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1 Introduction 
The behavior of any probability distribution depends 
on its hazard functions. Several hazard functions are 
available to deal with the different data. The power 
hazard function has one of them to receive attention 
among researchers. The power hazard function has 
suggested by [1]. This model is adaptable to befit all 
classical structures, including increasing, constant, 
and decreasing. 
The hazard function (𝐻𝐹),  probability density 
function (𝑃𝐷𝐹) and cumulative density function 
(𝐶𝐷𝐹)  for the power hazard rate distribution 
(𝑃𝐻𝑅𝐷) are stated respectively as observes 
    ℎ(𝑥) = 𝛼𝑥𝜃, 𝑥 > 0, 𝛼 > 0 and 𝜃 > −1         (1) 

      𝑓(𝑥) = 𝛼𝑥𝜃𝑒
−{

𝛼

𝜃+1
𝑥𝜃+1}, 𝑥 > 0,                    (2) 

     𝐹(𝑥) = 1 − 𝑒
−{

𝛼

𝜃+1
𝑥𝜃+1}

, 𝑥 > 0,                   (3) 
where 𝛼 and 𝜃 are scale and shape parameters. 
The  𝑃𝐻𝑅𝐷 is still getting a lot of attention by 
several authors due to its flexible properties of 
hazard rate function  (𝐻𝑅𝐹). The model given in 
this article generalizes various important 
distributions, (see, Weibull, exponential, Rayleigh, 
and linear failure rate distribution). More detail 
information, see [2]. 
 
1.1 Doubly Truncated Power Hazard Rate 

Distribution  
This sub-section describes the formulation of doubly 
𝑇𝑃𝐻𝑅𝐷 as follows 
For stated 𝑃1 and 𝑄1 
 ∫ 𝑓𝐷(𝑥)𝑑𝑥 = 𝑄

𝑄1

0
     and  ∫ 𝑓𝐷(𝑥)𝑑𝑥 = 𝑃

𝑃1

0
. 

The 𝑝𝑑𝑓 of doubly 𝑇𝑃𝐻𝑅𝐷 is  

       𝑓𝐷(𝑥) =
𝛼𝑥𝜃𝑒

−{
𝛼

𝜃+1
𝑥𝜃+1}

𝑃−𝑄
,𝑥 ∈ (𝑄1, 𝑃1),               

(4) 
and the  𝑑𝑓 𝐹𝐷(𝑥)  of (4) is 
          𝐹̅𝐷(𝑥) = −𝑃2 +

1

𝛼𝑥𝜃  𝑓𝐷(𝑥),                         (5) 
          𝑓𝐷(𝑥) = 𝛼𝑥𝜃[𝑃2 + 𝐹̅𝐷(𝑥)]                          (6) 
where 
              𝑃2 =

1−𝑝

𝑝−𝑄
,      𝑄2 =

1−𝑄

𝑝−𝑄
 

     𝑃 = 1 − 𝑒
−{

𝛼

𝜃+1
𝑃1

𝜃+1},   𝑄 = 1 − 𝑒
−{

𝛼

𝜃+1
𝑄1

𝜃+1}. 
The doubly truncated distributions have a significant 
contribution in many domains of science such as 
hydrology, economics, biology, cosmology 
engineering psychology, etc. ([3-4]). After a 
detailed search, we notice that the moment 
properties of doubly truncated 𝑃𝐻𝑅𝐷 remain 
unknown, which is the theme of the findings.  
 
1.2 Generalized Order Statistics  
This sub-section reviews some basic definitions of 
generalized order statistics (𝐺𝑂𝑆).  
The 𝐺𝑂𝑆 has been reported in literature by [5]. It is 
a well-developed model for ascendingly ordered 
random variables (𝑅𝑉). This concept has become an 
indispensable tool in the field of mathematical and 
applied statistics.  
Let 𝑋1, … , 𝑋𝑛 be  𝑅𝑉𝑠  having 𝐶𝐷𝐹  𝐹(. ) and  𝑃𝐷𝐹   
𝑓(. ), if it contains the joint 𝑃𝐷𝐹 of 𝑛 𝐺𝑂𝑆  as the 
following form 

