On the Metacyclicity of the Hilbert 2-Class Field Tower of Imaginary

SAID ESSAHEL, ALI MOUHIB
Sciences and Engineering Laboratory
Sidi Mohammed Ben Abdellah University, Fes
Polydisciplinary Faculty of Taza
MOROCCO

Abstract: Let d be a square-free integer <0. In this paper, we will determine all imaginary quadratic number fields $\mathbb{Q}(\sqrt{\mathrm{d}})$ that have a metacyclic Hilbert 2-class field tower. Finally, we will numerically validate our theoretical results.

Key-Words: Keywords: class field tower; class group; imaginary quadratic number field; metacyclic group.
Received: June 22, 2021. Revised: March 25, 2022. Accepted: April 23, 2022. Published: May 26, 2022.

1 Introduction

Let K be a number field. The maximal unramified abelian 2-extension $K_{2}^{(1)}$ of K, is called the Hilbert 2 -class field of K. We recall that by the class field theory we have $\operatorname{Gal}\left(K_{2}^{(1)} / K\right)=C l_{2}(K)$, the 2Sylow subgroup of the class group of K denoted $C l(K) . C l_{2}(K)$ is called the 2-class group of K. For a nonnegative integer n, let $K_{2}^{(n)}$ be defined inductively as $K_{2}^{(0)}=K$ and $K_{2}^{(n+1)}=\left(K_{2}^{(n)}\right)_{2}^{(1)}$; then

$$
K \subset K_{2}^{(1)} \subset K_{2}^{(2)} \subset \ldots \subset K_{2}^{(n)} \subset \ldots
$$

is called the Hilbert 2-class field tower of K, If n is the minimal integer such that $K_{2}^{(n)}=K_{2}^{(n+1)}$, then this tower is called to be finite of length n. If there is no such n, then the tower is called to be infinite. We denote $K_{2}^{(\infty)}=\underset{i \in \mathbb{N}}{\cup} K_{2}^{(i)}$. We recall that $K_{2}^{(\infty)} / K$ is a Galois extension and the tower of K is finite iff $K_{2}^{(\infty)} / K$ is of finite degree. The finiteness of the Hilbert 2-class field tower of an imaginary quadratic number field K is still a problem of uncontrollable behavior for some values of $\operatorname{rank}\left(\mathrm{Cl}_{2}(\mathrm{~K})\right)$. It's well known, that if $\operatorname{rank}\left(\mathrm{Cl}_{2}(K)\right) \geq 5$, then, the tower is infinite [3]. For the case where $\operatorname{rank}\left(\mathrm{Cl}_{2}(K)\right)=4$, there is no known imaginary quadratic field with finite tower, and according to Martinet's conjecture the tower is infinite $[6]$. If $\operatorname{rank}\left(C l_{2}(K)\right)=2$ or 3 , the tower may be finite or infinite ($[5]$, $[6]$), and there is no known procedure for deciding if the tower is finite or not. Let $p_{1}=73$, $p_{2}=373$. The class number of $Q\left(\sqrt{p_{1} \cdot p_{2}}\right)$ is 16 . Then, according to $[7$, Proposition 3.3], the field $K=Q\left(\sqrt{-p_{1} \cdot p_{2} \cdot p}\right)$ has infinite Hilbert 2- class
field tower for all prime p satisfying the conditions $p \equiv-1 \bmod (4)$ and $\left(\frac{73.373}{p}\right)=-1$. This give an infinite family of imaginary quadratic fields K with $\operatorname{rank}\left(\mathrm{Cl}_{2}(K)\right)=2$ and infinite tower. In this paper we give, in theorems 1,2 and 3 , infinite family of imaginary quadratic number fields K having finite Hilbert 2-class field tower and satisfying $\operatorname{rank}\left(\mathrm{Cl}_{2}(K)\right)=2$. More precisely, we give the list of all imaginary quadratic number fields that have a metacyclic Hilbert 2-class field tower.
Note that a group G is said to be metacyclic if there is a normal subgroup N of G such that N and G / N are cyclic. For such a group, if we denote $N=<a>$ and $G / N=<b N>$, then $G=<a, b>$ and, thus, G is generated by 2 elements. Let K be a number field and denote $G_{2}=\operatorname{Gal}\left(K_{2}^{(\infty)} / K\right)$. The Hilbert 2-class field tower of K is said to be metacyclic if G_{2} is metacyclic. Note that in this case, the tower terminate at most at the second steep.

