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1 Introduction, Definitions and

Notations
Throughout this paper, we assume that the reader

is familiar with the fundamental results and the stan-
dard notations of the Nevanlinna value distribution
theory of entire and meromorphic functions which are
available in [11, 19, 25] and therefore we do not ex-
plain those in details. The theory of complex linear
equations has been developed since 1960s. Many au-
thors have investigated the second order linear differ-
ential equation

f ′′ +A(z)f = 0, (1)

where A(z) is an entire function or a meromorphic
function of finite order or finite iterated order, and
have obtained many results about the interaction be-
tween the solutions and the coefficient of (1) (see
[1, 2, 3, 18]). Moreover some authors have investi-
gated the exponent of convergence of zero sequence
and pole-sequence of the solutions of second order
differential equations and have obtained some inter-
esting results (see [7, 8, 18, 24]). Mulyava et al. [20]
have investigated the properties of solutions of a het-
erogeneous differential equation of the second order
under some different conditions using the concept of

generalized order. For details one may see [20].

We denote the linear measure and the loga-
rithmic measure of a set E ⊂ (1,+∞) by mE =∫
E dt andmlE =

∫
E

dx
x . Now let L be a class of con-

tinuous non-negative on (−∞,+∞) function α such
that α(x) = α(x0) ≥ 0 for x ≤ x0 and α(x) ↑ +∞
as x0 ≤ x → +∞.

Recently Heittokangas et al. [14] have intro-
duced a new concept of ϕ-order of entire and mero-
morphic function considering ϕ as subadditive func-
tion. For details one may see [14]. Now it is interest-
ing to investigate the interaction between the growth,
zeros of solutions with the coefficients of second or-
der linear differential equations using the revised idea
of Heittokangas et al. [14], which is the main aim of
this paper. For this purpose, we introduce the defini-
tion of the (α, β, γ)-order of a meromorphic function
in the following way:

Definitions 1. Let α ∈ L, β ∈ L and γ ∈ L. The
(α, β, γ)-order denoted by σ(α,β,γ)[f ] and (α, β, γ)-
lower order denoted by µ(α,β,γ)[f ] of a meromorphic
function f are, respectively, defined by

σ(α,β,γ)[f ] = lim sup
r→+∞

α(logT (r, f))

β(log γ(r))
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and

µ(α,β,γ)[f ] = lim inf
r→+∞

α(logT (r, f))

β(log γ(r))
.

Remark 1. Let f be a meromorphic function. One

can see that α(r) = log[p] r, (p ≥ 0), β(r) = log[q] r,
(q ≥ 0) and γ(r) = r belong to the class L, where

log[k] x = log(log[k−1] x) (k ≥ 1), with convention

that log[0] x = x. So, when p = 0 and q = 0, i.e.,
α(r) = β(r) = r, the Definition 1 coincides with the

usual order and lower order, when α(r) = log[p−1] r
(p ≥ 1) and β(r) = r, we obtain the iterated p-order
and iterated lower p-order (see [18, 22]), moreover

when α(r) = log[p−1] r and β(r) = log[q−1] r, (p ≥
q ≥ 1), we get the (p, q)-order and lower (p, q)-order
(see [15, 16]). Further, if α(r) = ϕ(er), where ϕ
is an increasing unbounded function on [1,+∞) and
β(r) = r, we obtain the ϕ-order and the lower ϕ-
order (see [4, 9]). Finally if α(r) = β(r) = r and
γ(r) = ϕ(r), where ϕ : (R0,+∞) → (0,+∞) is
a non-decreasing unbounded function satisfying the
condition ϕ(a+ b) ≤ ϕ(a) + ϕ(b) for all a, b ≥ R0,
we obtain the new definition of ϕ-order and the lower
ϕ-order introduced by Heittokangas et al. [14].

Similarly to Definition 1, we can also define
the (α, β, γ)-exponent of convergence of the zero-
sequence and (α, β, γ)-exponent of convergence of
the distinct zero sequence of a meromorphic function
f in the following way:

Definitions 2. Let α ∈ L, β ∈ L and γ ∈ L.
The (α, β, γ)-exponent of convergence of the zero-
sequence denoted by λ(α,β,γ)[f ] of a meromorphic
function f is defined by

λ(α,β,γ)[f ] = lim sup
r→+∞

α(logn(r, 1/f))

β(log γ(r))
.

Similarly, the (α, β, γ)-exponent of convergence of

the distinct zero-sequence denoted by λ(α,β,γ)[f ] of f
is defined by

λ(α,β,γ)[f ] = lim sup
r→+∞

α(logn(r, 1/f))

β(log γ(r))
.

We say that α ∈ L1, if α(a + b) ≤ α(a) +
α(b) + c for all a, b ≥ R0 and fixed c ∈ (0,+∞).
Further we say that α ∈ L2, if α ∈ L and α(x +
O(1)) = (1 + o(1))α(x) as x → +∞. Finally, α ∈
L3, if α ∈ L and α(a + b) ≤ α(a) + α(b) for all
a, b ≥ R0, i.e., α is subadditive. Clearly L3 ⊂ L1.