  𝑓(1:,…,𝑛,𝑚̃,𝑘) (𝑥1, . . , 𝑥𝑛) =
1

1

n

j

j

k 




 
 
 
         

1
1

1

[ ( )] ( ) [ ( )] ( )i

n
m k

i i n n

i

F x f x F x f x






 
 
 
                (7) 
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where  𝐹̅(𝑥) = 1 − 𝐹(𝑥)  
and ),1()(  minki   𝑖 = 1,2, … , 𝑛 
From (7) the 𝑃𝐷𝐹 of the thr  𝐺𝑂𝑆 is  

  1 11
: , , ( ) ( )[ ( )] [ ( )]

( 1)!
r rr

r n m k m

C
f x f x F x g F x

r

  


,           

−∞ < 𝑥 < ∞                                                     (8) 
The joint 𝑃𝐷𝐹 of the thr  and ths GOS  is  

1
, : , , ( , ) [ ( )] ( )

( 1)!( 1)!
ms

r s n m k

C
f x y F x f x

r s r


  

 

11 1( )[ ( ( )) ( ( ))] [ ( )] ( )sr s r

m m mg F x h F y h F x F y f y
     , (9) 

  1 ≤ 𝑟 < 𝑠 ≤ 𝑛 and  −∞ < 𝑥 < 𝑦 < ∞ are needed 
for (9).  Further, we note that 

 1
1

s

s i

i

C 



 ,        



















1,)1log(

1,)1(
1

1
)(

1

mx

mx
mxh

m

m
 

and  )0()()( mmm hxhxg  , )1,0[x .         
Ordinary order statistics (𝑂. 𝑂. 𝑆. ), sequential 𝑂. 𝑆.,  
progressively Type -II censoring 𝑂. 𝑆., and record 
values are main examples of the 𝐺𝑂𝑆 model. For 
more details [6-7].  
The doubly truncated distribution of 𝐺𝑂𝑆  develops 
from 𝐺𝑂𝑆  when a sample is from non-truncated 
distribution. Many authors have developed the 
moment properties of 𝐺𝑂𝑆 for doubly truncated 
distribution. Detailed information can be noticed in, 
[8-14]and among others.  
Reducing the number of direct computations is the 
main characteristic of recurrence relations. The 
characterization outcomes play an essential part to 
finds out the probability distributions. This article 
addresses the moments of doubly truncated 𝑃𝐻𝑅𝐷 
using 𝐺𝑂𝑆, which are unseen in the literature. 
The remainder of the manuscript is as follows: 
Section 2 contains the recurrence relations for single 
moments and numerical computations for mean and 
variance for several values of parameters. Product 
moments are elaborated in Section 3. 
Characterization result from doubly truncated 
𝑃𝐻𝑅𝐷 based on 𝐺𝑂𝑆 is in Section 4. Section 5 ends 
with conclusion. 
 
 
2 Single Moments 

 Here use,  𝐸[𝑋𝛿(𝑟: 𝑚, 𝑛, 𝑘)] = 𝜇𝑟: 𝑚,𝑛,𝑘
(𝛿)

 

Theorem 2.1. For reported  𝑝𝑑𝑓 in (4) and 𝑛 ∈ 𝑁, 
𝑚 𝜖 ℜ, 2 ≤ 𝑟 ≤ 𝑛, 𝛿 = 0,1,2 … 
𝜇𝑟: 𝑚,𝑛,𝑘

(𝛿)
=  

𝑃2𝐴 {
𝛼

𝛿 + 𝜃 + 1
[𝜇𝑟:𝑛−1,𝑚,𝑘+𝑚

𝛿+𝜃+1 ] − [𝜇𝑟−1:𝑛−1,𝑚,𝑘+𝑚
𝛿+𝜃+1 ]} 

+ 
𝛼

𝛿+𝜃+1
{𝛾𝑟[𝜇𝑟:𝑛,𝑚,𝑘

𝛿+𝜃+1 ] − [𝜇𝑟−1:𝑛,𝑚,𝑘
𝛿+𝜃+1 ]}                 (10) 

where 

 𝐴 =
𝐶𝑟−2

𝐶𝑟−2
(𝑛−1,𝑘+𝑚) = 

















1

1 1

r

i i

i




,  

 𝐶𝑟−2
(𝑛−1,𝑘+𝑚)

