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1 Introduction
Let K be a number field. The maximal unramified
abelian 2-extension K

(1)
2 of K, is called the Hilbert

2-class field of K. We recall that by the class field
theory we have Gal(K

(1)
2 /K) = Cl2(K), the 2-

Sylow subgroup of the class group of K denoted
Cl(K). Cl2(K) is called the 2-class group of K.
For a nonnegative integer n, let K

(n)
2 be defined

inductively as K(0)
2 = K and K

(n+1)
2 =

(
K

(n)
2

)(1)

2
;

then

K ⊂ K
(1)
2 ⊂ K

(2)
2 ⊂ ... ⊂ K

(n)
2 ⊂ ...

is called the Hilbert 2-class field tower of K. If n
is the minimal integer such that K

(n)
2 = K

(n+1)
2 ,

then this tower is called to be finite of length n.
If there is no such n, then the tower is called to
be infinite. We denote K

(∞)
2 = ∪

i∈N
K

(i)
2 . We recall

that K
(∞)
2 /K is a Galois extension and the tower

of K is finite iff K
(∞)
2 /K is of finite degree.

The finiteness of the Hilbert 2-class field tower
of an imaginary quadratic number field K is still
a problem of uncontrollable behavior for some
values of rank(Cl2(K)). It’s well known, that if
rank(Cl2(K)) ≥ 5, then, the tower is infinite [3].
For the case where rank(Cl2(K)) = 4, there is
no known imaginary quadratic field with finite
tower, and according to Martinet’s conjecture
the tower is infinite [6]. If rank(Cl2(K)) = 2
or 3, the tower may be finite or infinite ([5],
[6]), and there is no known procedure for decid-
ing if the tower is finite or not. Let p1 = 73,
p2 = 373. The class number of Q(

√
p1.p2) is 16.

Then, according to [7, Proposition 3.3], the field
K = Q(

√
−p1.p2.p) has infinite Hilbert 2- class

field tower for all prime p satisfying the conditions
p ≡ −1 mod (4) and

(
73.373

p

)
= −1. This give

an infinite family of imaginary quadratic fields
K with rank(Cl2(K)) = 2 and infinite tower.
In this paper we give, in theorems 1, 2 and 3,
infinite family of imaginary quadratic number
fields K having finite Hilbert 2-class field tower
and satisfying rank(Cl2(K)) = 2. More precisely,
we give the list of all imaginary quadratic number
fields that have a metacyclic Hilbert 2-class field
tower.
Note that a group G is said to be metacyclic if
there is a normal subgroup N of G such that
N and G/N are cyclic. For such a group, if
we denote N =< a > and G/N =< bN >,
then G =< a, b > and, thus, G is generated
by 2 elements. Let K be a number field and
denote G2 = Gal(K

(∞)
2 /K). The Hilbert 2-class

field tower of K is said to be metacyclic if G2

is metacyclic. Note that in this case, the tower
terminate at most at the second steep.

2 Notations and useful results
2.1 Notations

• Let k be a number field.
– k(1) denote the Hilbert class field of k

which is the maximal unramified abelian
extension of k.

– Ok is the ring of integers of k.
– Ek is the unit group of Ok.

• Let K/k be an extension of number fields.
– ram(K/k) is the number of all places of
k that ramify in K.
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– If K/k is a quadratic extension, then
e(K/k) is the rank of the elementary
2-group Ek/

(
Ek ∩ NK/k(K

×)
)

where
K× = {α ∈ K/ α ̸= 0}.
Note that an elementary 2-group G can
be seen as a F2-vector space and its di-
mension is said the 2-rank of G which we
denote rank2(G).

– Let β ∈ k and p is a place of k.
(
β,K/k

p

)
is the norm residue symbol of β in k rela-
tively to p, we may denote it also

(
β,K
p

)
or

(
β,α
p

)
if K = k(

√
α) is a quadratic

extension of k.

• If m is a square-free positive integer, then εm
denotes the fundamental unit of Q(

√
m).

