
Asymptotic Series Evaluation of Integrals Arising in the Particular 

Solutions to Airy’s Inhomogeneous Equation with Special Forcing 

Functions 
 

M.H. HAMDAN 
Department of Mathematics and Statistics, 

University of New Brunswick 
100 Tucker Park Road, Saint John, New Brunswick, E2L 4L5 

CANADA 

 
S. JAYYOUSI DAJANI 

Department of Mathematics and Computer Science  

Lake Forest College 
Lake Forest, IL 60045  

USA

 
D.C. ROACH 

Department of Engineering, 
University of New Brunswick 

100 Tucker Park Road, Saint John, New Brunswick, E2L 4L5 
CANADA  

 

 

Abstract: - In this work, particular and general solutions to Airy’s inhomogeneous equation are obtained 
when the forcing function is one of Airy’s functions of the first and second kind, and the standard Nield-
Kuznetsov function of the first kind. Particular solutions give rise to special integrals that involve 
products of Airy’s and Nield-Kuznetsov functions. Evaluation of the resulting integrals is facilitated by 
expressing their integrands in asymptotic series. Corresponding expressions for the Nield-Kuznetsov 
function of the second kind are obtained. 

Key-Words: - Airy’s inhomogeneous equation, special integrals, asymptotic series, Nield-Kuznetsov 
functions 

Received: June 27, 2021. Revised: March 29, 2022. Accepted: April 28, 2022. Published: May 31, 2022. 

 
1 Introduction 
The objective of this work is to consider solutions to 
the inhomogeneous Airy’s ordinary differential 
equation, ode, [1], when the right-hand-side forcing 
functions is a special function. In particular, the 
interest is in the right-hand-side being an Airy’s 
function of the first and of the second kind, 𝐴𝑖(𝑥) and 
𝐵𝑖(𝑥), respectively, [2,3], and the standard Nield-
Kuznetsov function of the first kind, 𝑁𝑖(𝑥), [4], 
discussed below.  
     Airy’s ode and Airy’s functions are some of the 
mathematical gems that arise in mathematical 
physics due to the fact that many problems in this 

field can be reduced to Airy’s ode, and a number of 
special functions are rooted in Airy’s functions, [3, 
5]. Furthermore, solutions to Airy’s ode give rise to 
interesting integral functions and special integrals 
that lead to advancements of modern day 
mathematics. Inhomogeneity in Airy’s ode due to the 
functions chosen in this work give rise to important 
integrals that involve products of Airy’s functions 
and other functions, [6,7]. Some of these products 
represent solutions to interesting differential 
equations, as discussed in this work. 
     In the following sections, an overview of Airy’s 
ode is provided together with its forms of solution. 
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This will be followed with solutions to Airy’s ode 
with special forcing functions. A discussion and 
evaluations of the arising integrals then follows. 
 
 

2  Airy’s Equation and its Solutions 
The celebrated Airy’s (ode) is rooted in the 
nineteenth century and has various practical 
applications and theoretical implications in 
mathematical physics, [2]. Its homogeneous part 
takes the form 

𝑦′′ − 𝑥𝑦 = 0                                                            (1) 
 
where “prime” notation denotes ordinary 
differentiation. General solution of (1) is given by, 
[2,3]:   
 
𝑦 = 𝑎1𝐴𝑖(𝑥) + 𝑎2𝐵𝑖(𝑥)                                            (2) 

where 𝑎1 and 𝑎2 are arbitrary constants, 
𝐴𝑖(𝑥) and 𝐵𝑖(𝑥) are the linearly independent Airy’s 
functions of the first and second kind, respectively, 
and defined by the following integrals, [2,3]: 

𝐴𝑖(𝑥) =
1

𝜋
∫ cos (𝑥𝑡 +

𝑡3

3
) 𝑑𝑡

∞

0
                                (3) 

𝐵𝑖(𝑥) =
1

𝜋
∫ [sin (𝑥𝑡 +

𝑡3

3
) + exp (𝑥𝑡 −

𝑡3

3
)]𝑑𝑡

∞

0
  (4) 

     The non-zero Wronskian of 𝐴𝑖(𝑥) and 𝐵𝑖(𝑥) is 
given by, [2]: 