2 Notations and useful results

2.1 Notations

- Let k be a number field.
- $k^{(1)}$ denote the Hilbert class field of k which is the maximal unramified abelian extension of k.
- O_{k} is the ring of integers of k.
- E_{k} is the unit group of O_{k}.
- Let K / k be an extension of number fields.
$-\operatorname{ram}(K / k)$ is the number of all places of k that ramify in K.
- If K / k is a quadratic extension, then $e(K / k)$ is the rank of the elementary 2-group $E_{k} /\left(E_{k} \cap N_{K / k}\left(K^{\times}\right)\right)$where $K^{\times}=\{\alpha \in K / \alpha \neq 0\}$.
Note that an elementary 2-group G can be seen as a \mathbb{F}_{2}-vector space and its dimension is said the 2 -rank of G which we denote $\operatorname{rank}_{2}(G)$.
- Let $\beta \in k$ and \mathfrak{p} is a place of k. $\left(\frac{\beta, K / k}{\mathfrak{p}}\right)$ is the norm residue symbol of β in k relatively to \mathfrak{p}, we may denote it also $\left(\frac{\beta, K}{\mathfrak{p}}\right)$ or $\left(\frac{\beta, \alpha}{\mathfrak{p}}\right)$ if $K=k(\sqrt{\alpha})$ is a quadratic extension of k.
- If m is a square-free positive integer, then ε_{m} denotes the fundamental unit of $\mathbb{Q}(\sqrt{m})$.

2.2 Preliminary results

Lemma 1. Let K / k be a quadratic extension of number fields. We have

$$
\operatorname{rank}_{2}(C l(K)) \geq \operatorname{ram}(K / k)-1-e(K / k) .
$$

If the 2 -class group of k is trivial, then the preceding inequality becomes an equality
Proof. For the inequality, see 4$]$ and for the equality, see [1].
Lemma 2. Let K be a number field. If $G_{2}=$ $\operatorname{Gal}\left(K_{2}^{(\infty)} / K\right)$ is metacyclic nonabelian, then $\operatorname{rank}_{2}(C l(K))=2$.
Proof. see [2]
Remarks. Let K be a quadratic number field.

- If $G_{2}=\operatorname{Gal}\left(K_{2}^{(\infty)} / K\right)$ is metacyclic, then $\operatorname{rank}_{2}(C l(K)) \leq 2$. If $\operatorname{rank}_{2}(C l(K))=$ 1, then $K_{2}^{(1)}=K_{2}^{(2)}$, and the Hilbert 2class field tower of K is cyclic. We deduce that the important case to study is when $\operatorname{rank}_{2}(C l(K))=2$.
- If $G_{2}=\operatorname{Gal}\left(K_{2}^{(\infty)} / K\right)$ is metacyclic nonabelian, then $\operatorname{rank}_{2}(\mathrm{Cl}(\mathrm{K}))=2$, and K has three quadratic extensions L_{1}, L_{2} and L_{3} contained in $K^{(1)}$.
Lemma 3. Let K be a number field such that $\operatorname{rank}_{2}(C l(K))=2$ and denote L_{1}, L_{2} and L_{3} the three quadratic extensions of K contained in $K^{(1)}$. If we denote $G=\operatorname{Gal}\left(K_{2}^{(\infty)} / K\right)$ and $C_{i}=C l_{2}\left(L_{i}\right)$ for $i=1,2,3$, Then G is metacyclic if and only if $\operatorname{rank}\left(C_{i}\right) \leq 2$ for $i=1,2,3$.

Proof. see [2]
Lemma 4 . Let $m \leq-2$ and $d \geq 2$ be two integers, $k=\mathbb{Q}(\sqrt{m})$ and $K=k(\sqrt{d})$. Suppose that 2 splits in k and ramifies in $\mathbb{Q}(\sqrt{d})$. Then if \mathcal{P} is a prime ideal of k that divides 2 , then

$$
\begin{gathered}
\left(\frac{-1, K / k}{\mathcal{P}}\right)=\left(\frac{-1}{d}\right) \text { if } d \text { is odd and } \\
\left(\frac{-1, K / k}{\mathcal{P}}\right)=\left(\frac{-1}{c}\right) \text { if } d=2 c .
\end{gathered}
$$

