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1 Introduction

The differential equations of fractional order, as well
as their exact and approximate solutions, have fun-
damental significance in several branches of science
and engineering [12, 24, 23, 22, 7, 12, 28, 10, 21, 29].
The analytic and approximate solutions of linear and
nonlinear systems of ordinary differential equations
of fractional order have been discussed by several au-
thors, see [9, 11, 3, 20, 26, 27].
The authors Khalil et al. defined a new fractional
derivative in [17]. It is based on the definition of the
basic limit of the derivative. The new simple frac-
tional derivative is named the conformable fractional
derivative, which then had been the focus of many
studies [1, 2, 5, 6, 8, 19, 18, 25].
The variational iteration approach was developed for
the first time by He [14]. This technique and its
modifications [15, 16] have potentially been used to
solve nonlinear differential equations. In [31], a com-
parative study between the Adomian decomposition
method and the variational iteration method has been
presented. The method has been used in [13] to pro-
vide an approximate solution for fractional differen-
tial equations with modified Riemann–Liouville frac-
tional derivative.
The purpose of this paper is to extend the analysis of
the variational iteration method to solve the system of
fractional ordinary differential equations which is as

follows:
Dα1x1(t) = f1(t, x1, x2, . . . , xn),

Dα2x2(t) = f2(t, x1, x2, . . . , xn),

...
Dαnxn(t) = fn(t, x1, x2, . . . , xn),

(1)

where Dαi = dαi

dtαi
is the conformable fractional

derivative of order αi ∈ (0, 1], for i = 1, 2, . . . , n.
The system is subject to the initial conditions

x1(0) = c1, x2(0) = c2, . . . , xn(0) = cn.

The article is organized as follows: In Section 2 we
discuss the basic definitions and properties of the con-
formable fractional derivative. The variational itera-
tion method is presented in Section 3. Section 4 pro-
vides a series of examples to demonstrate the effi-
ciency of the implemented method. Section 5 con-
cludes.

2 Preliminaries and Notations
In this section, we introduce the main concepts and
properties of the conformable fractional derivative.
Definition 2.1. The conformable fractional deriva-
tive of order α, 0 < α ≤ 1 of f : (0,∞) → R is
defined by

Dα(f)(x) := lim
ϵ→0

f(x+ ϵx1−α)− f(x)

ϵ
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for all x > 0. If the limit exists, we say
that f is α−differentiable at x. Moreover, if f
is α−differentiable in some (0, a), a > 0, and
lim

x→0+
Dα(f)(x) exists, then define

Dα(f)(0) := lim
x→0+

Dα(f)(x).

Remark 1. Let α ∈ (0, 1] and f be differentiable and
α−differentiable for all x > 0. Then

Dα(f)(x) = x1−α df

dx
(x).

The fractional exponential function, denoted by
e

1

α
xα , is defined by

e
1

α
xα

=

∞∑
j=0

xαj

αjj!
.

Remark 2. The conformable fractional derivative of
common functions are

• Dα(c) = 0, for any constant c.

• Dα(x
r) = rxr−α, r ∈ R.

• Dα(sin 1
αx

α) = cos 1
αx

α.

• Dα(cos 1
αx

α) = − sin 1
αx

α.

• Dα(e
1

α
xα

) = e
1

α
xα .

Next, we introduce the fractional integral of order
α.

Definition 2.2. Let α ∈ (0, 1] and x ∈ [a, ∞), a ≥
0. The conformable fractional integral of order α is
given by

(Iaαf)(x) :=

∫ x

a
f(t)dα(t, a) =

∫ x

a
(t−a)α−1f(t)dt.

When a = 0, we use Iα and dα(t).

Theorem 2.1. Let f : [0,∞) → R be differentiable
and α ∈ (0, 1]. Then for all t > 0 we have

IαDα(f)(t) = f(t)− f(0).

Proof. From definition and since f is differentiable
we obtain

IαDα(f)(t) =

∫ t

0
xα−1Dαf(x)dx

=

∫ t

0
xα−1x1−αf ′(x)dx = f(t)− f(0).