𝑊(𝐴𝑖(𝑥), 𝐵𝑖(𝑥)) = 𝐴𝑖(𝑥)𝐵′𝑖 − 𝐵𝑖(𝑥)𝐴′𝑖 =
1

𝜋
        (5) 

     The twentieth century witnessed an interest in the 
inhomogeneous Airy’s ode due to applications in 
systems theory, solutions to Schrodinger and Stark 
equations, and in fluid mechanics, among others (cf. 
Scorer, [7],; Khanmamedov et.al., [8]; Alzahrani 
et.al., [9]; Nield and Kuznetsov, [10]; Lee, [11]; 
Dunster, [12,13]; and the references therein).  
     The literature shows that particular solutions to 
the inhomogeneous Airy’s equation of the form: 

𝑦′′ − 𝑥𝑦 = 𝑅                                                            (6) 
 
are given by 

𝑦 = 𝑏1𝐴𝑖(𝑥) + 𝑏2𝐵𝑖(𝑥) + 𝐻𝑖(𝑥)                            (7) 

when 𝑅 =
1

𝜋
, and by 

𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) + 𝐺𝑖(𝑥)                             (8) 

when 𝑅 = −
1

𝜋
, where 𝑏1 and 𝑏2, and 𝑐1 and 𝑐2 are 

arbitrary constants. The functions 𝐺𝑖(𝑥) and 𝐻𝑖(𝑥) 
are known as the Scorer functions, [7,11], with 
integral representation given by: 

𝐺𝑖(𝑥) =
1

𝜋
∫ sin (𝑥𝑡 +

𝑡3

3
) 𝑑𝑡

∞

0
                                 (9) 

𝐻𝑖(𝑥) =
1

𝜋
∫ exp (𝑥𝑡 −

𝑡3

3
) 𝑑𝑡

∞

0
                             (10) 

     The literature also shows that writing solution to 
ode (6) in terms of the Scorer functions for any 
constant 𝑅, requires non-trivial mathematical 
manipulations, [3]. 
     The twenty first century, however, witnessed the 
introduction of a general methodology to find the 
general solution to equation (6) for any constant 𝑅. 
This solution is given by Hamdan and Kamel, [4], as: 

𝑦 = 𝑑1𝐴𝑖(𝑥) + 𝑑2𝐵𝑖(𝑥) − 𝜋𝑅𝑁𝑖(𝑥)                     (11) 

where 𝑑1, 𝑑2 are arbitrary constants, and the integral 
function 𝑁𝑖(𝑥) is called the Standard Nield-
Kuznetsov Function of the First Kind, and is given 
by, [4]: 

𝑁𝑖(𝑥) = 𝐴𝑖(𝑥) ∫ 𝐵𝑖(𝑡)𝑑𝑡
𝑥

0
− 𝐵𝑖(𝑥) ∫ 𝐴𝑖(𝑡)𝑑𝑡

𝑥

0
    (12) 

     When 𝑅 =
1

𝜋
, solution (11) reduces to (8), and 

𝑁𝑖(𝑥) = −𝐻𝑖(𝑥), and when 𝑅 = −
1

𝜋
, solution (11) 

reduces to (9), and 𝑁𝑖(𝑥) = 𝐺𝑖(𝑥). 
     Clearly, relationship between 𝑁𝑖(𝑥) and the 
Scorer functions is given by 

𝑁𝑖(𝑥) =
2

3
𝐺𝑖(𝑥) −

1

3
𝐻𝑖(𝑥)                                    (13) 

with integral representation obtained from (9), (10) 
and (13) as 

𝑁𝑖(𝑥) =
2

3𝜋
∫ sin (𝑥𝑡 +

𝑡3

3
) 𝑑𝑡

∞

0
−

1

3𝜋
∫ exp (𝑥𝑡 −

∞

0
𝑡3

3
) 𝑑𝑡                                                                            (14) 

     The main properties of the Standard Nield-
Kuznetsov function of the first kind, 𝑁𝑖(𝑥), and its 
efficient computations have been discussed by 
previously discussed, [4,14,15]. The case when the 
right-hand-side of Airy’s inhomogeneous equation is 
a function of 𝑥, namely the ode  

𝑦′′ − 𝑥𝑦 = 𝑓(𝑥)                                                    (15) 
 
was elegantly discussed in the mid-twentieth century 
work of Miller and Mursi, [16].  
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They have shown that (15) might be solved when 
 