Proof. Let $\operatorname{Gal}(K / k)=\langle\sigma\rangle$. We have $2 O_{k}=$ $\mathcal{P} \overline{\mathcal{P}}$ with $\overline{\mathcal{P}}=\sigma(\mathcal{P})$. We have

$$
\begin{aligned}
\left(\frac{-1, K / k}{\mathcal{P}}\right) & =\left(\frac{-1, d}{\mathcal{P}}\right) \\
& =\left(\frac{d,-1}{\mathcal{P}}\right)
\end{aligned}
$$

The conductor of the extension $\mathbb{Q}(i) / \mathbb{Q}$ is $4 \mathbb{Z} p_{\infty}$ where p_{∞} is the infinite prime of \mathbb{Q}, then $4 O_{k}=$ $\mathcal{P}^{2} \overline{\mathcal{P}}^{2}$ is an admissible modulus for the extension $k(i) / k$.

- Suppose that $d \equiv-1 \bmod (4)$. Thus

$$
\left(\frac{d,-1}{\mathcal{P}}\right)=\left(\frac{-1,-1}{\mathcal{P}}\right) .
$$

Let $b \in k$ such that $b \equiv-1 \bmod \left(\mathcal{P}^{2}\right)$ and $b \equiv 1 \bmod \left(\overline{\mathcal{P}}^{2}\right)$. Then

$$
\begin{aligned}
\left(\frac{-1,-1}{\mathcal{P}}\right) & =\left(\frac{k(i) / k}{b O_{k}}\right) \\
& =\left(\frac{\mathbb{Q}(i) / \mathbb{Q}}{N_{k / \mathbb{Q}}(b)}\right) \\
& =\left(\frac{-1}{N_{k / \mathbb{Q}}(b)}\right)
\end{aligned}
$$

We have $b \equiv 1 \bmod \left(\overline{\mathcal{P}}^{2}\right)$ then $\sigma(b) \equiv$ $1 \bmod \left(\mathcal{P}^{2}\right)$. We deduce that $N_{k / Q}(b) \equiv$ $-1 \bmod (4)$. Then

$$
\begin{aligned}
\left(\frac{d,-1}{\mathcal{P}}\right)= & \left(\frac{-1,-1}{\mathcal{P}}\right) \\
= & \left(\frac{-1}{N_{k / \mathbb{Q}}(b)}\right) \\
& =-1 \\
= & \left(\frac{-1}{d}\right)
\end{aligned}
$$

If $d \equiv 1 \bmod (4)$, Then $d \equiv 1 \bmod \left(\mathcal{P}^{2}\right)$, and, then

$$
\left(\frac{d,-1}{\mathcal{P}}\right)=\left(\frac{1,-1}{\mathcal{P}}\right)=1=\left(\frac{-1}{d}\right)
$$

- Suppose that $d=2 c$ where $c \in \mathbb{N}^{*}$. We have

$$
\begin{gathered}
\left(\frac{d,-1}{\mathcal{P}}\right)=\left(\frac{2 c,-1}{\mathcal{P}}\right) \\
=\left(\frac{2,-1}{\mathcal{P}}\right)\left(\frac{c,-1}{\mathcal{P}}\right) \\
=\left(\frac{-1,2}{\mathcal{P}}\right)\left(\frac{c,-1}{\mathcal{P}}\right) \\
=\left(\frac{c,-1}{\mathcal{P}}\right) \\
=\left(\frac{-1}{c}\right)
\end{gathered}
$$

3 Imaginary quadratic fields with metacyclic Hilbert 2-class field tower

Let $d \in \mathbb{N}^{*}$ be a positive square-free integer and $K=\mathbb{Q}(\sqrt{-d})$ such that $\operatorname{rank}_{2}(C l(K))=2$. According to the genus theory, d will be of one of the following forms:

```
p}\mp@subsup{1}{1}{}\mp@subsup{p}{2}{},2\mp@subsup{p}{1}{}\mp@subsup{p}{2}{},2\mp@subsup{p}{1}{}\mp@subsup{q}{1}{},\mp@subsup{p}{1}{}\mp@subsup{p}{2}{}\mp@subsup{q}{1}{},2\mp@subsup{q}{1}{}\mp@subsup{q}{2}{},\mp@subsup{q}{1}{}\mp@subsup{q}{2}{},\mp@subsup{q}{1}{}\mp@subsup{q}{2}{}\mp@subsup{q}{3}{}
```

where p_{1} and p_{2} are positive prime integers $\equiv 1$ $\bmod (4)$ and q_{1}, q_{2} and q_{3} are positive prime integers $\equiv 3 \bmod (4)$.