= 





1

1

),1(
r

i

mkn

i and 

  𝛾𝑖
(𝑛−1,𝑘+𝑚)

= 𝛾𝑖 − 1.  
Proof: Applying (6) in (8), we have 
  𝜇𝑟: 𝑚,𝑛,𝑘

(𝛿)
=

𝐶𝑟−1

(𝑟−1)!
∫ 𝑥𝛿[𝐹̅𝐷(𝑥)]𝛾𝑟−1{(𝛼𝑥𝜃)

𝑃1

𝑄1
 

× [𝑃2 + 𝐹̅𝐷(𝑥)]}𝑔𝑚
𝑟−1[𝐹𝐷(𝑥)]𝑑𝑥.        

Next, one can write the above expression as 
     𝜇𝑟: 𝑚,𝑛,𝑘

(𝛿)
 =

𝐶𝑟−1

(𝑟−1)!
[𝑃2 {𝛼 ∫ 𝑥𝛿+𝜃[𝐹̅𝐷(𝑥)]𝛾𝑟

(𝑛−1,𝑘+𝑚)

𝑔𝑚
𝑟−1[𝐹𝐷(𝑥)]𝑑𝑥

𝑃1

𝑄1
 

    + 𝛼 ∫ 𝑥𝛿+𝜃[𝐹̅𝐷(𝑥)]𝛾𝑟𝑔𝑚
𝑟−1[𝐹𝐷(𝑥)]𝑑𝑥

𝑃1

𝑄1
]      

𝜇𝑟: 𝑚,𝑛,𝑘
(𝛿)

 =
𝐶𝑟−1

(𝑟−1)!
[𝑃2 {𝛼𝐵𝛿+𝜃

(𝑛−1,𝑘+𝑚)(𝑥)}     

+𝛼𝐵𝛿+𝜃
(𝑛 ,𝑘)(𝑥)]                                                 

(11) 
where 
    𝐵𝛿+𝜃

(𝑛−1,𝑘+𝑚)(𝑥) =

∫ 𝑥𝛿+𝜃[𝐹̅𝐷(𝑥)]𝛾𝑟
(𝑛−1,𝑘+𝑚)

𝑔𝑚
𝑟−1[𝐹𝐷(𝑥)]𝑑𝑥

𝑃1

𝑄1
 

       𝐵𝛿+𝜃
(𝑛,𝑘)(𝑥) = ∫ 𝑥𝛿+𝜃[𝐹̅𝐷(𝑥)]𝛾𝑟𝑔𝑚

𝑟−1[𝐹𝐷(𝑥)]𝑑𝑥
𝑃1

𝑄1
. 

Integrating by parts taking  𝑥𝛿+𝜃 for integration, we 
obtain 
           𝐵𝛿+𝜃

(𝑛−1,𝑘+𝑚)(𝑥) =
(𝑟−1)!

(𝛿+𝜃+1)𝐶𝑟−2
(𝑛−1,𝑘+𝑚) [𝜇𝑟:𝑛−1,𝑚,𝑘+𝑚

𝛿+𝜃+1 − 𝜇𝑟−1:𝑛−1,𝑚,𝑘+𝑚
𝛿+𝜃+1 ]. 

Similarly 
 𝐵𝛿+𝜃

(𝑛,𝑘)(𝑥) =
(𝑟−1)!

