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1 Introduction

Stronger and weaker forms of open sets play an im-
portant role in topological spaces. The concept of
semi-open sets was first introduced by Levine [15].
Mashhour et al. [16] introduced and studied the notion
of preopen sets. In 1986, Andrijevi¢ [3] introduced a
new class of sets, called semi-preopen sets. The class
of semi-preopen sets contains both the class of semi-
open sets and the class of preopen sets. In 1996, An-
drijevi¢ [2] introduced a new class of generalized open
sets, so-called b-open sets. The class of b-open sets is
contained in the class of semi-preopen sets and con-
tains all semi-open sets and preopen sets. Caldas et al.
[7] introduced the concept of Aj-sets which is the in-
tersection of b-open sets and studied the fundamental
properties of Ap-sets. In [6], the author introduced and
investigated the concept of generalized (A, b)-closed
sets in topological spaces. The concepts of maximal-
ity and submaximality of general topological spaces
were introduced by Hewitt [12]. Moreover, Hewitt
discovered a general way of constructing maximal
topologies. The existence of a maximal space that is
Tychonoff is nontrivial and due to van Douwen [9].
The first systematic study of submaximal spaces was
undertaken in the paper of Arhangel’skii and Collins
[4]. They gave various necessary and sufficient con-
ditions for a space to be submaximal and showed that
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every submaximal space is left-separated. This led to
the question whether every submaximal space is o-
discrete [4].

The concept of extremally disconnected topolog-
ical spaces was introduced by Gillman and Jerison
[10]. Thompson [26] introduced the notion of S-
closed spaces. Herrman [11] showed that every S-
closed weakly Hausdorff space is extremally discon-
nected. Cameron [8] proved that every maximally
S-closed space is extremally disconnected. Noiri
[20] introduced the notion of locally S-closed spaces
which is strictly weaker than that of S-closed spaces.
Noiri [19] showed that every locally S-closed weakly
Hausdorff space is extremally disconnected. Sivaraj
[22] investigated some characterizations of extremally
disconnected spaces by utilizing semi-open sets due
to Levine [15]. In [18], the present author obtained
several characterizations of extremally disconnected
spaces by utilizing preopen sets and semi-preopen
sets. Steen and Seebach [24] introduced the notion
of hyperconnected spaces. Several concepts which
are equivalent to hyperconnectedness were defined
and investigated in the literature. Levine [14] called
a topological space X a D-space if every nonempty
open set of X is dense in X and showed that X is
a D-space if and only if it is hyperconnected. Pipi-
tone and Russo [21] defined a topological space X to
be semi-connected if X is not the union of two dis-
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joint nonempty semi-open sets of X and showed that
X is semi-connected if and only if it is a D-space.
Sharma [23] indicated that a space is a D-space if it is
a hyperconnected space due to Steen and Seebach. Aj-
mal and Kohli [1] have investigated the further proper-
ties of hyperconnected spaces. Noiri [17] investigated
several characterizations of hyperconnected spaces by
using semi-preopen sets and almost feebly continuous
functions. Hyperconnected spaces are also called ir-
reducible in [25]. Jankovi¢ and Long [13] introduced
and investigated the notion of #-irreducible spaces.
The purpose of the present paper is to investi-
gate some properties of (A, b)-open sets. In Section
4, we introduce the notions of (A, b)-extremally dis-
connected spaces and (A, b)-hyperconnected spaces.
Moreover, several interesting characterizations of
(A, b)-extremally disconnected spaces and (A,b)-
hyperconnected spaces are discussed. Section 5 is de-
voted to introducing and studying (A, b)-submaximal
spaces. In Section 6, we introduce the notion
of (A, b)-continuous functions and investigate some
characterizations of (A, b)-continuous functions.