3 Variational iteration method
In 1999, He [14] proposed an analytical approach for
a non-linear problem based on a general Lagrange
multiplier. The method is called the variational iter-
ation method, where no perturbation or linearization
are needed, has been used effectively to solve a vast
class of nonlinear problems.
To demonstrate the main concept of the method, we
examine the following general nonlinear system:

Lu+Nu = g(t), (2)

where L and N are a linear and nonlinear operators,
respectively.
A correctional functional can be given by

un+1(t) = un(t)+

∫ t

o
λ[Lun(τ)+Nũn(τ)−g(τ)]dτ,

(3)
where λ is a general Lagrangemultiplier which can be
determined optimally through variational theory, and
ũn is considered such that δũn = 0.
Accordingly, the exact solution can be given by

x(t) = lim
k→∞

xk(t).

Now, consider the general fractional differential equa-
tion:

Dαx(t) = Lx(t) +Nx(t) + g(t), (4)

where α ∈ (0, 1], Dα is the conformable fractional
derivative of x(t) of order α.
The author has modified the above iteration method
into:

xk+1(t) = xk(t)+∫ t

0
λ(τ)[Dαxk(τ)−(Lxk(τ)+Nx̃k(τ)+g(τ)]dα(τ),

which can be rewritten as

xk+1(t) = xk(t)+ (5)∫ t

0
λ(τ)τα−1[Dαxk(τ)−(Lxk(τ)+Nx̃k(τ)+g(τ)]dτ,

where any selective function can be used for x0, we
usually use the initial condition x(0). To find the op-
timal value of Lagrange multiplier λ, we perform the
following, we take the variation of (5) with respect to
x(t)

δxk+1(t) = δxk(t)+

δ

∫ t

0
λ(τ)τα−1[Dαxk(τ)−(Lxk(τ)+Nx̃k(τ)+g(τ))]dτ.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.36 

Abdallah Al-Habahbeh

E-ISSN: 2224-2880 310 Volume 21, 2022



This yields the stationary conditions

λ′(τ) = 0,

1 + λ(τ) = 0.

Hence, we obtain

λ(τ) = −1. (6)

The correction functionals for system (1) can be ex-
pressed as

xk+1
1 (t) = xk1(t)+∫ t

0
λ1(τ)(D

α1xk1(τ)−f1(τ, x̃
k
1(τ), . . . , x̃

k
n(τ)))dα1(τ),

xk+1
2 (t) = xk2(t)+∫ t

0
λ2(τ)(D

α2xk2(τ)−f2(τ, x̃
k
1(τ), . . . , x̃

k
n(τ)))dα2(τ),

...

xk+1
n (t) = xkn(t)+

∫ t

0
λn(τ)(D

αnxkn(τ)−fn(τ, x̃
k
1(τ), . . . , x̃

k
n(τ)))dαn(τ),

(7)
Substituting (6) into (7) gives

xk+1
1 (t) = xk1(t)−∫ t

0
τα1−1(Dα1xk1(τ)− f1(τ, x̃

k
1(τ), . . . , x̃

k
n(τ)))dτ,

xk+1
2 (t) = xk2(t)−∫ t

0
τα2−1(Dα2xk2(τ)− f2(τ, x̃

k
1(τ), . . . , x̃

k
n(τ)))dτ,

...

xk+1
n (t) = xkn(t)−

∫ t

0
ταn−1(Dαnxkn(τ)− fn(τ, x̃

k
1(τ), . . . , x̃

k
n(τ)))dτ.