Particularly, when α ∈ L3, then one can eas-
ily verify that α(mr) ≤ mα(r), m ≥ 2 is an inte-
ger. Up to a normalization, subadditivity is implied

by concavity. Indeed, if α(r) is concave on [0,+∞)
and satisfies α(0) ≥ 0, then for t ∈ [0, 1],

α(tx) = α(tx+ (1− t) · 0)

≥ tα(x) + (1− t)α(0) ≥ tα(x),

so that by choosing t = a
a+b or t =

b
a+b ,

α(a+ b) =
a

a+ b
α(a+ b) +

b

a+ b
α(a+ b)

≤ α
( a

a+ b
(a+ b)

)
+ α

( b

a+ b
(a+ b)

)
= α(a) + α(b), a, b ≥ 0.

As a non-decreasing, subadditive and unbounded
function, α(r) satisfies

α(r) ≤ α(r +R0) ≤ α(r) + α(R0)

for any R0 ≥ 0. This yields that α(r) ∼ α(r + R0)
as r → +∞.

Now we add two conditions on α, β and γ:
(i) Always α ∈ L1, β ∈ L2 and γ ∈ L3; and (ii)

α(log[p] x) = o(β(log γ(x))), p ≥ 2 is an integer as
x → +∞.

Throughout this paper, we assume that α, β
and γ always satisfy the above two conditions unless
otherwise specifically stated.

Proposition 1. Let f1, f2 be non-constant meromor-
phic functions with σ(α,β,γ)[f1] and σ(α,β,γ)[f2] as
their (α, β, γ)-order. Then
(i)σ(α,β,γ)[f1±f2] ≤ max{σ(α,β,γ)[f1], σ(α,β,γ)[f2]};
(ii) σ(α,β,γ)[f1 ·f2] ≤ max{σ(α,β,γ)[f1], σ(α,β,γ)[f2]};
(iii) If σ(α,β,γ)[f1] 6= σ(α,β,γ)[f2], then σ(α,β,γ)[f1 ±
f2] = max{σ(α,β,γ)[f1], σ(α,β,γ)[f2]};
(iv) If σ(α,β,γ)[f1] 6= σ(α,β,γ)[f2], then σ(α,β,γ)[f1 ·
f2] = max{σ(α,β,γ)[f1], σ(α,β,γ)[f2]}.

Proof. (i) Without loss of generality, we assume that
σ(α,β,γ)[f1] ≤ σ(α,β,γ)[f2] < +∞. From the defini-

tion of (α, β, γ)-order, for any ε > 0, we obtain for
all sufficiently large values of r that

T (r, f1) < exp(α−1((σ(α,β,γ)[f1] + ε)β(log γ(r))))
(2)

and

T (r, f2) < exp(α−1((σ(α,β,γ)[f2] + ε)β(log γ(r)))).
(3)

Since T (r, f1± f2) ≤ T (r, f1)+T (r, f2)+ log 2 for
all large r, we get from (2) and (3) for all sufficiently
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large values of r that

T (r, f1 ± f2) < 2 exp(α−1((σ(α,β,γ)[f2]

+ ε)β(log γ(r)))) + log 2

i.e., T (r, f1 ± f2) < 3 exp(α−1((σ(α,β,γ)[f2]

+ ε)β(log γ(r))))

i.e., logT (r, f1 ± f2) < α−1((σ(α,β,γ)[f2]

+ ε)β(log γ(r))) + log 3

i.e., α(logT (r, f1 ± f2)) < (σ(α,β,γ)[f2]

+ ε)β(log γ(r)))

+ α(log 3) + c, (c > 0) ,

which implies that

lim sup
r→+∞

α(logT (r, f1 ± f2))

β(log γ(r)))
≤ σ(α,β,γ)[f2] + ε

holds for any ε > 0. Hence

σ(α,β,γ)[f1 ± f2] ≤ max{σ(α,β,γ)[f1], σ(α,β,γ)[f2]}.
(4)

(iii) Further without loss of any generality, let
σ(α,β,γ)[f1] < σ(α,β,γ)[f2] < +∞ and f = f1 ±
f2. Then in view of (4) we get that σ(α,β,γ)[f ] ≤
σ(α,β,γ)[f2]. As, f2 = ±(f − f1) and in this

case we obtain that σ(α,β,γ)[f2] ≤ max {σ(α,β,γ)[f ],
σ(α,β,γ)[f1]}. As we assume that σ(α,β,γ)[f1]
< σ(α,β,γ)[f2], therefore we have σ(α,β,γ)[f2] ≤
σ(α,β,γ)[f ] and hence σ(α,β,γ)[f ] = σ(α,β,γ)[f2] =
max{σ(α,β,γ)[f1], σ(α,β,γ)[f2]}.