2 Preliminaries

Throughout the present paper, spaces (X,7) and
(Y, o) (or simply X and Y') always mean topological
spaces on which no separation axioms are assumed
unless explicitly stated. For a subset A of a topologi-
cal space (X, 7), CI(A) and Int(A) represent the clo-
sure and the interior of A, respectively. A subset A
of a topological space (X, 7) is called b-open [2] if
A C Cl(Int(A)) U Int(C1(A)). The complement of
a b-open set is called b-closed. The family of all b-
open sets of a topological space (X, 7) is denoted by
BO(X, 7). The family of all b-closed sets of a topo-
logical space (X, 7) is denoted by BC(X, 7). Let A
be a subset of a topological space (X, 7). The inter-
section of all b-closed sets containing A is called the
b-closure of A and is denoted by bC1(A). The union of
all b-open sets contained in A is called the b-interior
of A and is denoted by bInt(A).

Definition 1. [7] Let A be a subset of a topological
space (X, 7). A subset AM is defined as follows:
AM =n{U |U D A, U € BO(X,7)}.

Definition 2. [7] Let A be a subset of a topological
space (X, 7). A subset AV® is defined as follows:
AV = U{F |FC A, X — F € BO(X,7)}.

Lemma 3. [7] For subsets A, B and A(y € T) of
a topological space (X, T), the following properties
hold:

(1) A C Al
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(2) If A C B, then AN C B%.
(3) (Ado)he = Al

4) [U AN = U A,
()[WEF 'y] vel 7

(5) If A € BO(X,T), then A = AP,
6) (X —A)M =X — AW,

(7) AV C A.

(8) If A€ BC(X,T), then A = A",

AN C N Abe,
®) [WQF ’y] - 'yQF 7

10) [U A% D U AV,
(10) [761“ 'y] ~ qer 7

Definition 4. [7] A subset A of a topological space
(X, T) is said to be a Ay-set (resp. Vi-set) if A = A%
(resp. A= AY),

The family of all Ap-sets (resp. V3-sets) in a topo-
logical space (X, 7) is denoted by Ay (resp. V}).

Lemma 5. [7] For a topological space (X, T), the fol-
lowing properties hold:

(1) The subsets () and X are Ny-sets and V),-sets.

(2) Every union of Ny-sets (resp. Vy-sets) is a Ay-set
(resp. Vy-set).

(3) Every intersection of Ny-sets (resp. Vy-sets) is a
Ay-set (resp. V-set).

(4) A subset B is a Ay-set if and only if X — Bis a
Vjy-set.

Proposition 6. Let (X, 7) be a topological space.
Then Ay = Ay,

Proof. By Lemma 3, we have BO(X,7) C Ay. Let
A be any subset of X. Then, we have

Ar,(A) =n{U | ACU,U € Ay}
C{U|ACUU e BO(X,7)}
= Ay(A).

Therefore, we obtain Ay, (A) C Ay(A). Now, we
suppose that x & Ap, (A). Then, there exists U € Ay
such that A C U and = ¢ U. Since x ¢ U, there
exists V € BO(X,7)suchthat U C Vandz ¢ V
and hence x ¢ Ay(A). This shows that Ap,(4) D
Ap(A) and hence Ay(A) = Ap,(A). Consequently,
we obtain Ay, = Ajy,. O
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3 Properties of (A, b)-open sets

In this section, we investigate several properties of
(A, b)-open sets.

Definition 7. [6] A subset A of a topological space
(X, 7) is called (A, b)-closed if A = T N C, where
T is a Ap-set and C' is a b-closed set. A subset A is
said to be (A, b)-open if the complement of A is (A, b)-
closed.

The family of all (A,b)-closed (resp. (A,b)-
open) sets in a topological space (X, 7) is denoted by
A C (X, 7) (resp. AyO(X, 7).

Lemma 8. [6] The following properties are equiva-
lent for a subset A of a topological space (X, T).

(1) Ais (A, b)-closed.
(2) A=TnNbCI(A), where T is a Ap-set.
(3) A= AN NbCI(A).

Lemma 9. [3] For a subset A of a topological space
(X, 7), the following properties hold:

(1) sCI(A) = AU Int(CI(A)).
(2) pCI(A) = AN Cl(Int(A)).

Lemma 10. [2] For a subset A of a topological space
(X, 7), the following properties hold:

(1) bCI(A) = sCI(A) N pCI(A).
(2) bint(A) = sint(A) U pInt(A).

Theorem 11. For a subset A of a topological space
(X, 1), the following are equivalent:

(1) Ais (A, b)-open.