2.2 Preliminary results
Lemma 1. Let K/k be a quadratic extension of
number fields. We have

rank2(Cl(K)) ≥ ram(K/k)− 1− e(K/k).

If the 2-class group of k is trivial, then the preced-
ing inequality becomes an equality

Proof. For the inequality, see [4] and for the equal-
ity, see [1].

Lemma 2. Let K be a number field. If G2 =

Gal(K
(∞)
2 /K) is metacyclic nonabelian, then

rank2(Cl(K)) = 2.

Proof. see [2]

Remarks. Let K be a quadratic number field.

• If G2 = Gal(K
(∞)
2 /K) is metacyclic, then

rank2(Cl(K)) ≤ 2. If rank2(Cl(K)) =

1, then K
(1)
2 = K

(2)
2 , and the Hilbert 2-

class field tower of K is cyclic. We deduce
that the important case to study is when
rank2(Cl(K)) = 2.

• If G2 = Gal(K
(∞)
2 /K) is metacyclic non-

abelian, then rank2(Cl(K)) = 2, and K has
three quadratic extensions L1, L2 and L3 con-
tained in K(1).

Lemma 3. Let K be a number field such that
rank2(Cl(K)) = 2 and denote L1, L2 and L3 the
three quadratic extensions of K contained in K(1).
If we denote G = Gal(K

(∞)
2 /K) and Ci = Cl2(Li)

for i = 1, 2, 3, Then G is metacyclic if and only if
rank(Ci) ≤ 2 for i = 1, 2, 3.

Proof. see [2]

Lemma 4. Let m ≤ −2 and d ≥ 2 be two integers,
k = Q(

√
m) and K = k(

√
d). Suppose that 2

splits in k and ramifies in Q(
√
d). Then if P is a

prime ideal of k that divides 2, then(
−1,K/k

P

)
=

(
−1
d

)
if d is odd and(

−1,K/k
P

)
=

(
−1
c

)
if d = 2c.

Proof. Let Gal(K/k) =< σ >. We have 2Ok =
PP with P = σ(P). We have(

−1,K/k
P

)
=

(
−1,d
P

)
=

(
d,−1
P

)
The conductor of the extension Q(i)/Q is 4Zp∞
where p∞ is the infinite prime of Q, then 4Ok =

P2P2 is an admissible modulus for the extension
k(i)/k.

• Suppose that d ≡ −1 mod(4). Thus(d,−1

P

)
=

(−1,−1

P

)
.

Let b ∈ k such that b ≡ −1 mod(P2) and
b ≡ 1 mod(P2

). Then(
−1,−1

P

)
=

(
k(i)/k
bOk

)
=

(
Q(i)/Q
Nk/Q(b)

)
=

(
−1

Nk/Q(b)

)
We have b ≡ 1 mod(P2

) then σ(b) ≡
1 mod(P2). We deduce that Nk/Q(b) ≡
−1 mod(4). Then(

d,−1
P

)
=

(
−1,−1

P

)
=

(
−1

Nk/Q(b)

)
= −1

=
(
−1
d

)
If d ≡ 1 mod(4), Then d ≡ 1 mod(P2), and,
then (

d,−1
P

)
=

(
1,−1
P

)
= 1 =

(
−1
d

)
• Suppose that d = 2c where c ∈ N∗. We have
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(
d,−1
P

)
=

(
2c,−1
P

)
=

(
2,−1
P

)(
c,−1
P

)
=

(
−1,2
P

)(
c,−1
P

)
=

(
c,−1
P

)
=

(
−1
c

)

3 Imaginary quadratic fields with
metacyclic Hilbert 2-class field
tower

Let d ∈ N∗ be a positive square-free integer and
K = Q(

√
−d) such that rank2(Cl(K)) = 2. Ac-

cording to the genus theory, d will be of one of the
following forms:
p1p2, 2p1p2, 2p1q1, p1p2q1, 2q1q2, q1q2, q1q2q3,

where p1 and p2 are positive prime integers ≡ 1
mod(4) and q1, q2 and q3 are positive prime inte-
gers ≡ 3 mod(4).

