

4̂  0.110 0.065 0.046 0.044 0.020 0.065 0.042 0.024 0.045 0.041 

5̂
 -0.312 -0.349 -0.310 -0.306 -0.386 -0.349 -0.303 0.162 -0.310 -0.279 

MSE 21.3515 2.892 0.329 0.288 2.3913 2.892 0.284 0.312 0.306 0.272 
 

- For theorem 3.1, since the condition 
1 1[ ] [ ( ) ][ ] 0.001 1d p d d d pF W M I L H F W M H M W F L F W M I             is satisfied, 

then the LLKL estimator is better than the MLE estimator. 
 

-  For theorem 3.2, since the condition 
1[ ] [ [ ] [ ] ][ ] 0.376 1d p p p d pF W M I D W I W I F W M I             is satisfied, then the 

LLKL estimator is better than the LRR estimator. 
 

- For theorem 3.3, since the condition 
2[ ] [ [ ] [ ] ][ ] 0.009 1d p d p d p d pF W M I D F I F I F W M I             is satisfied, then the 

LLKL estimator is better than the LLE estimator. 
 

- For theorem 3.4, since the condition 
3[ ] [ [ ] [ ] ][ ] 0.017 1d p p p d pF W M I D W M I W M I F W M I             is satisfied, 

then the LLKL estimator is better than the LKL estimator.  
 

- For theorem 3.5, since the condition 
4[ ] [ [ ] [ ] ][ ] 0.005 1d p kd p kd p d pF W M I D R I R I F W M I             is satisfied, then 

the LLKL estimator is better than the LYC estimator.  
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- For theorem 3.6, since the condition 
5[ ] [ [ ] [ ] ][ ] 0.003 1d p d p d p d pF W M I D F W I F W I F W M I             is satisfied, 

then the LLKL estimator is better than the LTPE estimator.  
 

5.2 Cancer Data  
The theoretical results was analyzed using the 
cancer remission data. This data was originally 
adopted by [40] and recently employed by [32]. The 
response yi has a value 1 when the patient a 
remission of complete cancer and the value of zero 
elsewhere. The regressor variables are: the index of 
cell (x1), the index of smear (x2), the index of infıl 
(x3), the index of blast (x4) and the values of 
temperature (x5). There are 27 patients in number 
where 9 are a remission complete cancer. The 
regressor variables are standardized. The XGX ˆ
matrix eigenvalues are λ1 = 9.2979, λ2 =3.8070, λ3 = 

3.0692, λ4 = 2.2713 and λ5 =0.0314. Consequently, 
the condition number was computed as 
max(λ)/min(λ) = 295.703. The results of the 
eigenvalue and the condition number means the 
multicollinearity exists. The estimated regression 
coefficients and the corresponding MSE values are 
given in Table 4. The results indicate that proposed 
LLKL3 estimator is preferred corresponding to 
possessing smallest MSE. Also, we verified the 
theoretical conditions to the cancer data.  
As in the first application, we found that all 
conditions of theorems 3.1-3.6 are met, i.e., all the 
theorems inequalities are less than one.  

 
Table 4. Regression coefficients and MSE for cancer data 

Coef. MLE LRR LLE LTPE LKL LYC LLKL1 LLKL2 LLKL3 LLKL4 

1̂  -0.197 0.3591 0.3344 0.280 0.4696 0.350 0.226 -0.040 0.425 0.211 

2̂  -1.5957 -0.1205 -.0724 0.021 -0.1212 -0.099 0.114 0.214 -0.085 0.123 

3̂  1.8139 0.1564 0.1378 0.106 0.0576 0.147 0.074 0.073 0.068 0.076 

4̂  1.3073 1.0211 0.9247 0.723 1.2297 0.984 0.522 -0.252 1.109 0.481 

5̂
 -0.4208 -0.3019 -0.2672 -0.195 -0.3815 -0.288 -0.123 0.105 -0.336 -0.109 

MSE 32.9393 1.242 1.315 1.817 1.269 1.254 2.776 10.821 1.171 3.022 
 
6 Some Concluding Remarks 
The logistic model is used popularly for building 
model with a binary response with one or group of 
regressor variables. It is known, MLE is used for 
estimating the parameters of the logistic model. 
However, this estimator performance in the 
multicollinearity occurrence is not good. The 
logistic of ridge, Liu, KL, and estimator with two-
parameter by [22] have been developed in replace of 
MLE. Here, we have proposed a new estimator 
called the LLKL estimator and the extended of 
Yang and Chang [19] estimator to handle 
multicollinearity in the logistic model. 
Theoretically, we have observed that the LLKL 
outperforms other considered in this study. We have 
evaluated and have compared these estimators 
through a simulation and two real-life data. 
Generally, the proposed LLKL with 4k̂  is the best. 

In future work, for example, we can provide a 
robust biased estimation of the logistic regression as 
an extension of [41, 42]. 
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