(2) A=TUG, whereT is a Vy-set and G is a b-open
set.

(3) A=TUbInt(A), where T is a Vj-set.
(4) A= AV Ublnt(A).

Proof. (1) = (2): Suppose that A is (A, b)-open.
Then, X — Ais (A,b)-closedand X — A =TnNF,
where T is a Ap-set and F' is a b-closed set. Hence,
wehave A = (X — A)U (X — F), where X —T'isa
Vp-set and X — F'is a b-open set.

(2) = (3): Let A =T UG, where T is a Vj-set
and G is a b-open set. Since G C A and G is b-open,
G C bInt(A) andhence A =T UG C T'UbInt(A) C
A. Thus, A =T U bInt(A).

(3) = (4): Let A = T'U bInt(A), where T is a
Vj-set. Since T C A, we have AY> D TV and hence
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A D AV UbInt(A) D TV» Ublnt(A) = TUbInt(A) =
A. Consequently, we obtain A = A"> U bInt(A).
(4) = (1): Let A = A" U bInt(A). Then, we
have
X —-A=[X - A" N[X - bInt(A)]
= [X — A]M NbCI(X — A).

and by Lemma 8, X — A is (A, b)-closed. Therefore,
Ais (A, b)-open. O

Theorem 12. A subset A of a topological space
(X, 1) is b-open if and only if A is (A, b)-open.

Proof. Suppose that A is a b-open set. Then, X — A
is b-closed and by Lemma 3.3 of [6], we have X — A
is (A, b)-closed. Thus, A is (A, b)-open.

Conversely, suppose that A is a (A, b)-open set.
Then, X — Ais (A, b)-closed and by Lemma 8,

X —A=(X-A%NCIX — A).
By Lemma 9 and 10, we have
X-A=(X-AMN[sCl(X — A) NpCl(X — A)]
=sCl(X —A)N[(X —A)NCl(Int(X — A))]
=sCl(X — A)NpCl(X — A)
=0CI(X — A)
and hence X — A is b-closed. Thus, A is b-open. [

Definition 13. [6] Let A be a subset of a topological
space (X, T). A subset Ay y)(A) is defined as fol-
lows: Ay p)(A) = {U € MO(X,7) | AC U}

Lemma 14. [6] For subsets A, B of a topological
space (X, T), the following properties hold:

(1) AC App)(A).
(2) If A C B, then Ay 3)(A) C A p)(B).

(3) A [Aap (A)] = A (A).
(4) If Ais (A, b)-open, then Ay 1)(A) = A.

Definition 15. [6] Let A be a subset of a topological
space (X, 7). A point x € X is called a (A, b)-cluster
point of Aif ANU # 0 for every (A, b)-open set U of
X containing x. The set of all (A, b)-cluster points of
A is called the (A, b)-closure of A and is denoted by
AAD)

Lemma 16. [6] Let A and B be subsets of a topologi-

cal space (X, T). For the (A, b)-closure, the following
properties hold:
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(1) A C AL gnd [ANL)AL) — A(AD),

(2) If A C B, then AN C BIAD),

(3) AM) =N{F|AC F and F is (A, b)-closed}.
(4) AN s (A, b)-closed.

(5) Ais (A, b)-closed if and only if A = AN,

Proposition 17. Let (X, 7) be a topological space
and v,y € X. Then, y € Ay ({z}) if and only

ifw € {y}o.

Proof. Suppose that y & A ) ({z}). There exists a
(A,b)-open set V containing x such that y ¢ V and

hence = ¢ {y}(A’b). The converse is similarly shown.
O

Theorem 18. For any points x and y in a topological
space (X, 1), the following properties are equivalent:

(1) Aapy({z}) # A ({y});
(2) {a} A0 # {y} 0.