𝑓(𝑥) = 𝑢(𝑥)𝑔(𝑥) + ℎ(𝑥)𝑢′(𝑥)                             (16) 
 
with 
 
𝑢 = 𝑎1𝐴𝑖(𝑥) + 𝑎2𝐵𝑖(𝑥)                                            (17) 
 
and where ℎ(𝑥) and 𝑔(𝑥) are expressed as power 
series. The solution may be expressed in the same 
form or as a series of derivatives of 𝑢(𝑥).  
     The solution is also given in the case where 𝑓(𝑥) 
is itself expressed as a power series; in this case it is 
of the form  
 
𝑦 = 𝑘(𝑥) + 𝑣(𝑥)𝑙(𝑥)                                            (18) 
 
where  

𝑣(𝑥) = 𝑢(𝑥) + 𝜋𝐺𝑖(𝑥)                                          (19) 
and 𝑘(𝑥) and 𝑙(𝑥) are expressed as power series. The 
series solution terminates if 𝑔(𝑥) and ℎ(𝑥) are 
polynomials, or if 𝑓(𝑥) is a polynomial. 
     It is clear that the method of Miller and Mursi, 
[16], above, has some restrictions on the function 
𝑓(𝑥) in addition to being time consuming in its 
application. 
     A decade ago, a method was introduced by 
Hamdan and Kamel, [4], to find the general solution 
of (15) when 𝑓(𝑥) is  a differentiable function of 𝑥. 
They showed that the general solution to (15) can be 
expressed as: 

𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) + 𝜋𝐾𝑖(𝑥) − 𝜋𝑓(𝑥)𝑁𝑖(𝑥)   
                                                                             (20) 
 
where 𝑁𝑖(𝑥) in the Standard Nield-Kuznetsov 
function of the first kind, defined in (14), and 𝐾𝑖(𝑥) 
has been referred to as the Standard Nield-Kuznetsov 
function of the second kind, defined by the following 
equivalent forms: 

𝐾𝑖(𝑥) = 𝐴𝑖(𝑥) ∫ {∫ 𝐵𝑖(𝜏)𝑑𝜏
𝑡

0
}

𝑥

0
𝑓′(𝑡)𝑑𝑡 −

𝐵𝑖(𝑥) ∫ {∫ 𝐴𝑖(𝜏)𝑑𝜏
𝑡

0
}

𝑥

0
𝑓′(𝑡)                                   (21) 

𝐾𝑖(𝑥) = 𝑓(𝑥)𝑁𝑖(𝑥) − {𝐴𝑖(𝑥) ∫ 𝑓(𝑡)𝐵𝑖(𝑡)
𝑥

0
𝑑𝑡 −

𝐵𝑖(𝑥) ∫ 𝑓(𝑡)𝐴𝑖(𝑡)
𝑥

0
𝑑𝑡}                              (22) 

 
 

3  Forms of Particular Solutions  
Solution (20) indicates that the particular solution to 
(15) is written as: 

 
𝑦𝑝 = 𝜋𝐾𝑖(𝑥) − 𝜋𝑓(𝑥)𝑁𝑖(𝑥)                                  (23) 
 
This has proved to be convenient for computations 
involving many forms of 𝑓(𝑥), [14,15].  
     Using (22) in (23), equation (23) in written the 
following equivalent form: 
 
𝑦𝑝 = 𝜋{𝐵𝑖(𝑥) ∫ 𝑓(𝑡)𝐴𝑖(𝑡)

𝑥

0
𝑑𝑡 −

𝐴𝑖(𝑥) ∫ 𝑓(𝑡)𝐵𝑖(𝑡)
𝑥

0
𝑑𝑡}                                          (24) 

 
     Equations (23) and (24) reflect the dependence of 
the particular solution on the forcing function 𝑓(𝑥) 
and on integrability of the product of 𝑓(𝑥) and Airy’s 
functions. Clearly, when 𝑓(𝑥) is itself an Airy’s 
function, then the integrals involve products of Airy’s 
functions. In order to illustrate the arising integrals 
and their evaluations, the following three examples 
of 𝑓(𝑥) are discussed and the particular solution is 
obtained using both forms, (23) and (24), which 
produce the same integrals. 
 