(ii) and (iv) Similarly, from T (r, f1 · f2) ≤
T (r, f1) + T (r, f2) for all large r, we can also get
that

σ(α,β,γ)[f1 · f2] ≤ max{σ(α,β,γ)[f1], σ(α,β,γ)[f2]}

and if σ(α,β,γ)[f1] 6= σ(α,β,γ)[f2], then

σ(α,β,γ)[f1 · f2] = max{σ(α,β,γ)[f1], σ(α,β,γ)[f2]},
which completes the proof of Proposition 1.

Proposition 2. Let f1, f2 be non-constant
meromorphic functions with σ(α(log),β,γ)[f1] and

σ(α(log),β,γ)[f2] as their (α(log), β, γ) -order. Then
(i) σ(α(log),β,γ)[f1 ± f2] ≤ max{σ(α(log),β,γ)[f1],
σ(α(log),β,γ)[f2]};
(ii) σ(α(log),β,γ)[f1 · f2] ≤ max{σ(α(log),β,γ)[f1],
σ(α(log),β,γ)[f2]};
(iii) If σ(α(log),β,γ)[f1] 6= σ(α(log),β,γ)[f2], then

σ(α(log),β,γ)[f1 ± f2] = max{σ(α(log),β,γ)[f1],
σ(α(log),β,γ)[f2]};
(iv) If σ(α(log),β,γ)[f1] 6= σ(α(log),β,γ)[f2], then

σ(α(log),β,γ)[f1 · f2] = max {σ(α(log),β,γ)[f1],
σ(α(log),β,γ)[f2]}.

Sinceα(a+b) ≤ α(a)+α(b)+c for all a, b ≥
R0 and fixed c ∈ (0,+∞), the proof of Proposition 2
would run parallel to that of Proposition 1. We omit
the details.

Proposition 3. (i) If f is an entire function, then

σ(α,β,γ)[f ] = lim sup
r→+∞

α(logT (r, f))

β(log γ(r))

= lim sup
r→+∞

α(log[2]M(r, f))

β(log γ(r))

and

µ(α,β,γ)[f ] = lim inf
r→+∞

α(logT (r, f))

β(log γ(r))

= lim inf
r→+∞

α(log[2]M(r, f))

β(log γ(r))
.

(ii) If f is a meromorphic function, then

λ(α,β,γ)[f ] = lim sup
r→+∞

α(logn(r, 1/f))

β(log γ(r))

= lim sup
r→+∞

α(logN(r, 1/f))

β(log γ(r))

and

λ(α,β,γ)[f ] = lim sup
r→+∞

α(logn(r, 1/f))

β(log γ(r))

= lim sup
r→+∞

α(logN(r, 1/f))

β(log γ(r))
.

Proof. (i) By the inequality T (r, f) ≤
log+M(r, f) ≤ R+r

R−rT (R, f) (0 < r < R) (cf.
[11]) for an entire function f , set R = ηr (η > 1),
we have

T (r, f) ≤ log+M(r, f) ≤ η + 1

η − 1
T (ηr, f). (5)

By (5), α(a + b) ≤ α(a) + α(b) + c for all a, b ≥
R0 and fixed c ∈ (0,+∞), β((1 + o(1))x) = (1 +
o(1))β(x) as x → +∞ and γ(a + b) ≤ γ(a) + γ(b)
for all a, b ≥ R0, it is easy to see that conclusion (i)
holds.

(ii) Without loss of generality, assume that f(0) 6=
0, then N(r, 1/f) =

∫ r
0

n(t,1/f)
t dt. We get for 0 <

r0 < r

N(r, 1/f)−N(r0, 1/f) =

∫ r

r0

n(t, 1/f)

t
dt

≤ n(r, 1/f) log
r

r0
,
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that is

N(r, 1/f) ≤ N(r0, 1/f) + n(r, 1/f)

× log
r

r0
(0 < r0 < r),

i.e., N(r, 1/f) ≤
(
1 +

N(r0, 1/f)

n(r, 1/f) log r
r0

)
× n(r, 1/f) log

r

r0
(0 < r0 < r),

which implies that

logN(r, 1/f) ≤ logn(r, 1/f) + log log r

+ log
(
1− log r0

log r

)
+ log

(
1

+
N(r0, 1/f)

n(r, 1/f) log r
r0

)
(0 < r0 < r),

(6)
then by the condition on α and (6), we obtain that

lim sup
r→+∞

α(logN(r, 1/f))

β(log γ(r))

≤ lim sup
r→+∞

α(logn(r, 1/f))

β(log γ(r))
+ lim sup

r→+∞

α(log[2] r)

β(log γ(r))

+lim sup
r→+∞

α
(
log

(
1− log r0

log r

))
β(log γ(r))

+lim sup
r→+∞

α
(
log

(
1 + N(r0,1/f)

n(r,1/f) log r

r0

))
β(log γ(r))

+lim sup
r→+∞

c

β(log γ(r))

= lim sup
r→+∞

α(logn(r, 1/f))

β(log γ(r))
, (c > 0) , (7)

since α(log[2] x) = o(β(log γ(x))) as x → +∞ we

have
α(log[2] r)
β(log γ(r)) → 0 as r → +∞.