Proof. (1) = (2): Suppose that A ({z}) #
Ay ({y}). Then, there exists a point z € X
such that z € Ay ({z}) and 2z & App)({y}) or

z € Aap({y}) and z ¢ Ay ({7}). We prove
only the first case being the second analogous. From

z € Ay ({z}) it follows that {z} N {z}A0) £
which implies = € {z}(M), By z ¢ Aapy({y})s
we have {y} N {z}("®) = . Since 2 € {2},
{2} A0 C {2} and {y} N {z}AP) = (. There-
fore, it follows that {z}(M0) £ {31 (A0)  Thuys,
Aan({z}) # Ap({y}) implies that {z}M0) 7

{0
(2) = (1): Suppose that {x}(M0) £ {31 (Ab),
There exists a point z € X such that z € {}(*?) and
2 g {y} M or 2z € {y}(MY) and 2z ¢ {2}(M0). We
prove only the first case being the second analogous.
It follows that there exists a (A, b)-open set containing
z and therefore = but not y, namely, y & Az ) ({z})
O

and thus A(AJ;)({‘T}) # A(A,b)({y})-

Theorem 19. For any points x and y in a topological
space (X, 1), the following properties hold:

(1) y € Aapy({x}) if and only if x € {y}(AD),

(2) Aayy({z}) Aapy({y}) if and only if
{x} M) = {3,
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Proof. (1) Let z ¢ {y}®). Then, there exists a
(A, b)-open set Uof X suchthat z € U andy ¢ U.
Thus, y & A ({x}). The converse is similarly
shown.

(2) Suppose that Ay 5 ({7}) = Aap)({y}) for
any r,y € X. Since v € Ay p)({z}), we have

x € Ay ({y})

and by (1), y € {z}**). By Lemma 16, {y}(**) C
{x}Ab) Similarly, we have {x}*) C {y}(M) and
hence {z}(A0) = {3} (AD),

Conversely, suppose that {z}(M0) = {3} (Ab),
Since x € {x}(A’b), we have x € {y}(A,b)
and by (1), y € Anp({z}). By Lemma 14,

Aany}) € ApplAap{zh)] = Any{x}).
Similarly, we have Ay ({7}) € A ({y}) anEc]l

hence Ay py({z}) = Aap) ({y})-

4 On (A,b)-extremally disconnected
spaces and (A, b)-hyperconnected
spaces

In this section, we introduce the notions of
(A, b)-extremally disconnected spaces and (A,b)-
hyperconnected spaces. Several characterizations
of (A, b)-extremally disconnected spaces and (A, b)-
hyperconnected spaces are discussed.

Lemma 20. [6] Let A and B be subsets of a topologi-
cal space (X, 7). Forthe (A, b)-interior, the following
properties hold:

(1) Ay € Aand [Ap)lag) = A

(2) If A C B, then Ay p) C Bap)-

(3) Aap) is (A, b)-open.

(4) Ais (A, b)-open if and only if A(pp) = A.

Definition 21. A topological space (X, T) is called
(A, b)-extremally disconnected if U™ is (A, b)-open
in X for every (A, b)-open set U of X.

Theorem 22. For a topological space (X, 1), the fol-
lowing properties are equivalent:

(1) (X, 7)is (A,b)-extremally disconnected.

(2) Fiap) is (A, b)-closed for every (A, b)-closed set
Fof X.

(3) [A(AJ,)](A’I’) - [A(AJ’)}(AJ,) for every subset A of
X.
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Proof. (1) = (2): Let F be any (A,b)-closed set.
Then, X — F'is (A, b)-open and by (1), [X — F](Ab) =
X — Fiap) is (A, b)-open. Thus, Fipp is (A,b)-
closed.

(2) = (3): Let A be any subset of X. Then, we
have X' — Ay p) is (A, b)-closed in X. By (2),

[X = Al

is (A, b)-closed and hence [A(AJ,)](A’b) is (A, b)-open.
Consequently, we obtain [A M,)](A’b) C [A(A’b)]( Ab):

(3) = (1): Let U be any (A, b)-open set. By (3),
we have UMb = [U(AJ))](A’E’) - [U(A’b)](A,b) and
hence UMY is (A, b)-open. This shows that (X, 7) is
(A, b)-extremally disconnected. O

Theorem 23. For a topological space (X, T), the fol-
lowing properties are equivalent:

(1) (X,7)is (A,b)-extremally disconnected.
(2) Forevery (A,b)-open sets U and V such that
unv =40,

there exist disjoint (A, b)-closed sets F' and H
suchthatU C FandV C H.