3.1. Case 1: Using Form (24) 
 

Example 1: If 𝑓(𝑥) = 𝐴𝑖(𝑥), equation (15) takes the 
form 
 

𝑦′′ − 𝑥𝑦 = 𝐴𝑖(𝑥)                                                   (25) 

Particular integral (24) for ode (25) takes the form 

𝑦𝑝 = 𝜋{𝐵𝑖(𝑥) ∫ [𝐴𝑖(𝑡)]2𝑥

0
𝑑𝑡 −

𝐴𝑖(𝑥) ∫ 𝐴𝑖(𝑡)𝐵𝑖(𝑡)
𝑥

0
𝑑𝑡}                                        (26) 

 
and the general solution to (25) is written as 
 
𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) + 𝜋{𝐵𝑖(𝑥) ∫ [𝐴𝑖(𝑡)]2𝑥

0
𝑑𝑡 −

𝐴𝑖(𝑥) ∫ 𝐴𝑖(𝑡)𝐵𝑖(𝑡)
𝑥

0
𝑑𝑡}                                         (27) 

 
Example 2: If 𝑓(𝑥) = 𝐵𝑖(𝑥), equation (15) takes the 
form 
 

𝑦′′ − 𝑥𝑦 = 𝐵𝑖(𝑥)                                                   (28) 

Particular integral (24) for ode (28) takes the form 

𝑦𝑝 = 𝜋{𝐵𝑖(𝑥) ∫ 𝐴𝑖(𝑡)
𝑥

0
𝐵𝑖(𝑡)𝑑𝑡 −

𝐴𝑖(𝑥) ∫ [𝐵𝑖(𝑡)]2𝑥

0
𝑑𝑡}                                             (29) 

 
and the general solution to (25) is written as 
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𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) +

𝜋{𝐵𝑖(𝑥) ∫ 𝐴𝑖(𝑡)
𝑥

0
𝐵𝑖(𝑡)𝑑𝑡 − 𝐴𝑖(𝑥) ∫ [𝐵𝑖(𝑡)]2𝑥

0
𝑑𝑡}                                        

                                                                             (30) 
 
Example 3: If 𝑓(𝑥) = 𝑁𝑖(𝑥), (15) takes the form 
 

𝑦′′ − 𝑥𝑦 = 𝑁𝑖(𝑥)                                                   (31) 

Particular integral (24) for ode (31) takes the form 

𝑦𝑝 = 𝜋{𝐵𝑖(𝑥) ∫ 𝑁𝑖(𝑡)𝐴𝑖(𝑡)
𝑥

0
𝑑𝑡 −

𝐴𝑖(𝑥) ∫ 𝑁𝑖(𝑡)𝐵𝑖(𝑡)
𝑥

0
𝑑𝑡}                                         (32) 

 
and the general solution to (31) is written as 
 

𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) +

𝜋{𝐵𝑖(𝑥) ∫ 𝑁𝑖(𝑡)𝐴𝑖(𝑡)
𝑥

0
𝑑𝑡 −

𝐴𝑖(𝑥) ∫ 𝑁𝑖(𝑡)𝐵𝑖(𝑡)
𝑥

0
𝑑𝑡}                                         (33) 

Equations (27), (30) and (33), involve the five 
integrals: 

∫ [𝐴𝑖(𝑡)]2𝑥

0
𝑑𝑡,∫ [𝐵𝑖(𝑡)]2𝑥

0
𝑑𝑡,   ∫ 𝐴𝑖(𝑡)

𝑥

0
𝐵𝑖(𝑡)𝑑𝑡, 

∫ 𝑁𝑖(𝑡)𝐴𝑖(𝑡)
𝑥

0
𝑑𝑡  and ∫ 𝑁𝑖(𝑡)𝐵𝑖(𝑡)

𝑥

0
𝑑𝑡.  

Their method of evaluation will be discussed below. 
It is worth noting here that the functions [𝐴𝑖(𝑥)]2, 
[𝐵𝑖(𝑥)]2 and 𝐴𝑖(𝑥)𝐵𝑖(𝑥) are three linearly 
independent solutions of the homogeneous third-
order ode 𝑦′′′ − 4𝑥𝑦′ − 2𝑦 = 0, with Wronskian 
𝑊([𝐴𝑖(𝑥)]2, [𝐵𝑖(𝑥)]2 and 𝐴𝑖(𝑥)𝐵𝑖(𝑥)) =

2

𝜋3 (cf. 