On the other hand, we have

N(er, 1/f) =

∫ er

0

n(t, 1/f)

t
dt

≥
∫ er

r

n(t, 1/f)

t
dt

≥ n(r, 1/f) log e = n(r, 1/f).

(8)

By (8), we have

lim sup
r→+∞

α(logN(er, 1/f))

β(log γ(r))
≥ lim sup

r→+∞

α(logn(r, 1/f))

β(log γ(r))
.

By the conditions β((1 + o(1))x) = (1 + o(1))β(x)
as x → +∞ and γ(er) ≤ γ(3r) ≤ 3γ(r), we can
write

lim sup
r→+∞

α(logN(er, 1/f))

β(log γ(r))
≤ lim sup

r→+∞

α(logN(er, 1/f))

β(log 1
3γ(er))

= lim sup
r→+∞

α(logN(er, 1/f))

β(log 1
3 + log γ(er))

= lim sup
r→+∞

α(logN(er, 1/f))

β((1 + o(1)) log γ(er))

= lim sup
r→+∞

α(logN(er, 1/f))

(1 + o(1))β(log γ(er))

= lim sup
r→+∞

α(logN(er, 1/f))

β(log γ(er))

= lim sup
r→+∞

α(logN(r, 1/f))

β(log γ(r))
,

it follows that

lim sup
r→+∞

α(logN(r, 1/f))

β(log γ(r))
≥ lim sup

r→+∞

α(logn(r, 1/f))

β(log γ(r))
.

(9)
By (7) and (9), it is easy to see that

λ(α,β,γ)[f ] = lim sup
r→+∞

α(logn(r, 1/f))

β(log γ(r))

= lim sup
r→+∞

α(logN(r, 1/f))

β(log γ(r))
.

By the same proof above, we can obtain the conclu-
sion

λ(α,β,γ)[f ] = lim sup
r→+∞

α(logn(r, 1/f))

β(log γ(r))

= lim sup
r→+∞

α(logN(r, 1/f))

β(log γ(r))
.

Proposition 4. (i) If f is an entire function, then

σ(α(log),β,γ)[f ] = lim sup
r→+∞

α(log[2] T (r, f))

β(log γ(r))

= lim sup
r→+∞

α(log[3]M(r, f))

β(log γ(r))

and

µ(α(log),β,γ)[f ] = lim inf
r→+∞

α(log[2] T (r, f))

β(log γ(r))

= lim inf
r→+∞

α(log[3]M(r, f))

β(log γ(r))
.
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(ii) If f is a meromorphic function, then

λ(α(log),β,γ)[f ] = lim sup
r→+∞

α(log[2] n(r, 1/f))

β(log γ(r))

= lim sup
r→+∞

α(log[2]N(r, 1/f))

β(log γ(r))

and

λ(α(log),β,γ)[f ] = lim sup
r→+∞

α(log[2] n(r, 1/f))

β(log γ(r))

= lim sup
r→+∞

α(log[2]N(r, 1/f))

β(log γ(r))
.

Sinceα(a+b) ≤ α(a)+α(b)+c for all a, b ≥
R0 and fixed c ∈ (0,+∞), β((1 + o(1))x) = (1 +
o(1))β(x) as x → +∞ and γ(a + b) ≤ γ(a) + γ(b)
for all a, b ≥ R0, the proof of Proposition 4 would run
parallel to that of Proposition 3. We omit the details.

2 Main Results
In this paper, our aim is to make use of the con-

cept of (α, β, γ)-order of entire functions to investi-
gate the growth, zeros of the solutions of equation (1)
which considerably extend some results of [21].

Theorem 1. LetA(z) be an entire function satisfying
σ(α,β,γ)[A] > 0. Then σ(α(log),β,γ)[f ] = σ(α,β,γ)[A]
holds for all non-trivial solutions of (1).

Theorem 2. Let A(z) be an entire function satisfy-
ing σ(α,β,γ)[A] > 0, let f1 and f2 be two linearly

independent solutions of (1) and denote F = f1·
f2. Then max {λ(α(log),β,γ)[f1], λ(α(log),β,γ)[f2]} =
λ(α(log),β,γ)[F ] = σ(α(log),β,γ)[F ] ≤ σ(α,β,γ)[A]. If

σ(α(log),β,γ)[F ] < σ(α,β,γ)[A], then λ(α(log),β,γ)[f ] =
σ(α,β,γ)[A] holds for all solutions of type f = c1f1 +
c2f2, where c1· c2 6= 0.

Theorem 3. Let A(z) be an entire function satisfy-

ing λ(α,β,γ)[A] < σ(α,β,γ)[A]. Then λ(α(log),β,γ)[f ] ≤
σ(α,β,γ)[A] ≤ λ(α,β,γ)[f ] holds for all non-trivial so-
lutions of (1).

Remark 2. This article may be understood as an ex-
tension and an improvement of [5], [18] and [21].

3 Some Lemmas
In this section we present some lemmas which

will be needed in the sequel.