(8)

4 Applications
In this section, we illustrate the efficiency of the our
modified version of VIM by presenting four exam-
ples. The first two examples are considered for linear
systems of fractional ordinary differential equations.
The accuracy of the proposed method is appraised by
comparison with the exact solutions. The third and
fourth examples are considered for nonlinear systems.
All computations are performed by Mathematica.
Example 4.1. Consider the linear system of fractional
differential equations

Dα1x(t) = x(t)− y(t),

Dα2y(t) = x(t) + y(t),
(9)

where 0 < α1, α2 ≤ 1 and Dα = ∂α

∂tα is the con-
formable fractional derivative, subject to the initial
conditions

x(0) = 1, y(0) = 0. (10)

The exact solution of system (9) with initial condi-
tions (10), when α1 = α2 = α, refer to [4] for more
details, is

x(t) = e
tα

α cos
tα

α
,

y(t) = e
tα

α sin
tα

α
.

(11)

According to the formulas (8), the variational iteration
formulas for system (9) are given by

xk+1(t) = xk(t)−
∫ t

0
τα1−1[Dα1xk(τ)− xk(τ) + yk(τ))]dτ,

yk+1(t) = yk(t)−
∫ t

0
τα2−1[Dα2yk(τ)− xk(τ)− yk(τ))]dτ,

(12)

where x0(t) = 1 and y0(t) = 0.
Consequently, we obtain the following approxima-
tions

x1(t) =1 +
tα1

α1
,

y1(t) =
tα2

α2
,

x2(t) =1 +
tα1

α1
+

t2α1

2α2
1

− tα1+α2

α2(α1 + α2)
,

y2(t) =
tα2

α2
+

tα1+α2

α1(α1 + α2)
+

t2α2

2α2
2

,

x3(t) =1 +
tα1

α1
+

t2α1

2α2
1

+
t3α1

6α3
1

− tα1+α2

α2(α1 + α2)
−

t2α1+α2

α1α2(2α1 + α2)
− tα1+2α2

2α2
2(α1 + 2α2)

,
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y3(t) =
tα2

α2
+

t2α2

2α2
2

+
t3α2

6α3
2

+
tα1+α2

α1(α1 + α2)
+

t2α1+α2

2α2
1(2α1 + α2)

− tα1+2α2

α2(α1 + α2)(α1 + 2α2)
+

tα1+2α2

α1(α1 + α2)(α1 + 2α2)
,

x4(t) =1 +
tα1

α1
+

t2α1

2α2
1

+
t3α1

6α3
1

+
t4α1

24α4
1

−

tα1+α2

α2(α1 + α2)
− t2α1+α2

α1α2(2α1 + α2)
−

tα1+2α2

2α2
2(α1 + 2α2)

− tα1+3α2

6α3
2(α1 + 3α2)

−

t3α1+α2

α1α2(2α1 + α2)(3α1 + α2)
−

t2α1+2α2

4α2
2(α1 + α2)(α1 + 2α2)

−

t3α1+α2

2α2
1(2α1 + α2)(3α1 + α2)

,

y4(t) =
tα2

α2
+

t2α2

2α2
2

+
t3α2

6α3
2

+
t4α2

24α4
2

+

tα1+α2

α1(α1 + α2)
+

t3α1+α2

6α3
1(3α1 + α2)

+

t2α1+α2

2α1(α1 + α2)(2α1 + α2)
+

α2t
2α1+α2

2α2
1(α1 + α2)(2α1 + α2)

+

+
t2α1+2α2

4α2
1(α1 + α2)(2α1 + α2)

−

t2α1+2α2

2α1α2(α1 + α2)(2α1 + α2)
−

tα1+3α2

2α2
2(α

2
1 + 5α1α2 + 6α2

2)
,

... (13)
If α1 = α2 = α, then (13) become

x1(t) = 1 +
tα

α
,

y1(t) =
tα

α
,

x2(t) = 1 +
tα

α
,

y2(t) =
tα

α
+

t2α

α2
,

x3(t) = 1 +
tα

α
− t3α

3α3
,

y3(t) =
tα

α
+

t2α

α2
+

t3α

3α3
,

x4(t) = 1 +
tα

α
− t3α

3α3
− t4α

6α4
,

y4(t) =
tα

α
+

t2α

α2
+

t3α

3α3
,

...