Vallée and Soares, [3], Page 30). 

 

3.2. Case 2: Using Form (23) 
Equation (20) gives the general solution in terms of 
𝑁𝑖(𝑥) and 𝐾𝑖(𝑥). Using the same three example, 
above, we obtain the following general solutions. 

Example 1: When 𝑓(𝑥) = 𝐴𝑖(𝑥) in (15), general 
solution to (15) takes the form 

𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) + 𝜋𝐾𝑖(𝑥) − 𝜋𝐴𝑖(𝑥)𝑁𝑖(𝑥)                                                                          
                                                                             (34) 

where 𝐾𝑖(𝑥) is evaluated using (21) or (22), 
respectively, as 

𝐾𝑖(𝑥) = 𝐴𝑖(𝑥) ∫ {∫ 𝐵𝑖(𝜏)𝑑𝜏
𝑡

0
}

𝑥

0
𝐴′(𝑡)𝑑𝑡 −

𝐵𝑖(𝑥) ∫ {∫ 𝐴𝑖(𝜏)𝑑𝜏
𝑡

0
}

𝑥

0
𝐴′(𝑡)𝑑𝑡                              (35) 

or 

𝐾𝑖(𝑥) = 𝐴𝑖(𝑥) 𝑁𝑖(𝑥) − {𝐴𝑖(𝑥) ∫ 𝐴𝑖(𝑡) 𝐵𝑖(𝑡)
𝑥

0
𝑑𝑡 −

𝐵𝑖(𝑥) ∫ [𝐴𝑖(𝑡) ]2𝑥

0
𝑑𝑡}                                           (36) 

Example 2: When 𝑓(𝑥) = 𝐵𝑖(𝑥) in (15), general 
solution to (15) takes the form 

𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) + 𝜋𝐾𝑖(𝑥) − 𝜋𝐵𝑖(𝑥)𝑁𝑖(𝑥)                                                                        
                                                                             (37) 

where 𝐾𝑖(𝑥) is evaluated using (21) or (22), 
respectively, as 

𝐾𝑖(𝑥) = 𝐴𝑖(𝑥) ∫ {∫ 𝐵𝑖(𝜏)𝑑𝜏
𝑡

0
}

𝑥

0
𝐵′(𝑡)𝑑𝑡 −

𝐵𝑖(𝑥) ∫ {∫ 𝐴𝑖(𝜏)𝑑𝜏
𝑡

0
}

𝑥

0
𝐵′(𝑡)𝑑𝑡                                      (38) 

or 

𝐾𝑖(𝑥) = 𝐵𝑖(𝑥) 𝑁𝑖(𝑥) − {𝐴𝑖(𝑥) ∫ [𝐵𝑖(𝑡)]2𝑥

0
𝑑𝑡 −

𝐵𝑖(𝑥) ∫ 𝐴𝑖(𝑡)𝐵𝑖(𝑡)
𝑥

0
𝑑𝑡}                              (39) 

Example 3: When 𝑓(𝑥) = 𝑁𝑖(𝑥) in (15), general 
solution to (15) takes the form 

𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) + 𝜋𝐾𝑖(𝑥) − 𝜋[𝑁𝑖(𝑥)]2  (40) 

where 𝐾𝑖(𝑥) is evaluated using (21) or (22), 
respectively, as 

𝐾𝑖(𝑥) = 𝐴𝑖(𝑥) ∫ {∫ 𝐵𝑖(𝜏)𝑑𝜏
𝑡

0
}

𝑥

0
𝑁′(𝑡)𝑑𝑡 −

𝐵𝑖(𝑥) ∫ {∫ 𝐴𝑖(𝜏)𝑑𝜏
𝑡

0
}

𝑥

0
𝑁′(𝑡)𝑑𝑡                              (41) 

or 

𝐾𝑖(𝑥) = [𝑁𝑖(𝑥)]2 − {𝐴𝑖(𝑥) ∫ 𝑓(𝑡)𝐵𝑖(𝑡)
𝑥

0
𝑑𝑡 −

𝐵𝑖(𝑥) ∫ 𝑓(𝑡)𝐴𝑖(𝑡)
𝑥

0
𝑑𝑡}                              (42) 

 