In what follows, we study all these cases in or-
der to see when the Hilbert 2-class field tower of
Q(

√
−d) is metacyclic.

Theorem 1. Let K = Q(
√
−d) with d = 2q1q2,

q1q2 or q1q2q3. Then the Hilbert 2-class field tower
of K is metacyclic.
Proof. The three quadratic extensions of K con-
tained in K(1) are L1 = K(

√
−q1), L2 =

K(
√
−q2) and L3 = K(

√
q1q2).

Suppose that d = q1q2. Then L1 = k1(
√
q2),

L2 = k2(
√
q1) and L3 = k3(

√
q1q2) with k1 =

Q(
√
−q1), k2 = Q(

√
−q2) and k3 = Q(i). Since

Cl2(k1) is trivial, then by lemma 1, we have
rank2(Cl(L1)) = ram(L1/k1)− 1− e(L1/k1).

We have rank2(Cl(L1)) ≤ 3 and
rank2(Cl(L1)) = 3 iff 2 and q2 splits in
k1 and e(L/k1) = 0. But these conditions
cannot be satisfied simultaneously. In fact,
We have Ek1

=< −1 > if q1 ̸= 3 and
Ek1

=< ζ6 >=< −1, ζ6 > if not. Then if
q2 splits in k1 and Q is a prime ideal of k1
dividing q2, then(

−1,L1/k1

Q

)
=

(
−1,q2
Q

)
=

(
q2,−1
Q

)
=

(
−1
q2

)
= −1

Thus e(L1/k1) = 1. We conclude that
rank2(Cl(L1)) ≤ 2. In the same way,
rank2(Cl(L2)) ≤ 2. We have ram(L3/k3) = 2
then rank2(Cl(L3)) ≤ 2. Then K has a meta-
cyclic Hilbert 2-class field tower.

Suppose that d = q1q2q3. Then L1 =
k1(

√
q2q3), L2 = k2(

√
q1q3) and L3 = k3(

√
q1q2)

with k1 = Q(
√
−q1), k2 = Q(

√
−q2) and

k3 = Q(
√
−q3). We have rank2(Cl(L1)) =

ram(L1/k1) − 1 − e(L1/k1). If q2 is inert in k1,
then ram(L1/k1) ≤ 3 and thus

rank2(Cl(L1)) ≤ 2.

If q2 splits in k1 and Q is a prime ideal of k1 di-
viding q2, then(

−1,L1/k1

Q

)
=

(
−1,q2q3

Q

)
=

(
q2,−1
Q

)
=

(
−1
q2

)
= −1

Thus e(L1/k1) = 1, and rank2(Cl(L1)) ≤
2. We conclude that in all cases we have
rank2(Cl(L1)) ≤ 2. In the same way, we have
rank2(Cl(Lj)) ≤ 2 for j = 2, 3. Then K has a
metacyclic Hilbert 2-class field tower.

Suppose that d = 2q1q2. Then L1 = k1(
√
2q2),

L2 = k2(
√
2q1) and L3 = k3(

√
−2) with k1 =

Q(
√
−q1), k2 = Q(

√
−q2) and k3 = Q(

√
q1q2).

We have rank2(Cl(L1)) = ram(L1/k1) − 1 −
e(L1/k1). If 2 is inert in k1, then ram(L1/k1) ≤ 3
and thus rank2(Cl(L1)) ≤ 2. If 2 splits in k1
and Q is a prime ideal of k1 dividing 2, then, by
lemma 4, (

−1,L1/k1

Q

)
=

(
−1
q2

)
= −1.

Thus e(L1/k1) = 1, and rank2(Cl(L1)) ≤ 2. We
conclude that in all cases, we have

rank2(Cl(L1)) ≤ 2.

In the same way, rank2(Cl(L2)) ≤ 2.
We have ram(L3/k3) ≤ 4 and if P is an in-
finite place of k3 then

(
−1,L3/k3

P

)
= −1, thus

e(L3/k3) ≥ 1. We conclude that

rank2(Cl(L3)) ≤ 2.