(𝛿+𝜃+1)𝐶𝑟−2
[𝜇𝑟:𝑛,𝑚,𝑘

𝛿+𝜃+1 − 𝜇𝑟−1:𝑛,𝑚,𝑘
𝛿+𝜃+1 ]  

Inserting the terms of  𝐵𝛿+𝜃
(𝑛−1,𝑘+𝑚)(𝑥) and 𝐵𝛿+𝜃

(𝑛,𝑘)(𝑥)  
in (10) and solving, the Theorem 2.1 is proved. 
Some corollaries and remarks based on single 
moments of 𝐺𝑂𝑆, when sample from doubly 
truncated 𝑃𝐻𝑅𝐷 is described as follows. 
 
2.1 Corollary  
(i) For  (𝑚 = 0, 𝑘 = 1), Theorem 2.1 reduces 

to single moments of 𝑂. 𝑆., as   
    𝜇𝑟: 𝑚

(𝛿)
= 𝑃2 {

𝛼

𝛿+𝜃+1
[𝜇𝑟:𝑛−1,

𝛿+𝜃+1] − [𝜇𝑟−1:𝑛−1
𝛿+𝜃+1 ]} +

        
𝛼

 𝛿+𝜃+1
{(𝑛 − 𝑟 + 1)[𝜇𝑟:𝑛

𝛿+𝜃+1] − [𝜇𝑟−1:𝑛
𝛿+𝜃+1]} 

(ii) Single moments of  𝑘𝑡ℎrecord can be given 
from Theorem 2.1. (𝑎𝑡 𝑚 = −1) 

(iii) Setting 𝑃 = 1  and 𝑄 = 0 (for non- 
truncated case) in Theorem 2.1,  
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        𝜇𝑟: 𝑚,𝑛,𝑘
(𝛿)

= 𝛼

𝛿+𝜃+1
{𝛾𝑟[𝜇𝑟:𝑛,𝑚,𝑘

𝛿+𝜃+1 ] −

[𝜇𝑟−1:𝑛,𝑚,𝑘
𝛿+𝜃+1 ]} 

as reported by similar result in [15] for 
𝑃𝐻𝑅𝐷. 

(iv) As stated in Corollary (iii) and setting  𝑚 =
−1, 𝑘 = 1 in (10), the corresponding result 
is same as obtained by [16] for 𝑃𝐻𝑅𝐷. 
 

Remark 2.1 
(i) Doubly truncated exponential distribution 

can be obtained at  𝜃 = 0  in Theorem 2.1, 
(ii) Setting  𝜃 = 𝛼 − 1, in Theorem 2.1, we get 

doubly truncated Weibull distribution as 
discussed by [10]. 

(iii) Setting  𝜃 = 1  in Theorem 2.1, it gives 
doubly truncated linear exponential 
distribution, as established by [12]. 

(iv) Setting  𝛼 =
1

𝛽2 and 𝜃 = 1 in Theorem 2.1, 
it yields, doubly truncated Rayleigh 
distribution. 

For arbitrarily selected values of  (𝛼, 𝜃) and sample 
sizes ,...20,10n , Table 1-2, represents the 
numerical computations of first four moments and 
variances of 𝑂. 𝑆. from 𝑃𝐻𝑅𝐷. 

 

 
Table 1.  Moments of  𝑂. 𝑆. for  𝑃𝐻𝑅𝐷. 

 
Table 2. Variances of 𝑂. 𝑆. for  𝑃𝐻𝑅𝐷. 

n  r  
𝛼 = 1 𝛼 = 2 𝛼 = 3 𝛼 = 4 

𝜃 = 3 𝜃 = 4 𝜃 = 3 𝜃 = 4 𝜃 = 5 𝜃 = 6 𝜃 = 5 𝜃 = 6 
10 1 0.0538 0.0572 0.0381 0.0434 0.0402 0.0419 0.0365 0.0386 

20 1 0.0381 0.0434 0.0269 0.0329 0.0319 0.0344 0.0289 0.0316 
2 5.0862 4.6901 3.5965 3.5544 2.9269 2.8471 2.6592 2.5416 

 

 

𝒏 

 

 