5  Asymptotic Series Representation of 

Arising Integrals 
In order to evaluate the integrals and the Nield-
Kuznetsov functions arising in the solutions above, 
the following asymptotic series expressions are used 
when 𝑥 ≫ 1, [3-5]: 

𝐴𝑖(𝑥) ≈
exp(−𝜇)

2√𝜋𝑥
1
4

                                                     (43) 

𝐵𝑖(𝑥) ≈
exp(𝜇)

√𝜋𝑥
1
4

                                                       (44) 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.35 M. H. Hamdan, S. Jayyousi Dajani, D. C. Roach

E-ISSN: 2224-2880 306 Volume 21, 2022



wherein 𝜇 =  
2

3
𝑥3/2. Hamdan and Kamel, [4], 

obtained the following asymptotic series for the 
Nield-Kuznetsov functions: 

𝑁𝑖(𝑥) ≈ −
exp (𝜇)

3√𝜋𝑥1/4                                                 (45) 

𝐾𝑖(𝑥) ≈
exp(−𝜇)

2√𝜋𝑥
1
4

∫ {
exp(𝜑)

√𝜋𝑡
3
4

}
𝑥

0
𝑓′(𝑡)𝑑𝑡 −

exp(𝜇)

3√𝜋𝑥
1
4

𝑓(𝑥)                                                                          

                                                                             (46)  

wherein 𝜑 =  
2

3
𝑥2/3. 

     Using (43)-(45), the following values of the 
integrals appearing in (36), (39), and (42) are 
obtained, where some have been evaluated using 
Wolfram Alpha: 

∫ 𝐴𝑖(𝑡)𝐵𝑖(𝑡)
𝑥

0
𝑑𝑡 =

√𝑥

𝜋
                                           (47) 

∫ 𝐴𝑖(𝑡)𝑁𝑖(𝑡)
𝑥

0
𝑑𝑡 = −

√𝑥

3𝜋
                                       (48) 

∫ [𝐴𝑖(𝑡) ]2𝑥

0
𝑑𝑡 =

(𝑥
3
2)

3
2{Γ(

1

3
)−Γ(

1

3
,
4

3
𝑥

3
2)}

2(6
2
3)𝜋𝑥

;    𝑅𝑒 (𝑥
3

2) > 0                                                                   

                                                                             (49) 

∫ [𝐵𝑖(𝑡)]2𝑥

0
𝑑𝑡 =

√2
3

(−𝑥
3
2)

3
2{Γ(

1

3
,−

4

3
𝑥

3
2)−Γ(

1

3
)}

(3
2
3)𝜋𝑥

;                  

𝑅𝑒 (𝑥
3

2) < 0                                                           (50) 

∫ 𝐵𝑖(𝑡)𝑁𝑖(𝑡)
𝑥

0
𝑑𝑡 =

√2
3

(−𝑥
3
2)

3
2{Γ(

1

3
)−Γ(

1

3
,−

4

3
𝑥

3
2)}

3(3
2
3)𝜋𝑥

;                                                              

𝑅𝑒 (𝑥
3

2) < 0                                                            (51) 

where Γ(𝑥) is the gamma function, Γ(𝛼, 𝑥) is the 
incomplete gamma function, and 𝑅𝑒(𝑧) is the real 
part of 𝑧. 
 

6  Expressions for the Nield-Kuznetsov 

Function of the Second Kind 
Using asymptotic series exressions (43)-(45), and 
integrals (47)-(51), the following expressions are 
obtained for the particular solution (32) for each of 
three examples considered. Furthermore, using (36), 
(39), and (42), expressions for 𝐾𝑖(𝑥) are obtained. 

Example 1: Using (36), the following expression is 
obtained for 𝐾𝑖(𝑥): 

𝐾𝑖(𝑥) =
1

2𝜋√𝜋
{𝑥

exp(𝜇)

6
2
3

{Γ (
1

3
) − Γ (

1

3
,

4

3
𝑥

3

2)} −

𝑥
1

4 exp(−𝜇)} −
1

6𝜋𝑥
1
2

                                              (52) 

     Particular solution (26) and general solution (27) 
take the following forms, respectively: 

𝑦𝑝 =
1

2√𝜋
{𝑥

exp(𝜇)