(14)

The solution of (9) in series form is given by

x(t) = 1 +
tα

α
− t3α

3α3
− t4α

6α4
+ . . . ,

y(t) =
tα

α
+

t2α

α2
+

t3α

3α3
+ . . . ,

(15)

which converges to the exact solution (11).
Figures 1 and 2 show the exact solution x(t) and y(t)
and the approximate solution x4(t) and y4(t) for sys-
tem (9) for different values of α. The figures show
that our approximate solutions are in good agreement
with the exact solutions.

Example 4.2. Consider the linear system of fractional
order differential equations

Dα1x(t) = x(t)− y(t) + 4z(t),

Dα2y(t) = 3x(t) + 2y(t)− z(t),

Dα3z(t) = 2x(t) + y(t)− z(t),

(16)

subject to the initial conditions

x(0) = −1, y(0) = 7, z(0) = 3. (17)

The exact solution of the system (16), when α1 =
α2 = α3 = α, is

x(t) = −e
tα

α + e3
tα

α − e−2 tα

α ,

y(t) = 4e
tα

α + 2e3
tα

α + e−2 tα

α ,

z(t) = e
tα

α + e3
tα

α + e−2 tα

α .

(18)

According to the formulas (8), the variational iteration
formulas for system (16) are given by

xk+1(t) = xk(t)−∫ t

0
τα1−1[Dα1xk(τ)− xk(τ) + yk(τ)− 4zk(τ)]dτ,
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(a)

(b)

(c)

Figure 1: A Comparison for exact x(t) and the ap-
proximate solution x4(t) in Example (4.1) where
α1 = α2 = 1, 0.9, 0.5.

yk+1(t) = yk(t)−∫ t

0
τα2−1[Dα2yk(τ)− 3xk(τ)− 2yk(τ) + zk(τ)]dτ,

zk+1(t) = zk(t)−∫ t

0
τα3−1[Dα3zk(τ)− 2xk(τ)− yk(τ) + zk(τ)]dτ.

Begin with x0(t) = −1, y0(t) = 7 and z0(t) = 3,
we obtain

x1(t) = −1 + 4
tα1

α1
,

y1(t) = 7 + 8
tα2

α2
,

z1(t) = 3 + 2
tα3

α3
,

x2(t) = −1 + 4
tα1

α1
+ 2

t2α1

α2
1

− 8
tα1+α2

α2(α1 + α2)
+

8
tα1+α3

α3(α1 + α3)
,

(a)

(b)

(c)

Figure 2: A Comparison for exact y(t) and the ap-
proximate solution y4(t) in Example (4.1) where
α1 = α2 = 1, 0.9, 0.5.

y2(t) = 7 +
8tα2

α2
+

8t2α2

α2
2

+
12tα1+α2

α1(α1 + α2)
− 2tα2+α3

α3(α2 + α3)
,

z2(t) = 3 +
2tα3

α3
− t2α3

α2
3

+
8tα1+α3

α1(α1 + α3)
+

8tα2+α3

α2(α2 + α3)
,

x3(t) = −1 +
4tα1

α1
+

2t2α1

α2
1

+
2t3α1

3α3
1

− 8tα1+α2

α2(α1 + α2)
−

12t2α1+α2

α1(α1 + α2)(2α1 + α2)
+

8tα1+α3

α3(α1 + α3)
−

8t2α1+α2

α2(α1 + α2)(2α1 + α2)
− 8tα1+2α2

α2
2(α1 + 2α2)

+

32t2α1+α3

α1(α1 + α3)(2α1 + α3)
+

8t2α1+α3

α3(α1 + α3)(2α1 + α3)
+

32tα1+α2+α3

α2(α2 + α3)(α1 + α2 + α3)
+

2tα1+α2+α3

α3(α2 + α3)(α1 + α2 + α3)
− 4tα1+2α2

α2
3(α1 + 2α3)

,

y3(t) = 7 +
8tα2

α2
+

8t2α2

α2
2

+
16

3

t3α2

3α3
2

+
12tα1+α2

α1(α1 + α2)
+

6t2α1+α2

α2
1(2α1 + α2)