In what follows, we study all these cases in order to see when the Hilbert 2-class field tower of $\mathbb{Q}(\sqrt{-d})$ is metacyclic.
Theorem 1. Let $K=\mathbb{Q}(\sqrt{-d})$ with $d=2 q_{1} q_{2}$, $q_{1} q_{2}$ or $q_{1} q_{2} q_{3}$. Then the Hilbert 2-class field tower of K is metacyclic.

Proof. The three quadratic extensions of K contained in $K^{(1)}$ are $L_{1}=K\left(\sqrt{-q_{1}}\right), L_{2}=$ $K\left(\sqrt{-q_{2}}\right)$ and $L_{3}=K\left(\sqrt{q_{1} q_{2}}\right)$.

Suppose that $d=q_{1} q_{2}$. Then $L_{1}=k_{1}\left(\sqrt{q_{2}}\right)$, $L_{2}=k_{2}\left(\sqrt{q_{1}}\right)$ and $L_{3}=k_{3}\left(\sqrt{q_{1} q_{2}}\right)$ with $k_{1}=$ $\mathbb{Q}\left(\sqrt{-q_{1}}\right), k_{2}=\mathbb{Q}\left(\sqrt{-q_{2}}\right)$ and $k_{3}=\mathbb{Q}(i)$. Since $C l_{2}\left(k_{1}\right)$ is trivial, then by lemma 1, we have

$$
\operatorname{rank}_{2}\left(C l\left(L_{1}\right)\right)=\operatorname{ram}\left(L_{1} / k_{1}\right)-1-e\left(L_{1} / k_{1}\right)
$$

We have $\operatorname{rank}_{2}\left(C l\left(L_{1}\right)\right) \leq 3$ and $\operatorname{rank}_{2}\left(C l\left(L_{1}\right)\right)=3$ iff 2 and q_{2} splits in k_{1} and $e\left(L / k_{1}\right)=0$. But these conditions cannot be satisfied simultaneously. In fact, We have $E_{k_{1}}=<-1>$ if $q_{1} \neq 3$ and $E_{k_{1}}=<\zeta_{6}>=<-1, \zeta_{6}>$ if not. Then if q_{2} splits in k_{1} and \mathcal{Q} is a prime ideal of k_{1} dividing q_{2}, then

$$
\begin{aligned}
&\left(\frac{-1, L_{1} / k_{1}}{\mathcal{Q}}\right)=\left(\frac{-1, q_{2}}{\mathcal{Q}}\right) \\
&=\left(\frac{q_{2},-1}{\mathcal{Q}}\right) \\
&=\left(\frac{-1}{q_{2}}\right) \\
&=-1
\end{aligned}
$$

Thus $e\left(L_{1} / k_{1}\right)=1$. We conclude that $\operatorname{rank}_{2}\left(C l\left(L_{1}\right)\right) \leq 2 . \quad$ In the same way, $\operatorname{rank}_{2}\left(C l\left(L_{2}\right)\right) \leq 2$. We have $\operatorname{ram}\left(L_{3} / k_{3}\right)=2$ then $\operatorname{rank}_{2}\left(C l\left(L_{3}\right)\right) \leq 2$. Then K has a metacyclic Hilbert 2-class field tower.

Suppose that $d=q_{1} q_{2} q_{3}$. Then $L_{1}=$ $k_{1}\left(\sqrt{q_{2} q_{3}}\right), L_{2}=k_{2}\left(\sqrt{q_{1} q_{3}}\right)$ and $L_{3}=k_{3}\left(\sqrt{q_{1} q_{2}}\right)$ with $k_{1}=\mathbb{Q}\left(\sqrt{-q_{1}}\right), \quad k_{2}=\mathbb{Q}\left(\sqrt{-q_{2}}\right)$ and $k_{3}=\mathbb{Q}\left(\sqrt{-q_{3}}\right)$. We have $\operatorname{rank}_{2}\left(C l\left(L_{1}\right)\right)=$ $\operatorname{ram}\left(L_{1} / k_{1}\right)-1-e\left(L_{1} / k_{1}\right)$. If q_{2} is inert in k_{1}, then $\operatorname{ram}\left(L_{1} / k_{1}\right) \leq 3$ and thus