(3) UMD n VA = for every (A, b)-open sets U
and V such that U NV = ().

(4) [[A(A’b)](A,b)](A’b) NUNY = ( for every subset
A of X and every (\,b)-open set U such that
ANU =0.

Proof. The proof follows from Theorem 19 of
[5]. O

Definition 24. A subset A of a topological space
(X, 7) is called r(A\,b)-open (resp. r(A,b)-closed)
if A= [ABD) ) (resp. A= [Agy )] ™).

Theorem 25. For a topological space (X, T), the fol-
lowing properties are equivalent:

(1) (X,7)is (A,b)-extremally disconnected.
(2) Every r(A,b)-open set of X is (A,b)-closed.
(3) Every r(A,b)-closed set of X is (A, b)-open.

Proof. (1) = (2): Suppose that (X,7) is (A,b)-
extremally disconnected. Let U be any r(A, b)-open
set of X. Then, U = [U(A’b)](mb) and U is (A, b)-
open. By (1), UMY is (A, b)-open and hence U =
[U(A’b)](A’b) = UMY, Thus, U is (A, b)-closed.
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(2) = (1): Suppose that for every (A, b)-open
set of X is (A,b)-closed. Let U be any (A,b)-
open set. Since [U(AJ’)](A,I,) is r(A,b)-open, we
have [U(A’b)}(Avb) is (A, b)-closed and hence UM0) C
[P a D = [UAD] ). Thus, U
is (A,b)-open. This shows that (X,7) is (A,b)-
extremally disconnected.

(2) < (3): The proof is obvious. O

Definition 26. A subset A of a topological space
(X, 7) is said to be:

(i) (A,b)-dense if AMD) = X
(ii) (A,b)-codense if its complement is (A, b)-dense.
(iii) (A,b)-nowhere dense U”[A(A’b)](mb) = (.

Definition 27. A topological space (X, T) is called
(A, b)-hyperconnected if U is (A\,b)-dense for every
nonempty (A, b)-open set U of X.

Definition 28. A subset A of a topological space
(X, 7) is called s(A\,b)-open if A C [A(A7Sp)](A,Sp).

Lemma 29. A subset A of a topological space (X, T)
is (A, b)-open if and only if there exists a (A, b)-open
set U such that U C A C UMD,

Proof. Suppose that A is a s(A, b)-open set. Then, we

have A C [A(AJ))](A’I’). Put U = A(pyp). Then U is a

(A, b)-open set such that U C A C UMY,
Conversely, suppose that there exists a (A, b)-

open set U such that U C A C UWND)  Then
U C A(ap) and hence b C [A(A7b)](A’b). Since

A C UM we have A C [A(A’b)](A’b). Thus, A is
s(A, b)-open. O

Theorem 30. For a topological space (X, T), the fol-
lowing properties are equivalent:

(1) (X, 1) is (A,b)-hyperconnected.

(2) Ais (A, b)-dense or (A, b)-nowhere dense for ev-
ery subset A of X.

(3) UNV # 0 for every nonempty (A, b)-open sets
UandV of X.

(4) UNV 0 for every nonempty s(A\,b)-open sets
UandV of X.

Proof. The proof follows from Theorem 34 of
[5]. O

Theorem 31. For a topological space (X, T), the fol-
lowing properties are equivalent:
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(1) (X, 1) is (A,b)-hyperconnected;

(2) V is (A,b)-dense for every nonempty s(A,b)-
open set'V of X;

(3) VU [V(A’b)](A’b) = X for every nonempty
s(A, b)-open set V of X.

Proof. (1) = (2): Suppose that (X,7) is (A,b)-

hyperconnected. Let V' be a nonempty s(A, b)-open
set. It follows that V{» 3) # 0 and hence

X = Va9 = VA,
Thus, V is (A, b)-dense.

(2) = (3): Let V be a nonempty s(A,b)-open
set. Then by (2), we have

Vu [V(A’b)](AJ,) =Vu X(A,b) = X.