+
24tα1+2α2

α1(α1 + α2)(α1 + 2α2)
−
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24tα1+2α2

α2(α1 + α2)(α1 + 2α2)
− 2tα2+α3

α3(α2 + α3)
−

8tα1+α2+α3

α1(α1 + α3)(α1 + α2 + α3)
+

24tα1+α2+α3

α3(α1 + α3)(α1 + α2 + α3)
−

8t2α2+α3

α2(α2 + α3)(2α2 + α3)
−

4t2α2+α3

α3(α2 + α3)(2α2 + α3)
+

tα2+2α3

α2
3(α2 + 2α3)

,

z3(t) = 3 +
2tα3

α3
− t2α3

α2
3

+
t3α3

3α3
3

+
8tα1+α3

α1(α1 + α3)
+

4t2α1+α3

α2
1(2α1 + α3)

+
8tα2+α3

α2(α2 + α3)
−

16tα1+α2+α3

α2(α1 + α2)(α1 + α2 + α3)
+

8t2α2+α3

α2
2(2α2 + α3)

−

8tα1+2α3

α1(α1 + α3)(α1 + 2α3)
+

16tα1+2α3

α3(α1 + α3)(α1 + 2α3)
−

8tα2+2α3

α2(α2 + α3)(α2 + 2α3)
−

2tα2+2α3

α3(α2 + α3)(α2 + 2α3)
+

12tα1+α2+α3

α1(α1 + α2)(α1 + α2 + α3)
,

...
(19)

If α1 = α2 = α3 = α, then the solution of (16) in
series form is given by

x(t) =− 1 + 4
tα

α
+ 2

t2α

α2
+

17t3α

3α3
+ . . . ,

y(t) =7 + 8
tα

α
+ 13

t2α

α2
+

25t3α

3α3
+ . . . ,

z(t) =3 + 2
tα

α
+ 7

t2α

α2
+

10t3α

3α3
+ . . . ,

(20)

which converges to the exact solution (18).
The graphics of the exact and approximate solutions
are given in Figure 3.

Example 4.3. Consider the nonlinear predator-prey

(a)

(b)

(c)

Figure 3: A Comparison for exact x(t), y(t), z(t)
and the approximate solution x3(t), y3(t), z3(t), re-
spectively in Example (4.2) where α1 = α2 = α3 =
1.

system of fractional order differential equations

Dα1x(t) = x(t) + y2(t),

Dα2y(t) =
y(t)

2
,

(21)

subject to the initial conditions

x(0) = 0, y(0) = 1. (22)

The exact solution of the system (21), when α1 =
α2 = α, is

x(t) =
tα

α
e

tα

α ,

y(t) = e
tα

2α .

(23)

According to the formulas (8), the variational iteration
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formulas for system (21) are given by

xk+1(t) = xk(t)−∫ t

0
τα1−1[Dα1xk(τ)− xk(τ)− (yk(τ))2]dτ,

yk+1(t) = yk(t)−
∫ t

0
τα2−1[Dα2yk(τ)− yk(τ)

2
]dτ.

(24)

Begin with x0(t) = 0 and y0(t) = 1, we obtain

x1(t) =
tα1

α1
,

y1(t) = 1 +
tα2

2α2
,

x2(t) =
tα1

α1
+

t2α1

2α2
1

+
tα1+α2

α2(α1 + α2)
+

tα1+2α2

4α2
2(α1 + 2α2)

,

y2(t) = 1 +
tα2

2α2
+

t2α2

8α2
2

,

x3(t) =
tα1

α1
+

t2α1

2α2
1

+
t3α1

6α3
1

+
tα1+α2

α2(α1 + α2)
+

t2α1+α2

α2(α1 + α2)(2α1 + α2)
+

α1t
α1+2α2

4α2
2(α1 + 2α2)2

+

3α1t
α1+2α2

4α2(α1 + α2)(α1 + 2α2)2
+

tα1+3α2

8α3
1(α1 + 3α2)