$$
\operatorname{rank}_{2}\left(C l\left(L_{1}\right)\right) \leq 2
$$

If q_{2} splits in k_{1} and \mathcal{Q} is a prime ideal of k_{1} dividing q_{2}, then

$$
\begin{aligned}
&\left(\frac{-1, L_{1} / k_{1}}{\mathcal{Q}}\right)=\left(\frac{-1, q_{2} q_{3}}{\mathcal{Q}}\right) \\
&=\left(\frac{q_{2},-1}{\mathcal{Q}}\right) \\
&=\left(\frac{-1}{q_{2}}\right) \\
&=-1
\end{aligned}
$$

Thus $e\left(L_{1} / k_{1}\right)=1$, and $\operatorname{rank}_{2}\left(C l\left(L_{1}\right)\right) \leq$ 2. We conclude that in all cases we have $\operatorname{rank}_{2}\left(C l\left(L_{1}\right)\right) \leq 2$. In the same way, we have $\operatorname{rank}_{2}\left(C l\left(L_{j}\right)\right) \leq 2$ for $j=2,3$. Then K has a metacyclic Hilbert 2-class field tower.

Suppose that $d=2 q_{1} q_{2}$. Then $L_{1}=k_{1}\left(\sqrt{2 q_{2}}\right)$, $L_{2}=k_{2}\left(\sqrt{2 q_{1}}\right)$ and $L_{3}=k_{3}(\sqrt{-2})$ with $k_{1}=$ $\mathbb{Q}\left(\sqrt{-q_{1}}\right), k_{2}=\mathbb{Q}\left(\sqrt{-q_{2}}\right)$ and $k_{3}=\mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)$. We have $\operatorname{rank}_{2}\left(C l\left(L_{1}\right)\right)=\operatorname{ram}\left(L_{1} / k_{1}\right)-1-$ $e\left(L_{1} / k_{1}\right)$. If 2 is inert in k_{1}, then $\operatorname{ram}\left(L_{1} / k_{1}\right) \leq 3$ and thus $\operatorname{rank}_{2}\left(C l\left(L_{1}\right)\right) \leq 2$. If 2 splits in k_{1} and \mathcal{Q} is a prime ideal of \bar{k}_{1} dividing 2 , then, by lemma 4,

$$
\left(\frac{-1, L_{1} / k_{1}}{\mathcal{Q}}\right)=\left(\frac{-1}{q_{2}}\right)=-1
$$

Thus $e\left(L_{1} / k_{1}\right)=1$, and $\operatorname{rank}_{2}\left(C l\left(L_{1}\right)\right) \leq 2$. We conclude that in all cases, we have

$$
\operatorname{rank}_{2}\left(C l\left(L_{1}\right)\right) \leq 2
$$

In the same way, $\operatorname{rank}_{2}\left(C l\left(L_{2}\right)\right) \leq 2$.
We have $\operatorname{ram}\left(L_{3} / k_{3}\right) \leq 4$ and if \mathcal{P} is an infinite place of k_{3} then $\left(\frac{-1, L_{3} / k_{3}}{\mathcal{P}}\right)=-1$, thus $e\left(L_{3} / k_{3}\right) \geq 1$. We conclude that

$$
\operatorname{rank}_{2}\left(C l\left(L_{3}\right)\right) \leq 2
$$

Thus, using lemma 3, K has a metacyclic Hilbert 2-class field tower.

Theorem 2. Let $K=\mathbb{Q}(\sqrt{-d})$ with $d=p_{1} p_{2}$ or $d=2 p_{1} p_{2}$. Then the Hilbert 2-class field tower of K is metacyclic iff, after a permutation of the p_{i} 's, we have one of the two following conditions:
(C1) $\quad p_{1} \equiv p_{2} \equiv 5 \bmod (8)$
(C2) $\quad p_{1} \equiv 1 \bmod (8), p_{2} \equiv 5 \bmod (8)$ and $\left(\frac{p_{2}}{p_{1}}\right)=-1$
Proof. The three unramified quadratic extensions of K are $L_{1}=K\left(\sqrt{p_{1}}\right), L_{2}=K\left(\sqrt{p_{2}}\right)$ and $L_{3}=$ $K\left(\sqrt{p_{1} p_{2}}\right)$.