Lemma 1. ([12, 13, 19]) Let f be a transcendental
entire function, and let z be a point with |z| = r at

which |f(z)| = M(r, f). Then, for all |z| outside a
set E1 of r of finite logarithmic measure, we have

f (j)(z)

f(z)
=

(ν(r, f)
z

)j
(1 + o(1)) (j ∈ N), (10)

where ν(r, f) is the central index of f .

Lemma 2. ([10, 19]) Let g : [0,+∞) → R and h :
[0,+∞) → R be monotone nondecreasing functions
such that g(r) ≤ h(r) outside of an exceptional setE2

of finite linear measure or finite logarithmic measure.
Then, for any d > 1, there exists r0 > 0 such that
g(r) ≤ h(dr) for all r > r0.

Lemma 3. ([[13], Theorems 1.9 and 1.10, or [17],

Satz 4.3 and 4.4]) Let f(z) =
∑+∞

n=0 anz
n be any

entire function, µ(r, f) be the maximum term, i.e.,
µ(r, f) = max {|an|rn;n = 0, 1, ...}, and ν(r, f) be
the central index of f .
(i) If |a0| 6= 0, then

logµ(r, f) = log |a0|+
r∫
0

ν(t, f)

t
dt. (11)

(ii) For r < R, we have

M(r, f) < µ(r, f)
(
ν(R, f) +

R

R− r

)
. (12)

Lemma 4. Let f be an entire function satisfying
σ(α,β,γ)[f ] = σ1 and µ(α,β,γ)[f ] = µ1, and let ν(r, f)
be the central index of f . Then

lim sup
r→+∞

α(log ν(r, f))

β(log γ(r))
= σ1

and

lim inf
r→+∞

α(log ν(r, f))

β(log γ(r))
= µ1.

Proof. In view of the first part of Lemma 3, one may
obtain that

logµ(2r, f) = log |a0|+
2r∫
0

ν(t, f)

t
dt

≥ log |a0|+
2r∫
r

ν(t, f)

t
dt ≥ log |a0|+ ν(r, f) log 2.

(13)
Also by Cauchy’s inequality, it is well known that (cf.
[23])

µ(r, f) ≤ M(r, f). (14)
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Therefore, one may obtain from (13) and (14) that

ν(r, f) log 2 ≤ logM(2r, f)− log |a0|.

Thus from above, we get that

log ν(r, f) + log[2] 2 ≤ log[2]M(2r, f)

+ log
(
1− log |a0|

logM(2r, f)

)
.

By using condition on α, we obtain that

lim sup
r→+∞

α(log ν(r, f))

β(log γ(r))
≤ lim sup

r→+∞

α(log[2]M(2r, f))

β(log γ(r))

+lim sup
r→+∞

α
(
log

(
1− log |a0|

logM(2r,f)

))
β(log γ(r))

+lim sup
r→+∞

α(− log[2] 2)

β(log γ(r))
+ lim sup

r→+∞

c

β(log γ(r))

= lim sup
r→+∞

α(log[2]M(2r, f))

β(log γ(r))
.

By using γ(2r) ≤ 2γ(r), it follows that

lim sup
r→+∞

α(log ν(r, f))

β(log γ(r))

≤ lim sup
r→+∞

α(log[2]M(2r, f))

β(log 1
2γ(2r))

= lim sup
r→+∞

α(log[2]M(2r, f))

β((1 + o (1)) log γ(2r))

= lim sup
r→+∞

α(log[2]M(2r, f))

(1 + o (1))β(log γ(2r))

= lim sup
r→+∞

α(log[2]M(r, f))

β(log γ(r))
= σ1,

i.e., σ1 ≥ lim sup
r→+∞

α(log ν(r, f))

β(log γ(r))
(15)

and consequently

µ1 ≥ lim inf
r→+∞

α(log ν(r, f))

β(log γ(r))
. (16)

Further for any constant K1, one may get from the
second part of Lemma 3, that (cf. [6])

logM(r, f) < ν(r, f) log r + log ν(2r, f) +K1.

Therefore from above we obtain that

logM(r, f) < ν(2r, f) log r + ν(2r, f) +K1,

i.e., logM(r, f) < ν(2r, f)(1 + log r) +K1,

i.e., logM(r, f) < ν(2r, f) log(e · r) +K1,

i.e., log[2]M(r, f) < log ν(2r, f) + log[2](e · r)

+ log
(
1 +

K1

ν(2r, f) log(e · r)

)
,

i.e., lim sup
r→+∞

α(log[2]M(r, f))

β(log γ(r))

≤ lim sup
r→+∞

α(log ν(2r, f))

β(log γ(r))
+ lim sup

r→+∞

α(log[2](e · r))
β(log γ(r))

+ lim sup
r→+∞

α
(
log

(
1 + K1

ν(2r,f) log(e·r)

))
β(log γ(r))

+ lim sup
r→+∞

c

β(log γ(r))
= lim sup

r→+∞

α(log ν(2r, f))

β(log γ(r))
,

where c > 0. Since γ(2r) ≤ 2γ(r), so from above
we have

σ1 = lim sup
r→+∞

α(log[2]M(r, f))