+

tα1+2α2

(α1 + α2)(α1 + 2α2)2
+

tα1+4α2

64α4
2(α1 + 4α2)

+

α1t
α1+2α2

4α2
2(α1 + α2)(α1 + 2α2)

+

t2α1+2α2

8α2
2(α1 + α2)(α1 + 2α2)

,

y3(t) = 1 +
tα2

2α2
+

t2α2

8α2
2

+
t3α2

48α3
2

,

...
(25)

If α1 = α2 = α, then

x3(t) =
tα

α
+

t2α

α2
+

37

72

t3α

α3
,

y3(t) = 1 +
tα

2α
+

t2α

8α2
+

t3α

48α3
,

(26)

Figures 4 and 5 show the approximate solutions x3(t)
and y3(t) and the exact solutions x(t) and y(t),
respectively for different values of α1 = α2 =
1, 0.9, 0.5.

(a)

(b)

(c)

Figure 4: A Comparison for exact x(t) and the ap-
proximate solution x3(t) in Example (4.3) where
α1 = α2 = 1, 0.9, 0.5.

(a)

(b)

(c)

Figure 5: A Comparison for exact y(t) and the ap-
proximate solution y3(t) in Example (4.3) where
α1 = α2 = 1, 0.9, 0.5.
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Example 4.4. Consider the nonlinear system of frac-
tional order differential equations

Dα1x(t) = t z(t),

Dα2y(t) = x(t) y(t),

Dα3z(t) = 2x2(t),

(27)

subject to the initial conditions

x(0) = 1, y(0) = 1, z(0) = 0. (28)

According to the formulas (8), the variational iteration
formulas for system (27) are given by

xk+1(t) = xk(t)−
∫ t

0
τα1−1[Dα1xk(τ)− τ zk(τ)]dτ,

yk+1(t) = yk(t)−∫ t

0
τα2−1[Dα2yk(τ)− xk(τ) yk(τ)]dτ,

zk+1(t) = zk(t)−
∫ t

0
τα3−1[Dα3zk(τ)− 2(xk(τ))2]dτ.

(29)

Begin with x0(t) = 1, y0(t) = 1 and z0(t) = 0, we
obtain

x1(t) = 1,

y1(t) = 1 +
tα2

α2
,

z1(t) = 2
tα3

α3
,

x2(t) = 1 +
2tα1+α3+1

α3(α1 + α3 + 1)
,

y2(t) = 1 +
tα2

α2
+

t2α2

2α2
2

,

z2(t) = 2
tα3

α3
,

x3(t) = 1 +
2tα1+α3+1

α3(α1 + α3 + 1)
,

y3(t) = 1 +
tα2

α2
+

t2α2

2α2
2

− t3α2

6α3
2

+

2tα1+α2+α3+1

α3(α1 + α3 + 1)(α1 + α2 + α3 + 1)
+

2tα1+2α2+α3+1

α2α3(α1 + α3 + 1)(α1 + 2α2 + α3 + 1)
+

tα1+3α2+α3+1

α2
2α3(α1 + α3 + 1)(α1 + 3α2 + α3 + 1)

,

z3(t) = 2
tα3

α3
+ 4

tα1+2α3+1

α3(α1 + α3 + 1)(α1 + 2α3 + 1)
,

(30)

5 Conclusions
In this article, we presented a modified technique of
the variational iteration method that approximate the
solutions of linear and nonlinear systems of differ-
ential equations of fractional order. Several exam-
ples were examined to show the efficiency of our
new method. We have solved three systems: lin-
ear and nonlinear of fractional differential equations
by the proposed technique. The numerical solutions
are given in series form, that converge to the exact
solution obtained by conformable Laplace transform
method modified by the author. We observed that our
approach is effective in obtaining numerical solutions
for linear and nonlinear systems.
Future research might apply our procedure to obtain
numerical solution for nonlinear fractional differen-
tial equations arise in physics and engineering.
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