- Suppose that $d=p_{1} p_{2}$. Then $L_{1}=$ $k_{1}\left(\sqrt{-p_{2}}\right), \quad L_{2}=k_{2}\left(\sqrt{-p_{1}}\right)$ and $L_{3}=$ $k_{3}\left(\sqrt{p_{1} p_{2}}\right)$ with $k_{1}=\mathbb{Q}\left(\sqrt{p_{1}}\right), k_{2}=\mathbb{Q}\left(\sqrt{p_{2}}\right)$ and $k_{3}=\mathbb{Q}(i)$. We have

$$
\left\{\begin{array}{l}
\operatorname{rank}_{2}\left(C l\left(L_{1}\right)\right)=\operatorname{ram}\left(L_{1} / k_{1}\right)-1-e\left(L_{1} / k_{1}\right) \\
\text { and } \\
E_{k_{1}}=<-1, \varepsilon_{p_{1}}>
\end{array}\right.
$$

Let \mathcal{P}_{∞} be one of the two infinite places of k_{1}. We have

$$
\left(\frac{-1, L_{1} / k_{1}}{\mathcal{P}_{\infty}}\right)=\left(\frac{-\varepsilon_{p_{1}}, L_{1} / k_{1}}{\mathcal{P}_{\infty}}\right)=-1
$$

On the other hand, $\varepsilon_{p_{1}}$ can not be a norm in L_{1} / k_{1}. In fact, if there is an element $v \in L_{1}$ such that $N_{L_{1} / k_{1}}(v)=\varepsilon_{p_{1}}$, then we will have $N_{L_{1} / \mathbb{Q}}(v)=N_{k_{1} / \mathbb{Q}}\left(\varepsilon_{p_{1}}\right)=-1$. This is impossible since $\left(\frac{-1, L_{1} / \mathbb{Q}}{\mathcal{P}_{\infty}}\right)=-1$. We deduce that $e\left(L_{1} / k_{1}\right)=2$, and then $\operatorname{rank}_{2}\left(C l\left(L_{1}\right)\right)=\operatorname{ram}\left(L_{1} / k_{1}\right)-3$. The places of k_{1} that ramify in L_{1} are exactly the 2 infinite places, the place(s) above 2 and the place(s) above p_{2}. Thus $\operatorname{ram}\left(L_{1} / k_{1}\right)=4,5$ or 6 and $\operatorname{rank}_{2}\left(C l\left(L_{1}\right)\right)=1,2$ or 3 . In addition, $\operatorname{rank}_{2}\left(C l\left(L_{1}\right)\right)=3$ iff $p_{1} \equiv 1 \bmod (8)$ and $\left(\frac{p_{2}}{p_{1}}\right)=1$.
In the same way, we have $\operatorname{rank}_{2}\left(C l\left(L_{2}\right)\right) \leq 3$ and $\operatorname{rank}_{2}\left(C l\left(L_{2}\right)\right)=3$ iff $p_{2} \equiv 1 \bmod (8)$ and $\left(\frac{p_{2}}{p_{1}}\right)=1$.
For the 2-rank of L_{3}, we have $\operatorname{ram}\left(L_{3} / k_{3}\right)=$ 4. Then $\operatorname{rank}_{2}\left(C l\left(L_{3}\right)\right)=3-e\left(L_{3} / K_{3}\right)$. Let \mathcal{P} be a prime ideal of k_{3} dividing p_{1}, for example. We have

$$
\begin{aligned}
&\left(\frac{i, L_{3} / k_{3}}{\mathcal{P}}\right)=\left(\frac{i, p_{1} p_{2}}{\mathcal{P}}\right) \\
&=\left(\frac{p_{1}, i}{\mathcal{P}}\right) \\
&=\left(\frac{k_{3}\left(\zeta_{8}\right) / k_{3}}{\mathcal{P}}\right) \\
&=\left(\frac{\mathbb{Q}\left(\zeta_{8}\right) / \mathbb{Q}}{p_{1}}\right)
\end{aligned}
$$

Thus $e\left(L_{1} / k_{1}\right)=0$ iff $p_{1} \equiv p_{2} \equiv 1 \bmod (8)$. We conclude that $\operatorname{rank}_{2}\left(C l\left(L_{3}\right)\right) \leq 3$ and $\operatorname{rank}_{2}\left(C l\left(L_{3}\right)\right)=3$ iff $p_{1} \equiv p_{2} \equiv 1 \bmod (8)$.