Thus, using lemma 3, K has a metacyclic Hilbert
2-class field tower.
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Theorem 2. Let K = Q(
√
−d) with d = p1p2 or

d = 2p1p2. Then the Hilbert 2-class field tower
of K is metacyclic iff, after a permutation of the
pi’s, we have one of the two following conditions:
(C1) p1 ≡ p2 ≡ 5 mod(8)

(C2) p1 ≡ 1 mod(8), p2 ≡ 5 mod(8) and
(
p2

p1

)
= −1

Proof. The three unramified quadratic extensions
of K are L1 = K(

√
p1), L2 = K(

√
p2) and L3 =

K(
√
p1p2).

• Suppose that d = p1p2. Then L1 =
k1(

√
−p2), L2 = k2(

√
−p1) and L3 =

k3(
√
p1p2) with k1 = Q(

√
p1), k2 = Q(

√
p2)

and k3 = Q(i). We have{
rank2(Cl(L1)) = ram(L1/k1)− 1− e(L1/k1)
and
Ek1

=< −1, εp1
>

Let P∞ be one of the two infinite places of k1.
We have(

−1,L1/k1

P∞

)
=

(
−εp1 ,L1/k1

P∞

)
= −1

On the other hand, εp1
can not be a norm

in L1/k1. In fact, if there is an element
v ∈ L1 such that NL1/k1

(v) = εp1
, then

we will have NL1/Q(v) = Nk1/Q(εp1
) = −1.

This is impossible since
(
−1,L1/Q

P∞

)
= −1.

We deduce that e(L1/k1) = 2, and then
rank2(Cl(L1)) = ram(L1/k1)−3. The places
of k1 that ramify in L1 are exactly the 2 in-
finite places, the place(s) above 2 and the
place(s) above p2. Thus ram(L1/k1) = 4, 5
or 6 and rank2(Cl(L1)) = 1, 2 or 3. In ad-
dition, rank2(Cl(L1)) = 3 iff p1 ≡ 1 mod(8)

and
(
p2

p1

)
= 1.

In the same way, we have rank2(Cl(L2)) ≤ 3
and rank2(Cl(L2)) = 3 iff p2 ≡ 1 mod(8) and(
p2

p1

)
= 1.

For the 2-rank of L3, we have ram(L3/k3) =
4. Then rank2(Cl(L3)) = 3− e(L3/K3). Let
P be a prime ideal of k3 dividing p1, for ex-
ample. We have(

i,L3/k3

P

)
=

(
i,p1p2

P

)
=

(
p1,i
P

)
=

(
k3(ζ8)/k3

P

)
=

(
Q(ζ8)/Q

p1

)

Thus e(L1/k1) = 0 iff p1 ≡ p2 ≡ 1 mod(8).
We conclude that rank2(Cl(L3)) ≤ 3 and
rank2(Cl(L3)) = 3 iff p1 ≡ p2 ≡ 1 mod(8).

• Suppose that d = 2p1p2. We have L1 =
k1(

√
−2p2), L2 = k2(

√
−2p1) and L3 =

k3(
√
p1p2) with k1 = Q(

√
p1), k2 = Q(

√
p2)

and k3 = Q(
√
−2).

As in the previous case, We have, for j = 1, 2,
e(Lj/kj) = 2, and then rank2(Cl(Lj)) =
ram(Lj/kj) − 3 ≤ 3. In addition,
rank2(Cl(Lj)) = 3 iff pj ≡ 1 mod(8) and(
p2

p1

)
= 1.

For the 2-rank of L3, we have ram(L3/k3) ≤
4. Then rank2(Cl(L3)) ≤ 3 with equality iff
p1 ≡ p2 ≡ 1 mod(8) and e(L1/k1) = 0. If
p1 ≡ p2 ≡ 1 mod(8) and P is a prime ideal of
k3 dividing p1, for example, then We have(

−1,L3/k3

P

)
=

(
−1,p1p2

P

)
=

(
p1,−1
P

)
=

(
−1
p1

)
= 1

Thus e(L1/k1) = 0. We conclude that
rank2(Cl(L3)) ≤ 3 and rank2(Cl(L3)) = 3
iff p1 ≡ p2 ≡ 1 mod(8).