β(log γ(r))

≤ lim sup
r→+∞

α(log ν(2r, f))

β(log γ(r))

≤ lim sup
r→+∞

α(log ν(2r, f))

β(log 1
2γ(2r))

= lim sup
r→+∞

α(log ν(r, f))

β(log γ(r))
,

i.e., σ1 ≤ lim sup
r→+∞

α(log ν(r, f))

β(log γ(r))
(17)

and accordingly

µ1 ≤ lim inf
r→+∞

α(log ν(r, f))

β(log γ(r))
. (18)

Combining (15), (17) and (16), (18) we obtain that

lim sup
r→+∞

α(log ν(r, f))

β(log γ(r))
= σ1

and

lim inf
r→+∞

α(log ν(r, f))

β(log γ(r))
= µ1.

This proves the lemma.

Lemma 5. Let f be an entire function satisfying
σ(α(log),β,γ)[f ] = σ2 and µ(α(log),β,γ)[f ] = µ2, and

let ν(r, f) be the central index of f . Then

lim sup
r→+∞

α(log[2] ν(r, f))

β(log γ(r))
= σ2

and

lim inf
r→+∞

α(log[2] ν(r, f))

β(log γ(r))
= µ2.
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In the line of Lemma 4 one can easily deduce
the conclusion of Lemma 5 and so its proof is omitted.

Lemma 6. Let f1 and f2 be entire functions
of (α, β, γ)-exponent of convergence of the zero-
sequence and denote F = f1· f2. Then

λ(α,β,γ)[F ] = max{λ(α,β,γ)[f1], λ(α,β,γ)[f2]}.

Proof. Let n(r, 0, F ), n(r, 0, f1) and n(r, 0, f2) be
unintegrated counting functions for the number of ze-
ros of F , f1 and f2. For any r > 0, it is easy to see
that

n(r, 0, F ) ≥ max{n(r, 0, f1), n(r, 0, f2)}. (19)

By Definition 2 and (19), we have

λ(α,β,γ)[F ] ≥ max{λ(α,β,γ)[f1], λ(α,β,γ)[f2]}. (20)

On the other hand, since the zeros of F must be the
zeros of f1 and the zeros of f2, for any r > 0, we have

n(r, 0, F ) = n(r, 0, f1) + n(r, 0, f2)

≤ 2max{n(r, 0, f1), n(r, 0, f2)}.
(21)

By Definition 2 and (21), we get that

λ(α,β,γ)[F ] ≤ max{λ(α,β,γ)[f1], λ(α,β,γ)[f2]}. (22)

Therefore, by (20) and (22), we have

λ(α,β,γ)[F ] = max{λ(α,β,γ)[f1], λ(α,β,γ)[f2]}.

This complete the proof.

Lemma 7. Let f1 and f2 be entire functions of
(α(log), β, γ)-exponent of convergence of the zero-
sequence and denote F = f1· f2. Then

λ(α(log),β,γ)[F ] = max{λ(α(log),β,γ)[f1], λ(α(log),β,γ)[f2]}.

In the line of Lemma 6 one can easily deduce
the conclusion of Lemma 7 and so its proof is omitted.

Lemma 8. Let f be a transcendental meromorphic
function satisfying σ(α,β,γ)[f ] = σ3 and let k ≥ 1 be
an integer. Then, for any ε > 0, there exists a set E3

having finite linear measure such that for all r /∈ E3,
we have

m
(
r,
f (k)

f

)
= O(α−1((σ3 + ε)β(log γ(r)))).

Proof. Set k = 1. Since σ(α,β,γ)[f ] = σ3 < +∞, for
sufficiently large r and for any given ε > 0, we have

T (r, f) < exp(α−1((σ3 + ε)β(log γ(r)))). (23)

By the lemma of logarithmic derivative, we have

m
(
r,
f ′

f

)
= O(log r + logT (r, f)) (r /∈ E3),

(24)
where E3 ⊂ [0,+∞) is a set of finite linear mea-
sure, not necessarily the same at each occurrence.

By (23) and (24) and the condition α(log[2] x) =
o(β(log γ(x))) as x → +∞, we have

m
(
r,
f ′

f

)
= O(α−1((σ3+ε)β(log γ(r)))) (r /∈ E3).

We assume that

m
(
r,
f (k)

f

)
= O(α−1((σ3+ε)β(log γ(r)))) (r /∈ E3)

(25)

holds for a certain integer k ≥ 1. By N(r, f (k)) ≤
(k + 1)N(r, f), for all r /∈ E3, we have

T (r, f (k)) = m(r, f (k)) +N(r, f (k))

≤ m
(
r,
f (k)

f

)
+m(r, f)

+ (k + 1)N(r, f)

≤ (k + 1)T (r, f)

+O(α−1((σ3 + ε)β(log γ(r)))).