𝒓 

𝛼 = 1,   𝜃 = 2 𝛼 = 2,   𝜃 = 1  

𝛿 = 1 𝛿 = 2 𝛿 = 3 𝛿 = 4 𝛿 = 1 𝛿 = 2 𝛿 = 3 𝛿 = 4 
10 1 0.1381 0.0648 0.0333 0.0184 0.0992 0.0250 0.0074 0.0025 
20 1 0.1097 0.0408 0.0167 0.0073 0.0701 0.0125 0.0026 0.0006 
 2 2.0835 0.7760 0.3167 0.1389 1.3312 0.2375 0.0499 0.0119 

30 1 0.0958 0.0312 0.0111 0.0043 0.0572 0.0083 0.0014 0.0003 
 2 2.7781 0.9038 0.3222 0.1235 1.6599 0.2417 0.0415 0.0081 
 3 19.4466 6.3269 2.2556 0.8643 11.6127 1.6917 0.29032 0.0564 

40 1 0.0870 0.0257 0.0083 0.0029 0.0495 0.0062 0.0009 0.0002 
 2 3.3944 1.0034 0.3250 0.1131 1.9321 0.2438 0.0362 0.0061 
 3 32.2469 9.5322 3.0875 1.0749 18.3551 2.3156 0.3442 0.0579 
 4 132.5707 39.1879 12.6931 4.4190 75.4601 9.5198 1.4149 0.2380 

50 1 0.0808 0.0222 0.0067 0.0022 0.0443 0.0050 0.0007 1e-04 
 2 3.960 1.0864 0.3267 0.1056 2.1712 0.2450 0.0326 0.0049 
 3 47.5088 13.0369 3.92 1.2669 26.0551 2.9400 0.3908 0.0588 
 4 248.1016 68.0816 20.4711 6.6160 136.0654 15.3533 2.0410 0.3071 
 5 713.2921 195.7347 58.8544 19.0211 391.188 44.1408 5.8678 0.8828 
 

 

𝒏 

 

 

𝒓 

𝛼 = 3,   𝜃 = 4 𝛼 = 4,   𝜃 = 3 

𝛿 = 1 𝛿 = 2 𝛿 = 3 𝛿 = 4 𝛿 = 1 𝛿 = 2 𝛿 = 3 𝛿 = 4 
10 1 0.0931 0.0455 0.0232 0.0122 0.0901 0.0350 0.0144 0.0062 
20 1 0.0810 0.0345 0.0153 0.0070 0.0758 0.0248 0.0086 0.0031 
 2 1.5384 0.6555 0.2911 0.1338 1.4396 0.4706 0.1632 0.0594 

30 1 0.0746 0.0293 0.0120 0.0051 0.0685 0.0202 0.0063 0.0021 
 2 2.1652 0.8507 0.3483 0.1477 1.9854 0.5865 0.1838 0.0604 
 3 15.1565 5.955 2.4383 1.0334 13.8983 4.1057 1.2865 0.4229 

40 1 0.0705 0.0261 0.0101 0.0040 0.0637 0.0175 0.0051 0.0016 
 2 2.7490 1.0197 0.3942 0.1577 2.4848 0.6831 0.1992 0.0609 
 3 26.1159 9.6872 3.7447 1.4983 23.6058 6.4895 1.8923 0.5789 
 4 107.3652 39.8252 15.3947 6.1597 97.0462 26.6792 7.7793 2.3799 

50 1 0.0674 0.0239 0.0088 0.0033 0.0603 0.0157 0.0043 0.0013 
 2 3.3032 1.1718 0.4332 0.1658 2.9526 0.76775 0.2117 0.0612 
 3 39.6380 14.0612 5.1982 1.9891 35.4308 9.2119 2.5403 0.7350 
 4 206.9984 73.4309 27.1463 10.3877 185.0275 48.1064 13.2662 3.8383 
 5 595.1203 211.1139 78.0455 29.8646 595.1203 211.1139 78.0455 29.8646 
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30 
1 0.0311 0.0369 0.0220 0.0279 0.0279 0.0306 0.0253 0.0282 
2 9.0573 8.5955 6.4045 6.5142 5.4497 5.1827 4.9513 4.7738 
3 378.1142 347.2498 267.3671 263.1662 213.0991 196.2422 193.6136 180.7573 