- Suppose that $d=2 p_{1} p_{2}$. We have $L_{1}=$ $k_{1}\left(\sqrt{-2 p_{2}}\right), \quad L_{2}=k_{2}\left(\sqrt{-2 p_{1}}\right)$ and $L_{3}=$ $k_{3}\left(\sqrt{p_{1} p_{2}}\right)$ with $k_{1}=\mathbb{Q}\left(\sqrt{p_{1}}\right), k_{2}=\mathbb{Q}\left(\sqrt{p_{2}}\right)$ and $k_{3}=\mathbb{Q}(\sqrt{-2})$.
As in the previous case, We have, for $j=1,2$, $e\left(L_{j} / k_{j}\right)=2$, and then $\operatorname{rank}_{2}\left(C l\left(L_{j}\right)\right)=$ $\operatorname{ram}\left(L_{j} / k_{j}\right)-3 \leq 3$. In addition, $\operatorname{rank}_{2}\left(C l\left(L_{j}\right)\right)=3$ iff $p_{j} \equiv 1 \bmod (8)$ and $\left(\frac{p_{2}}{p_{1}}\right)=1$.
For the 2-rank of L_{3}, we have $\operatorname{ram}\left(L_{3} / k_{3}\right) \leq$ 4. Then $\operatorname{rank}_{2}\left(C l\left(L_{3}\right)\right) \leq 3$ with equality iff $p_{1} \equiv p_{2} \equiv 1 \bmod (8)$ and $e\left(L_{1} / k_{1}\right)=0$. If $p_{1} \equiv p_{2} \equiv 1 \bmod (8)$ and \mathcal{P} is a prime ideal of k_{3} dividing p_{1}, for example, then We have

$$
\begin{array}{r}
\left(\frac{-1, L_{3} / k_{3}}{\mathcal{P}}\right)=\left(\frac{-1, p_{1} p_{2}}{\mathcal{P}}\right) \\
=\left(\frac{p_{1},-1}{\mathcal{P}}\right) \\
=\left(\frac{-1}{p_{1}}\right) \\
=1
\end{array}
$$

Thus $e\left(L_{1} / k_{1}\right)=0$. We conclude that $\operatorname{rank}_{2}\left(C l\left(L_{3}\right)\right) \leq 3$ and $\operatorname{rank}_{2}\left(C l\left(L_{3}\right)\right)=3$ iff $p_{1} \equiv p_{2} \equiv 1 \bmod (8)$.
The above two cases can be summarized by:
The tower of k is not metacyclic iff $\left(p_{1} \equiv\right.$ $1 \bmod (8)$ and $\left.\left(\frac{p_{1}}{p_{1}}\right)=1\right)$ or $\left(p_{2} \equiv 1 \bmod (8)\right.$ and $\left.\left(\frac{p_{2}}{p_{1}}\right)=1\right)$ or $p_{1} \equiv p_{2} \equiv 1 \bmod (8)$. The theorem will be proved by discussing according first to (p_{1} $\left.\bmod (8), p_{2} \bmod (8)\right)$ and then $\left(\frac{p_{2}}{p_{1}}\right)$.

Theorem 3. Let $K=\mathbb{Q}(\sqrt{-d})$ with $d=r_{1} p_{2} q_{1}$ and $r_{1}=2$ or $r_{1}=p_{1}$ is a positive prime integer $\equiv 1 \bmod (4)$. Then the Hilbert 2-class field tower of K is metacyclic except in the following cases:

$$
\left(\begin{array}{l}
\left(\frac{r_{1}}{p_{2}}\right)=\left(\frac{r_{1}}{q_{1}}\right)=1 \\
\left(\frac{r_{1}}{p_{2}}\right)=\left(\frac{q_{1}}{p_{2}}\right)=1 \\
\left(\frac{r_{1}}{q_{1}}\right)=\left(\frac{p_{2}}{q_{1}}\right)=1 \tag{C3}
\end{array}\right.
$$

Proof. The three quadratic extensions of K contained in $K^{(1)}$ are $L_{1}=K\left(\sqrt{r_{1}}\right), L_{2}=K\left(\sqrt{p_{2}}\right)$ and $L_{3}=K\left(\sqrt{r_{1} p_{2}}\right)$.