(26)

By (24) and (26), for r /∈ E3, we obtain that

m
(
r,
f (k+1)

f (k)

)
= m

(
r,

(
f (k)

)′

f (k)

)
= O(log r + logT (r, f (k)))

= O(α−1((σ3 + ε)β(log γ(r)))).
(27)

Therefore, by (25) and (27), for r /∈ E3, we have that

m
(
r,
f (k+1)

f

)
≤ m

(
r,
f (k+1)

f (k)

)
+m

(
r,
f (k)

f

)
= O(α−1((σ3 + ε)β(log γ(r)))).

Hence the lemma follows.

4 Proof of the Main Results
Proof of Theorem 1. Set σ(α,β,γ)[A] = σ4 > 0.
First, we prove that every solution of (1) satisfies
σ(α(log),β,γ)[f ] ≤ σ4. If f is a polynomial solution

of (1), it is easy to show that σ(α(log),β,γ)[f ] = 0 ≤ σ4
holds. Let f be a transcendental solution of (1). By
(1), we can write that∣∣∣∣f ′′(z)

f(z)

∣∣∣∣ = |A(z)| ,
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so, by Lemma 1, there exists a set E1 ⊂ (1,+∞)
having finite logarithmic measure such that for all z
satisfying |z| = r /∈ [0, 1]∪E1 and |f(z)|= M(r, f),
we have(ν(r, f)

r

)2
(1 + o(1))

≤ exp[2]
(
α−1

((
σ4 +

ε

2

)
β(log γ(r))

))
,

and hence, we obtain for r /∈ E1 that

ν(r, f) ≤ r exp[2](α−1((σ4 + ε)β(log γ(r)))). (28)

Therefore by (28) and Lemma 2, there exists some
η1 > 1 such that for all r > r1, we have

ν(r, f) ≤ η1r exp
[2](α−1((σ4 + ε)β(log γ(η1r)))).

(29)
By (29), Lemma 5, and the conditions on α, β and γ,
we obtain that

σ(α(log),β,γ)[f ] = lim sup
r→+∞

α(log[2] ν(r, f))

β(log γ (r))
≤ σ4.

(30)
On the other hand, since f is a transcendental, so by
(1), we get that

m(r,A) = m
(
r,−f ′′

f

)
= O(log rT (r, f))

= O(log r + logT (r, f)), (r /∈ E3),

where E3 ⊂ [0,+∞) is a set of finite linear measure.
By using Lemma 2, for any η2 > 1 such that for all
r > r2, we get that

m(r,A) = m
(
r,−f ′′

f

)
≤ K2(log η2r+logT (η2r, f)),

(31)
where K2 > 0 is some constant. Since A(z) is an
entire function, so by (31) and using the inequality
log(x + y) ≤ logx + log y + log 2 (x, y ≥ 1), we
have

σ(α,β,γ)[A] = lim sup
r→+∞

α(logm(r,A))

β(log γ(r))

≤ lim sup
r→+∞

α(log 2K2)

β(log γ(r))

+lim sup
r→+∞

α(log log η2r)

β(log γ(r))

+lim sup
r→+∞

α(log logT (η2r, f))

β(log γ(r))

+lim sup
r→+∞

c

β(log γ(r))

= lim sup
r→+∞

α(log log η2r)

β(log γ(r))

+lim sup
r→+∞

α(log logT (η2r, f))

β(log γ(r))
(c > 0) .

Since γ(η2r) ≤ γ(([η2] + 1) r) ≤ ([η2] + 1) γ(r),
where [η2] is the integer part of the number η2, so
from the inequality above and (30), we get that
σ(α(log),β,γ)[f ] = σ(α,β,γ)[A] holds for all non-trivial
solutions of (1).
Thus Theorem 1 follows.

Proof of Theorem 2. Set σ(α,β,γ)[A] = σ5 >
0, by Theorem 1, we have σ(α(log),β,γ)[f1] =
σ(α(log),β,γ)[f2] = σ(α,β,γ)[A] = σ5. Hence, we get

λ(α(log),β,γ)[F ] ≤ σ(α(log),β,γ)[F ]

≤ max{σ(α(log),β,γ)[f1], σ(α(log),β,γ)[f2]}
= σ(α,β,γ)[A].

(32)
By (32) and Lemma 7, we have

max{λ(α(log),β,γ)[f1], λ(α(log),β,γ)[f2]} = λ(α(log),β,γ)[F ]

≤ σ(α(log),β,γ)[F ]

≤ σ(α,β,γ)[A].
(33)

It remains to show that λ(α(log),β,γ)[F ] =
σ(α(log),β,γ)[F ]. By (1), we have (see [18, pp.
76-77]) that all zeros of F are simple and that

F 2 = C2
((F ′

F

)2
− 2

(F ′′

F

)
− 4A

)−1
, (34)

where C 6= 0 is a constant. Hence,

2T (r, F ) = T
(
r,
(F ′

F

)2
− 2

(F ′′

F

)
− 4A

)
+O(1)

≤ O
(
N
(
r,

1

F

)
+m

(
r,
F ′

F

)
+m

(
r,
F ′′

F

)
+m(r,A)

)
.