The above two cases can be summarized by:
The tower of k is not metacyclic iff

(
p1 ≡

1 mod(8) and
(
p1

p1

)
= 1

)
or

(
p2 ≡ 1 mod(8) and(

p2

p1

)
= 1

)
or p1 ≡ p2 ≡ 1 mod(8). The theorem

will be proved by discussing according first to (p1

mod (8), p2 mod (8)) and then
(
p2

p1

)
.

Theorem 3. Let K = Q(
√
−d) with d = r1p2q1

and r1 = 2 or r1 = p1 is a positive prime integer
≡ 1 mod(4). Then the Hilbert 2-class field tower
of K is metacyclic except in the following cases:
(C1)

(
r1
p2

)
=

(
r1
q1

)
= 1

(C2)
(
r1
p2

)
=

(
q1
p2

)
= 1

(C3)
(
r1
q1

)
=

(
p2

q1

)
= 1

Proof. The three quadratic extensions of K con-
tained in K(1) are L1 = K(

√
r1), L2 = K(

√
p2)

and L3 = K(
√
r1p2).

• Suppose that d = p1p2q1. Then L1 =
k1(

√
−p2q1), L2 = k2(

√
−p1q1) and L3 =
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k3(
√
p1p2) with k1 = Q(

√
p1), k2 =

Q(
√
p2) and k3 = Q(

√
−q1). We have

rank2(Cl(Lj)) = ram(Lj/kj)−1− e(Lj/kj),
for j = 1, 2 and 3. As in the cases in the
previous theorem, we have e(L1/k1) = 2, and
then rank2(Cl(L1)) = ram(L1/k1)−3. Since
ram(L1/k1) ≤ 6, we have rank2(Cl(L1)) ≤ 3

and rank2(Cl(L1)) = 3 iff
(
p1

p2

)
=

(
p1

q1

)
= 1.

In the same way, we have rank2(Cl(L2)) ≤ 3

and rank2(Cl(L2)) = 3 iff
(
p2

p1

)
=

(
p2

q1

)
= 1.

If
((

q1
p1

)
,
(

q1
p2

))
̸= (1, 1), then ram(L3/k3) ≤

3 and thus rank2(Cl(L3)) ≤ 2.
Suppose that

(
q1
p1

)
=

(
q1
p2

)
= 1. Then

ram(L3/k3) = 4. let P be a prime ideal of
k3 lying over pj with j = 1 or 2. We have(

−1,L3/k3

P

)
=

(
−1,p1p2

P

)
=

(
pj ,−1
P

)
=

(
−1
pj

)
= 1

If q1 ̸= 3, then e(L3/k3) = 0. If q = 3, then
Ek3

=< ζ6 > and(
ζ6,L3/k3

P

)
=

(
ζ3
6 ,L3/k3

P

)
=

(
−1,L3/k3

P

)
=

(
−1,p1p2

P

)
=

(
pj ,−1
P

)
=

(
−1
pj

)
= 1

Then e(L3/k3) = 0. In the two cases, we
have rank2(Cl(L3)) = 3. We conclude that
rank2(Cl(L3)) = 3 iff

(
q1
p1

)
=

(
q1
p2

)
= 1.

• Suppose that d = 2p2q1. Then L1 =
k1(

√
−p2q1), L2 = k2(

√
−2q1) and L3 =

k3(
√
2p2) with k1 = Q(

√
2), k2 = Q(

√
p2) and

k3 = Q(
√
−q1). We have rank2(Cl(L2)) =

ram(L2/k2)−1−e(L2/k2). Since e(L2/k2) =
2, rank2(Cl(L2)) = ram(L2/k2) − 3 ≤
3. In addition rank2(Cl(L2)) = 3 iff(

2
p2

)
=

(
q1
p2

)
= 1. Similarly, we have

rank2(Cl(L1)) ≤ 3 and rank2(Cl(L1)) = 3

iff
(

2
p2

)
=

(
2
q1

)
= 1.