(3) = (1): Let V be a nonempty (A, b)-open set.
It follows (3) that VA D VU[VA)] = X and
hence V(M) = X . This shows that (X, 7) is (A, b)-
hyperconnected. O

5 On (A, b)-submaximal spaces

In this section, we introduce the notion of (A,b)-
submaximal spaces and investigate some characteri-
zations of (A, b)-submaximal spaces.

Definition 32. A topological space (X, T) is said to
be (A, b)-submaximal if, for each (A, b)-dense subset
of X is (A, b)-open.

Lemma 33. [6] For a subset A of a topological space
(X, 7), the following properties are equivalent:

(1) Aislocally (A, b)-closed.

2) A=UnNADD for some U € MO(X, 7).
(3) AMY — Ais (A, b)-closed.

(4) AU[X — AMD] € AyO(X, 7).

(5) AC[AU[X — ABD (4.

Theorem 34. For a topological space (X, T), the fol-
lowing properties are equivalent:

(1) (X,7)is (A, b)-submaximal;
(2) Every subset of X is a locally (A, b)-closed set.

(3) Every subset of X is the union of a (A,b)-open
set and a (A, b)-closed set.
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(4) Every (A, b)-dense set of X is the intersection of
a (A, b)-closed set and a (A, b)-open set.

)
(5) Every (A, b)-codense set of X is the union of a
(A, b)-open set and a (A, b)-closed set.

Proof. The proof follows from Theorem 27 of
[5]. O

Definition 35. A subset A of a topological space
(X, 7) is said to be:

(i) at(A,b)-set ANy = [A(A7b)](A7b).
(ii) a B(A,b)-setif A =UNYV, where
U e AMO(X,T)
andV is a t(A\,b)-set.

Theorem 36. For a topological space (X, T), the fol-
lowing properties are equivalent:

(1) (X, 1) is (A,b)-submaximal.

(2) A — Ais (A, b)-closed for every subset A of
X.

(3) Every subset of X is locally (A, b)-closed.
(4) Every subset of X is a B(A,b)-set.
(5) Every (A,b)-dense set of X is a B(A,b)-set.

Proof. The proof follows from Theorem 29 of
[5]. O

6 Some characterizations of (A,b)-
continuous functions

In this section, we introduce the notion of (A,b)-
continuous functions. Moreover, some characteriza-
tions of (A, b)-continuous functions are investigated.

Definition 37. A function f : (X, 7) — (Y, 0) is said
to be (A, b)-continuous at a point x € X if for each
(A, b)-open set V of Y containing f(x), there exists a
(A, b)-open set U of X containing x such that f(U) C
V. A function f : (X, 7) — (Y, 0) is said to be (A, )-
continuous if f has this property at each point v € X.

Theorem 38. For a function f : (X, 1) —
following properties are equivalent:

(Y, 0), the
(1) fis (A,b)-continuous at x € X.

(2) € [f_l(V)](A’b) for every (A, b)-open set V of
Y containing f(x).
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(3) z € fH[f(A)]MY) for every subset A of X
such that x € AMD),

(4) = € f_l(B(A’b)) for every subset B of Y such
that x € [f~1(B)]M),

(5) = € [f_l(B)](AJ)) for every subset B of Y such
that x € fﬁl(B(AJ,)).

(6) x € f~L(K) for every (A, b)-closed set K of Y
such that x € [f~1(K)](M),

Proof. (1) = (2): Let V be any (A, b)-open set of

Y containing f(z). Then, there exists a (A, sp)-open

subset U of X containing x such that f(U) C V and
hence U C f~1(V). Since U € A,O(X, T), we have
zelf! (V)](A b)-

(2) = (3): Let A be any subset of X. Let
x € AN and V' € A,O(Y,0) containing f(z).
By (2), we have = € [f~(V)](a;) and there exists
U € MO(X,7) such that z € U C f=4(V). Since
e AMP)  UNA#£Qand ) # f(UNA) C
F(U) 0 (4) C VO F(A). Thus, f(z) € [£(4) D
and hence = € f~1([f(A)]AD).