40 

1 0.0269 0.0329 0.0190 0.0250 0.0253 0.0282 0.0230 0.0260 
2 13.7149 13.3101 9.6979 10.0871 8.5490 8.1934 7.7673 7.3853 
3 1101.492 1043.385 778.872 790.7382 654.1655 612.1221 594.3487 563.8213 
4 18889.27 17950.38 13356.74 13603.85 11291.1 10600.43 9763.988 8274.752 

50 

1 0.0241 0.0306 0.0170 0.0228 0.0235 0.0228 0.0214 0.0244 
2 18.9706 19.8566 13.4142 14.2102 12.1759 11.7492 11.0626 10.8430 
3 2492.259 2416.392 1762.294 1831.283 1539.214 1457.132 1398.469 1342.153 
4 68566.56 66607.95 48483.87 50479.38 42512.04 40325.07 38624.75 37143.15 
5 565673.6 416202.2 399991.6 416281.5 350430.3 332261.5 318387 306043.6 

 

 

3 Product Moments 
Here use, 

𝐸[𝑋𝛿1(𝑟: 𝑛, 𝑚, 𝑘) 𝑋𝛿2(𝑠: 𝑛, 𝑚, 𝑘) ] = 𝜇𝑟,𝑠:𝑛,𝑚,𝑘
(𝛿1,𝛿2)  

Theorem 3.1. For outlined  𝑝𝑑𝑓 in (4) and 1 ≤
𝑟 < 𝑠 ≤ 𝑛 − 1,  𝛿1, 𝛿2 ≥ 0 
 𝜇𝑟,𝑠:𝑛,𝑚,𝑘

(𝛿1,𝛿2)
= 𝑃2𝐴∗ [{

𝛼

𝛿2+𝜃+1
[𝜇𝑟,𝑠:𝑛−1,𝑚,𝑘+𝑚

(𝛿1,𝛿2+𝜃+1)
] − 

[𝜇𝑟,𝑠−1:𝑛−1,𝑚,𝑘+𝑚
(𝛿1,𝛿2+𝜃+1)

]}] +
𝛼

𝛿2 + 𝜃 + 1
× 

{𝛾𝑠 [𝜇𝑟,𝑠:𝑛,𝑚,𝑘
(𝛿1,𝛿2+𝜃+1)

] − [𝜇𝑟,𝑠−1:𝑛,𝑚,𝑘
(𝛿1,𝛿2+𝜃+1)

]}            (12)              
where 

𝐴∗ =
𝐶𝑠−2

𝐶𝑠−2
(𝑛−1,𝑘+𝑚) = 

















1

1 1

s

i i

i




. 

Proof: Using (8), we have 

𝜇𝑟,𝑠:𝑛,𝑚,𝑘
(𝛿1,𝛿2)

=
𝐶𝑠−1

(𝑟−1)!(𝑠−𝑟−1)!
∫ 𝑥𝛿1[𝐹̅𝐷(𝑥)]𝑚𝑃1

𝑄1
                                    

× 𝑓𝐷(𝑥)𝑔𝑚
𝑟−1[𝐹𝐷(𝑥)]𝐿(𝑥)𝑑𝑥                           (13) 

where  
𝐿(𝑥) = ∫ 𝑦𝛿2[ℎ𝑚(𝐹𝐷(𝑦)) −

𝑃1

𝑥

ℎ𝑚(𝐹𝐷(𝑥))]𝑠−𝑟−1[𝐹̅𝐷(𝑦)]𝛾𝑠−1𝑓𝐷(𝑦)𝑑𝑦           (14) 
Next, using (5) in (13), we get 
  𝐿(𝑥) = 𝑃2 {𝛼 ∫ 𝑦𝛿2+𝜃[ℎ𝑚(𝐹𝐷(𝑦)) −

𝑃1

𝑥

ℎ𝑚(𝐹𝐷(𝑥))]𝑠−𝑟−1[𝐹̅𝐷(𝑦)]𝛾𝑠
(𝑛−1,𝑘+𝑚)