(35)
By σ(α(log),β,γ)[f ] = σ(α,β,γ)[A] = σ5 < +∞
and Lemma 8, for all r /∈ E3, we have m(r,A) =

m
(
r, f

′′

f

)
= O(exp(α−1((σ5 + ε)β(log γ(r))))),

m
(
r, F

′

F

)
= O(exp(α−1((σ5+ ε)β(log γ(r))))) and

m
(
r, F

′′

F

)
= O(exp(α−1((σ5 + ε)β(log γ(r))))).

Therefore, by (35), for all r /∈ E3, we obtain

T (r, F )

= O
(
N
(
r,

1

F

)
+ exp(α−1((σ5 + ε)β(log γ(r))))

)
.

(36)
Now let us assume that λ(α(log),β,γ)[F ] < κ <
σ(α(log),β,γ)[F ]. Since all zeros of F are simple, we
have

N
(
r,

1

F

)
= N

(
r,

1

F

)
= O(exp[2](α−1(κβ(log γ(r))))).

(37)

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.43 Benharrat Belaïdi, Tanmay Biswas

E-ISSN: 2224-2880 368 Volume 21, 2022



Hence by (36) and (37), for all r /∈ E3, we get that

T (r, F ) = O(exp[2](α−1(κβ(log γ(r))))).

By Definition 1 and Lemma 2, we have
σ(α(log),β,γ)[F ] ≤ κ < σ(α(log),β,γ)[F ], this is a
contradiction. Therefore, the first assertion is proved.
If σ(α(log),β,γ)[F ] < σ(α,β,γ)[A], let us assume that

λ(α(log),β,γ)[f ] < σ(α,β,γ)[A] holds for any solu-

tion of type f = c1f1 + c2f2 (c1c2 6= 0). We
denote F = f1 · f2 and F1 = f · f1, then we have
λ(α(log),β,γ)[F ] < σ(α,β,γ)[A] and λ(α(log),β,γ)[F1] <
σ(α,β,γ)[A]. Since (36) holds for F and F1, where

F1 = f · f1 = (c1f1 + c2f2)f1 = c1f
2
1 + c2F , then

we get that

T (r, f1) = O(T (r, F1) + T (r, F ))

= O
(
N
(
r,

1

F1

)
+N

(
r,

1

F

)
+ exp(α−1((σ5 + ε)β(log γ(r))))

)
.

(38)

By λ(α(log),β,γ)[F ] < σ(α,β,γ)[A], λ(α(log),β,γ)[F1] <
σ(α,β,γ)[A] and (37), for some κ < σ(α,β,γ)[A], we
obtain

T (r, f1) = O(exp[2](α−1(κβ(log γ(r))))). (39)

By Definition 1 and (39), we have σ(α(log),β,γ)[f1] ≤
κ < σ(α,β,γ)[A], this is a contradiction
with Theorem 1. Therefore, we have that
λ(α(log),β,γ)[f ] = σ(α,β,γ)[A] holds for all solu-
tions of type f = c1f1 + c2f2, where c1c2 6= 0.
Hence the theorem follows.

Proof of Theorem 3. By Theorem 1 and
λ(α(log),β,γ)[f ] ≤ σ(α(log),β,γ)[f ], it is easy to show

that λ(α(log),β,γ)[f ] ≤ σ(α,β,γ)[A] holds. It remains to

show that σ(α,β,γ)[A] ≤ λ(α,β,γ)[f ]. Let us assume

that σ(α,β,γ)[A] > λ(α,β,γ)[f ]. By (1) and a similar
proof of Theorem 5.6 in [18, pp. 82], we obtain

T
(
r,

f

f ′

)
= O

(
N
(
r,

1

f

)
+N

(
r,

1

A

))
(r /∈ E3).

(40)
By (40), the assumption σ(α,β,γ)[A] > λ(α,β,γ)[f ] and

λ(α,β,γ)[A] < σ(α,β,γ)[A], for some κ < σ(α,β,γ)[A],
we obtain that

T
(
r,

f

f ′

)
= O(exp(α−1(κβ(log γ(r))))). (41)

Further by Definition 1 and (41), we have

σ(α,β,γ)

[
f
f ′

]
= σ(α,β,γ)

[
f ′

f

]
≤ κ < σ(α,β,γ)[A].

Therefore by

−A(z) =
(f ′

f

)′
+
(f ′

f

)2
,

we get that σ(α,β,γ)[A] ≤ σ(α,β,γ)

[
f ′

f

]
< σ(α,β,γ)[A],

this is a contradiction. Hence, we have that
λ(α(log),β,γ)[f ] ≤ σ(α,β,γ)[A] ≤ λ(α,β,γ)[f ] holds for
all non-trivial solutions of (1).
The proof is complete.

5 Conclusion
Throughout this article, we have generalized some
previous results to general (α, β, γ)-order. Defining
new order of growth in the complex plane is discussed
and is applied to complex differential equations with
entire coefficients to solve some problems related to
growth of solutions. It is interesting now to study the
growth of solutions of complex differential equations
with meromorphic coefficients.
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