(3) = (4): Let B be any subset of Y and let

€ [f~1(B)]M). By (3),
ze fTHFHB))NY) C

and hence = € f~1(BAMY),

( ) = (5): Let B be any subset of Y such that

[ L(B)) Ab) Then, z € X — [f1(B)](ap) =
[ “HB)MD = [fHY - B)M). By (4), we
m%xéf(W mm%zf*W—Bmwz
X - f_l(B(A,b)) and hence z ¢ f‘l(B(Ayb)).

(5) = (6): Let K be any (A, b)-closed set of Y’
such that x ¢ f~1(K). Then,x € X — f~Y(K) =
fHY = K) = f7{[Y — K](a ) and by (5),

v [fTNY = K)lap =X — FTHE)ap)
=X — [fH(E) M.

Thus, z & [f~1(K)]M),
(6) = (2): Letz € X and V € A,O(Y, 0) con-
taining f(x). Let 2 & [f~1(V)](a,p)- Then,

v e X — [ V)l = [X — fH (V)Y
= [ =1,

By (6),wehaver € f~1 (Y —V) = X —f~1(V) and
hence = ¢ f~1(V). This contraries to the hypothesis.

(2) = (1): Let V € AyO(Y,0) containing
f(x). By (2), z € [f~1(V)](a) and so there exists
U € AO(X,7) containing x such that x € U C
f~YV); hence f(U) C V. This shows that f is
(A, b)-continuous at x. O

FHBUD)
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Theorem 39. For a function f : (X,7) — (Y, 0), the
following properties are equivalent:

(1) fis (A,b)-continuous.

(2) f7Y(V) is (A,b)-open in X for every (A,b)-
open set V of Y.

(3) f(ALD)Y C [f(A)]AD for every subset A of X.

4) [f~HB)MY C f~YBWY) for every subset B
of Y.

(3) f 7 (Baw) <
of Y.
(6) f~UK) is (A,b)-closed in X for every (A,b)-
closed set K of Y.
Proof. (1) = (2): Let V be any (A, b)-open set of Y’
and z € f~1(V). Then, f(x) € V and there exists a
(A, b)-open set U of X containing x such that f(U) C
V. Since U € AyO(X,7), wehave z € [f~H(V)] (s
and hence f~1(V) C [f~(V)](a). This shows that
F~Y(V)is (A, b)-open.
(2) = (3): Let A be any subset of X. Let
z € AMY and Ve A,O(Y,0) containing f(z).
By (2), we have 2 € [f~1(V)]s) and there ex-
ists U € AyO(X,7) suchthat z € U C f~Y(V).
Sincez € AM) UNA#@and ) # fF(UNA) C
F(U)N(A) SV N f(A). Thus, f(z) € [f(A)]M.
Consequently, we obtain f(AMP)) C [£(A)]AD),
(3) = (4): Let B be any subset of Y. By (3),

FAFA BN C [F (1B € BAY

and hence [f~1(B)](A0) C f=1(BAD),
(4) = (5): Let B be any subset of Y. By (4), we
have

X —[f'B)apy =

[ffl(B)}(Avb) for every subset B

X = (B

=70 = B
CFHY - Bl
= f71(Y = By

=X — ' (Buy)

and hence f~'[B(a )] C [f~1(B)](ap)-
(5) = (6): Let K be any (A, b)-closed set of Y.
Then, Y — K = [V — K](5 ) and by (5),
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Thus, [f~1(K)]AY) C f~1(K) and hence f~!(K) is
(A, b)-closed.

(6) = (2): This is obvious.

(2) = (1): Letz € X and V € AO(Y,0)
containing f(z). By (2), z € [f~1(V)](ap) and so
there exists U € A,O(X,7) containing x such that
x € U C f~Y(V). Therefore, f(U) C V and hence
f is (A, sp)-continuous at x. This shows that f is
(A, sp)-continuous. O

Definition 40. A ropological space (X, T) is said to
be (A, b)-connected if X cannot be written as a dis-
Jjoint union of two nonempty (A, b)-open sets of X.

Proposition 41. If f : (X,7) — (Y,0) is a (A, b)-
continuous surjection and (X, 1) is (A, b)-connected,
then (Y, o) is (A, b)-connected.