𝑑𝑦} 

                        +𝛼 ∫ 𝑦𝛿2+𝜃[ℎ𝑚(𝐹𝐷(𝑦)) −
𝑃1

𝑥

ℎ𝑚(𝐹𝐷(𝑥))]𝑠−𝑟−1[𝐹̅𝐷(𝑦)]𝛾𝑠𝑑𝑦               
  𝐿(𝑥) = 𝑃2 {𝛼𝐿𝛿2+𝜃

(𝑛−1,𝑘+𝑚)
(𝑥) + 𝛼𝐿𝛿2+𝜃

(𝑛,𝑘)
(𝑥)}    (15) 

where 
   𝐿𝛿2+𝜃

(𝑛−1,𝑘+𝑚)
(𝑥) = ∫ 𝑦𝛿2+𝜃[ℎ𝑚(𝐹𝐷(𝑦)) −

𝑃1

𝑥

      ℎ𝑚(𝐹𝐷(𝑥))]
𝑠−𝑟−1

[𝐹̅𝐷(𝑦)]𝛾𝑠
(𝑛−1,𝑘+𝑚)

𝑑𝑦 
and 
   𝐿𝛿2+𝜃

(𝑛,𝑘) (𝑥) = ∫ 𝑦𝛿2+𝜃[ℎ𝑚(𝐹𝐷(𝑦)) −
𝑃1

𝑥

       ℎ𝑚(𝐹𝐷(𝑥))]
𝑠−𝑟−1

[𝐹̅𝐷(𝑦)]𝛾𝑠𝑑𝑦. 
Integrating by parts taking  𝑦𝛿2+𝜃 for integration, 
we get 

  𝐿𝛿2+𝜃
(𝑛,𝑘)

(𝑥) =

 
1

(𝛿2+𝜃+1)
{𝛾𝑠 ∫ 𝑦𝛿2+𝜃+1[ℎ𝑚(𝐹𝐷(𝑦)) −

𝑃1

𝑥

ℎ𝑚(𝐹𝐷(𝑥))]
𝑠−𝑟−1

[𝐹̅𝐷(𝑦)]𝛾𝑠−1𝑓𝐷(𝑦)𝑑𝑦 
        − (𝑠 − 𝑟 − 1) ∫ 𝑦𝛿2+𝜃+1[ℎ𝑚(𝐹𝐷(𝑦)) −

𝑃1

𝑥

ℎ𝑚(𝐹𝐷(𝑥))]
𝑠−𝑟−2

[𝐹̅𝐷(𝑦)]𝛾𝑠+𝑚𝑓𝐷(𝑦)𝑑𝑦} 
Similarly 
 𝐿𝛿2+𝜃

(𝑛−1,𝑘+𝑚)
(𝑥) = 

   1

(𝛿2+𝜃+1)
{𝛾𝑠 ∫ 𝑦𝛿2+𝜃+1[ℎ𝑚(𝐹𝐷(𝑦)) −

𝑃1

𝑥

ℎ𝑚(𝐹𝐷(𝑥))]
𝑠−𝑟−1

[𝐹̅𝐷(𝑦)]𝛾𝑠
(𝑛−1,𝑘+𝑚)−1

𝑓𝐷(𝑦)𝑑𝑦  
     − (𝑠 − 𝑟 − 1) ∫ 𝑦𝛿2+𝜃+1[ℎ𝑚(𝐹𝐷(𝑦)) −

𝑃1

𝑥

ℎ𝑚(𝐹𝐷(𝑥))]
𝑠−𝑟−2

[𝐹̅𝐷(𝑦)]𝛾𝑠−1
(𝑛−1,𝑘+𝑚)−1

𝑓𝐷(𝑦)𝑑𝑦}. 
Following the same steps as reported in Theorem 
2.1. Hence the Theorem 3.1 is complete. 
Note: Product moments is reduced to single 
moments at 𝛿1 = 0. The corollaries and remarks as 
listed in Section 2 are the same for the product 
moments.  
 