We have rank2(Cl(L3)) ≤ 3 with equality iff
ram(L3/k3) = 4 and e(L3/k3) = 0.
Suppose that ram(L3/k3) = 4 (i.e

(
p2

q1

)
=(

2
q1

)
= 1). Let P be a prime ideal of k3 lying

over p2. We have(
−1,L3/k3

P

)
=

(
−1,2p2

P

)
=

(
p2,−1
P

)
= 1

Let Q be a prime ideal of k3 lying over 2. By
lemma 4, we have(

−1,L3/k3

Q

)
=

(
−1
p2

)
= 1

Then e(L3/k3) = 0. We deduce that
rank2(Cl(L3)) ≤ 3 and rank2(Cl(L2)) = 3

iff
(
p2

q1

)
=

(
2
q1

)
= 1.

4 Numerical verification
Our results can be checked. Indeed let k be a
quadratic number field verifying rank(Cl2(k)) =
2. Using a computer algebra system, we can
compute the rank of the 2-class group of its
three quadratic unramified extensions. Then, by
lemma 3, we can decide if the tower of the Hilbert
2-class field of k is metacyclic or not. We will
do that, as an example, for the case where k =
Q(

√
−p1p2).

Let p1 and p2 be two positive prime integers
≡ 1 mod (4) and k = Q(

√
−p1p2). The three

quadratic unramified extensions of k are L1 =
Q(

√
p1,

√
−p2), L2 = Q(

√
p2,

√
−p1) and L3 =

Q(i,
√
p1p2). We denote rj = rank(Cl2(Lj)) for

j = 1, 2, 3.
Let B1 and B2 be respectively the truth values

(0 if false and 1 if true) of the proposition ” The
Hilbert 2-class field tower of k is metacyclic” and
the statement ” After a permutation of p1 and
p2, we have (C1) or (C2), the two conditions in
theorem 2”. In the following table, We compute
B1 and B2. By comparing them, we can see that
they are equivalent. This is in agreement with
Theorem 2.
The numerical results in this table were obtained
using Pari [8].
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p1 p2 r1 r2 r3 B1 p1 mod (8) p2 mod (8)
(
p1

p2

)
B2

5 13 1 1 1 1 5 5 -1 1
5 17 1 2 2 1 5 1 -1 1
5 29 2 2 2 1 5 5 1 1
5 241 2 3 2 0 5 1 1 0
13 17 2 3 2 0 5 1 1 0
13 29 2 2 2 1 5 5 1 1
13 149 1 1 2 1 5 5 -1 1
13 233 2 3 2 0 5 1 1 0
13 241 1 2 2 1 5 1 -1 1
17 41 2 2 3 0 1 1 -1 0
17 53 3 2 2 0 1 5 1 0
17 89 3 3 3 0 1 1 1 0
17 109 2 1 2 1 1 5 -1 1
17 149 3 2 2 0 1 5 1 0
29 37 1 1 2 1 5 5 -1 1
29 89 1 2 2 1 5 1 -1 1
29 149 2 2 2 1 5 5 1 1
29 233 2 3 2 0 5 1 1 0
37 41 2 3 2 0 5 1 1 0
37 53 2 2 2 1 5 5 1 1
37 149 2 2 2 1 5 5 1 1
37 193 1 2 2 1 5 1 -1 1
41 53 2 1 2 1 1 5 -1 1
41 61 3 2 2 0 1 5 1 0
41 89 2 2 3 0 1 1 -1 0
41 113 3 3 3 0 1 1 1 0
53 61 1 1 2 1 5 5 -1 1
53 73 1 2 2 1 5 1 -1 1
53 113 2 3 2 0 5 1 1 0
61 73 2 3 2 0 5 1 1 0
61 89 1 2 2 1 5 1 -1 1
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