Proof. Suppose that (Y, o) is not (A, b)-connected.
There exist nonempty (A, b)-open sets U and V' of Y
suchthat UNV =0 and U UV =Y. Then, we have
SN Y V) =0and fTHU) U FHV) = X
Moreover, f~1(U) and f~1(V) are nonempty (A, b)-
open sets of X. This shows that (X, 7) is not (A, b)-
connected. Thus, (Y, o) is (A, b)-connected. O

Definition 42. A topological space (X, T) is said to
be (A, b)-compact if every cover of X by (A, b)-open
sets of X has a finite subcover.

Proposition 43. If f : (X,7) — (Y,0) is a (A, b)-
continuous surjection and (X, ) is a (A, b)-compact
space, then (Y, o) is (A, b)-compact.

Proof. Let {V, | v € '} be any cover of Y. Since f
is (A, b)-continuous, by Theorem 39,

{f71(vy) [y eT}

is a cover of X by (A,b)-open sets of X. Thus,
there exists a finite subset I'g of I" such that X =
U{f~Y(V5) | v € To}. Since f is surjective, Y =
f(X) = U{V, | v € I'g}. This shows that (Y,0) is
(A, b)-compact. O

Definition 44. A subset A of a topological space
(X, 7) is said to be a (A,b)-neighbourhood of =,
if there exists a (A,b)-open set U of X such that
zeUC A

Lemma 45. Let A be a subset of a topological space
(X,7) and v € X. Then, v € A, (A) if and only
if AN F # 0 for every (A, b)-closed set F of X with
z € F.

Theorem 46. For a function f : (X, 1) —
following properties are equivalent:

(1) fis (A,b)-continuous.

(Y, 0), the
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(2) For each x € X and each (A,b)-open set V
of Y such that f(x) € V, f=5(V) is a (A,b)-
neighbourhood of x.

(3) f(As) € Aawf(A)] for every subset A of
X.

(4) 1 B)ap) S fH Ay (B)) for every sub-
set BofY.

Proof. (1) = (2): Letx € X and V be any (A, b)-
open set of Y such that f(x) € V. Since f is (A, b)-
continuous, there exists a (A, b)-open set U of X con-
taining x such that f(U) C V. Thus, x € U C
f~1(V) and hence f~1 (V) is a (A, b)-neighbourhood
of x.

(2) = (1): Letz € X and V € AO(Y,0)
containing f(x). By (2), f~1(V) is a (A,b)-
neighbourhood of z and there exists a (A, b)-open set
U of X suchthatz € U C f~Y(V). Thus, f(U) C V
and hence f is (A, b)-continuous.

(1) = (3): Let A be any subset of X and let
y & Aap)[f(A)]. By Lemma 45, there exists a (A, b)-
closed set F' of Y suchthaty € F and f(A)NF = 0.
Thus, AN f~}(F) = 0 and hence f~(F)N Ay =
(. Therefore, f(Ap)) N F = 0. This shows that
y & f(A(ap))- Consequently, we obtain f(Ap)) C
Aany (F(A)).

(3) = (4): Let B be any subset of Y. By (3) and
Lemma 14, we have

FUFHBam) € Ay (f(fFTH(B))) € Aap(B)

and hence [~} (B)]a ) € [~ (Aap) (B))-
(4) = (1): Let V be any (A, b)-open set of Y.
By (4) and Lemma 14,

M) € A (V) = f1(V)

and hence [f~1(V)](ap) = f~1 (V). Thus, f~1(V) is
(A, b)-open, by Theorem 39, f is (A, b)-continuous.
O

7 Conclusion

The concepts of openness and continuity are funda-
mental with respect to the investigation of general
topology. The study of openness and continuity have
been found to be useful in computer science and dig-
ital topology. This paper is dealing with the con-
cept of (A, b)-open sets which is the union of a Vj-
set and a b-open set. Moreover, several properties
of (A,b)-open sets are considered. Some charac-
terizations of (A, b)-extremally disconnected spaces,
(A, b)-hyperconnected spaces and (A, b)-submaximal
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spaces are explored. Additionally, several character-
izations of (A, b)-continuous functions are obtained.
The ideas and results of this paper may motivate fur-
ther research.
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