 
4 Characterization 
The characterization of doubly 𝑇𝑃𝐻𝑅𝐷 is 
addressed in this section. 
 

Theorem 4.1: Let 𝑋 follows doubly 𝑇𝑃𝐻𝑅𝐷, then 
the necessary and sufficient condition for  𝑋 is 
listed below 
  𝜇𝑟:𝑛,𝑚,𝑘

(𝛿)
= 𝑃2𝐴 {

𝛼

𝛿+𝜃+1
[𝜇𝑟:𝑛−1,𝑚,𝑘+𝑚

(𝛿+𝜃+1)
] −

[𝜇𝑟−1:𝑛−1,𝑚,𝑘+𝑚
(𝛿+𝜃+1)

]}                                                

+
𝛼

𝛿+𝜃+1
{𝛾𝑟 [𝜇𝑟:𝑛,𝑚,𝑘

(𝛿+𝜃+1)
] − [𝜇𝑟−1:𝑛,𝑚,𝑘

(𝛿+𝜃+1)
]}                 

(16) 
where  𝐴 is defined in Section 2. 
 

Proof: Using (10), it is easy to determine the 
necessary part. 
 For sufficiency part: On rearranging the terms in 
(16), and after some simplification, it gives 
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   𝐶𝑟−1

(𝑟−1)!
∫ 𝑥𝛿[𝐹̅𝐷(𝑥)]𝛾𝑟−1𝑔𝑚

𝑟−1[𝐹𝐷(𝑥)]𝑓𝐷(𝑥)𝑑𝑥
𝑃1

𝑄1
=

          𝑃2 {
𝛼

(𝛿+𝜃+1)

𝐶𝑟−1

(𝑟−1)!
∫ 𝑥𝛿+𝜃+1𝑘𝛾𝑟−1

′ (𝑥)𝑑𝑥
𝑃1

𝑄1
} 

       + 𝛼𝛾𝑟

(𝛿+𝜃+1)

𝐶𝑟−1

(𝑟−1)!
∫ 𝑥𝛿+𝜃+1𝑘𝛾𝑟

′ (𝑥)𝑑𝑥
𝑃1

𝑄1
,         

(17) 
where 
          𝑘𝛾𝑟

(𝑥) = −[𝐹̅𝐷(𝑥)]𝛾𝑟𝑔𝑚
𝑟−1[𝐹𝐷(𝑥)]          (18) 

and 
   𝑘𝛾𝑟

′ (𝑥) = −[𝐹̅𝐷(𝑥)]𝛾𝑟𝑔𝑚
𝑟−2[𝐹𝐷(𝑥)] 

               × 𝑓𝐷(𝑥) [
𝑔𝑚[𝐹𝐷(𝑥)]

[𝐹̅𝐷(𝑥)]
−  

(𝑟−1)[𝐹̅𝐷(𝑥))]𝑚

𝛾𝑟
] 

Now, integrating RHS in (16) by parts. Utilizing 
the values of 𝑘𝛾𝑟

(𝑥) and  𝑘𝛾𝑟−1(𝑥) from (18), we 
get  
   𝐶𝑟−1

(𝑟−1)!
∫ 𝑥𝛿−1[𝐹̅𝐷(𝑥)]𝛾𝑟−1𝑔𝑚

𝑟−1[𝐹𝐷(𝑥)][𝑓𝐷(𝑥) −
𝑃1

𝑄1

𝛼𝑥𝜃(𝑃2 + 𝐹̅𝐷(𝑥))]𝑑𝑥 = 0.                                 (19) 
Next, generalization of the Müntz-Szász theorem 
[17] apply to (19), we get 

𝑓𝐷(𝑥) = 𝛼𝑥𝜃[𝑃2 + 𝐹̅𝐷(𝑥)] 
 

 

5 Conclusion 
Moment's properties of 𝐺𝑂𝑆 from doubly 𝑇𝑃𝐻𝑅𝐷  
are investigated. For selected values, means and 
variances for order statistics are enumerated. 
Characterization of doubly 𝑇𝑃𝐻𝑅𝐷 via 𝐺𝑂𝑆 is 
given.  
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