6
2
3

{Γ (
1

3
) − Γ (

1

3
,

4

3
𝑥

3

2)} −

𝑥
1

4 exp(−𝜇)}                                                                          (53) 
 

𝑦 = 𝑐1
exp(−𝜇)

2√𝜋𝑥
1
4

+ 𝑐2
exp(𝜇)

√𝜋𝑥
1
4

+
1

2√𝜋
{𝑥

exp(𝜇)

6
2
3

{Γ (
1

3
) −

Γ (
1

3
,

4

3
𝑥

3

2)} − 𝑥
1

4 exp(−𝜇)}                                    (54) 
 

Example 2: Using (39), the following expression is 
obtained for 𝐾𝑖(𝑥): 

𝐾𝑖(𝑥) =
1

𝜋√𝜋
{𝑥

1

4 exp(𝜇) −

exp(−𝜇)

6
2
3𝑥

5
4

(−𝑥
3

2)
3

2 {Γ (
1

3
, −

4

3
𝑥

3

2) − Γ (
1

3
)}} −

exp(2𝜇)

3𝜋𝑥
1
2

                              

                                                                             (55) 
     Particular solution (29) and general solution (30) 
take the following forms, respectively: 
 

𝑦𝑝 =
1

√𝜋
{𝑥

1

4 exp(𝜇) −

exp(−𝜇)

6
2
3𝑥

5
4

(−𝑥
3

2)
3

2 {Γ (
1

3
, −

4

3
𝑥

3

2) − Γ (
1

3
)}}                (56) 

 

𝑦 = 𝑐1
exp(−𝜇)

2√𝜋𝑥
1
4

+ 𝑐2
exp(𝜇)

√𝜋𝑥
1
4

+
1

√𝜋
{𝑥

1

4 exp(𝜇) −

exp(−𝜇)

6
2
3𝑥

5
4

(−𝑥
3

2)
3

2 {Γ (
1

3
, −

4

3
𝑥

3

2) − Γ (
1

3
)}}                (57) 

 

Example 3: Using (42), the following expression is 
obtained for 𝐾𝑖(𝑥): 

𝐾𝑖(𝑥) =
exp (2𝜇)

9𝜋𝑥1/2 +
1

3𝜋√𝜋
{−𝑥

1

4 exp(𝜇) −

exp(−𝜇)

6
2
3𝑥

5
4

(−𝑥
3

2)
3

2 {Γ (
1

3
) − Γ (

1

3
, −

4

3
𝑥

3

2)}}                (58) 
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     Particular solution (32) and general solution (33) 
take the following forms, respectively: 

𝑦𝑝 =
1

3√𝜋
{−𝑥

1

4 exp(𝜇) −
exp(−𝜇)

6
2
3𝑥

5
4

(−𝑥
3

2)
3

2 {Γ (
1

3
) −

Γ (
1

3
, −

4

3
𝑥

3

2)}}                                                               (59) 

 

𝑦 = 𝑐1
exp(−𝜇)

2√𝜋𝑥
1
4

+ 𝑐2
exp(𝜇)

√𝜋𝑥
1
4

+
1

3√𝜋
{−𝑥

1

4 exp(𝜇) −

exp(−𝜇)

6
2
3𝑥

5
4

(−𝑥
3

2)
3

2 {Γ (
1

3
) − Γ (

1

3
, −

4

3
𝑥

3

2)}}                (60) 

 
 
7 Conclusion 
In this work, a method of solving the inhomogeneous 
Airy’s equation when the right-hand-side is a special 
function (such as one of Airy’s functions or the 
Nield-Kuznetsov function of the first kind), was 
presented. Arising special integrals involve products 
of these special functions. The integrands have been 
expressed using asymptotic series, and integral 
evaluations were carried out using Wolfram Alpha. 
The particular and general solutions of Airy’s 
inhomogeneous equation have been presented and a 
derivation of expressions for the Nield-Kuznetsov 
function of the second kind, corresponding to each 
forcing function, have been obtained. Significance of 
this work stems from the fact that Airy’s equation is 
one of our mathematical gems and its solutions have 
given rise to many special functions since its 
inception. It also plays a role in the development and 
optimization of computational algorithms designed 
to provide efficient computations of Airy’s functions. 
These same algorithms are of great value to the 
numerical analysis literature. The arising integrals in 
this work might find applications in mathematical 
physics. 
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