- Suppose that $d=p_{1} p_{2} q_{1}$. Then $L_{1}=$ $k_{1}\left(\sqrt{-p_{2} q_{1}}\right), L_{2}=k_{2}\left(\sqrt{-p_{1} q_{1}}\right)$ and $L_{3}=$
$k_{3}\left(\sqrt{p_{1} p_{2}}\right)$ with $k_{1}=\mathbb{Q}\left(\sqrt{p_{1}}\right), \quad k_{2}=$ $\mathbb{Q}\left(\sqrt{p_{2}}\right)$ and $k_{3}=\mathbb{Q}\left(\sqrt{-q_{1}}\right)$. We have $\operatorname{rank}_{2}\left(C l\left(L_{j}\right)\right)=\operatorname{ram}\left(L_{j} / k_{j}\right)-1-e\left(L_{j} / k_{j}\right)$, for $j=1,2$ and 3 . As in the cases in the previous theorem, we have $e\left(L_{1} / k_{1}\right)=2$, and then $\operatorname{rank}_{2}\left(C l\left(L_{1}\right)\right)=\operatorname{ram}\left(L_{1} / k_{1}\right)-3$. Since $\operatorname{ram}\left(L_{1} / k_{1}\right) \leq 6$, we have $\operatorname{rank}_{2}\left(C l\left(L_{1}\right)\right) \leq 3$ and $\operatorname{rank}_{2}\left(C l\left(L_{1}\right)\right)=3$ iff $\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{p_{1}}{q_{1}}\right)=1$. In the same way, we have $\operatorname{rank}_{2}\left(C l\left(L_{2}\right)\right) \leq 3$ and $\operatorname{rank}_{2}\left(C l\left(L_{2}\right)\right)=3$ iff $\left(\frac{p_{2}}{p_{1}}\right)=\left(\frac{p_{2}}{q_{1}}\right)=1$. If $\left(\left(\frac{q_{1}}{p_{1}}\right),\left(\frac{q_{1}}{p_{2}}\right)\right) \neq(1,1)$, then $\operatorname{ram}\left(L_{3} / k_{3}\right) \leq$ 3 and thus $\operatorname{rank}_{2}\left(C l\left(L_{3}\right)\right) \leq 2$.
Suppose that $\left(\frac{q_{1}}{p_{1}}\right)=\left(\frac{q_{1}}{p_{2}}\right)=1$. Then $\operatorname{ram}\left(L_{3} / k_{3}\right)=4$. let \mathcal{P} be a prime ideal of k_{3} lying over p_{j} with $j=1$ or 2 . We have

$$
\begin{aligned}
&\left(\frac{-1, L_{3} / k_{3}}{\mathcal{P}}\right)=\left(\frac{-1, p_{1} p_{2}}{\mathcal{P}}\right) \\
&=\left(\frac{p_{j},-1}{\mathcal{P}}\right) \\
&=\left(\frac{-1}{p_{j}}\right) \\
&=1
\end{aligned}
$$

If $q_{1} \neq 3$, then $e\left(L_{3} / k_{3}\right)=0$. If $q=3$, then $E_{k_{3}}=<\zeta_{6}>$ and

$$
\begin{array}{r}
\left(\frac{\zeta_{6}, L_{3} / k_{3}}{\mathcal{P}}\right)=\left(\frac{\zeta_{6}^{3}, L_{3} / k_{3}}{\mathcal{P}}\right) \\
=\left(\frac{-1, L_{3} / k_{3}}{\mathcal{P}}\right) \\
=\left(\frac{-1, p_{1} p_{2}}{\mathcal{P}}\right) \\
=\left(\frac{p_{j},-1}{\mathcal{P}}\right) \\
=\left(\frac{-1}{p_{j}}\right) \\
=1
\end{array}
$$

Then $e\left(L_{3} / k_{3}\right)=0$. In the two cases, we have $\operatorname{rank}_{2}\left(C l\left(L_{3}\right)\right)=3$. We conclude that $\operatorname{rank}_{2}\left(C l\left(L_{3}\right)\right)=3$ iff $\left(\frac{q_{1}}{p_{1}}\right)=\left(\frac{q_{1}}{p_{2}}\right)=1$.

- Suppose that $d=2 p_{2} q_{1}$. Then $L_{1}=$ $k_{1}\left(\sqrt{-p_{2} q_{1}}\right), L_{2}=k_{2}\left(\sqrt{-2 q_{1}}\right)$ and $L_{3}=$ $k_{3}\left(\sqrt{2 p_{2}}\right)$ with $k_{1}=\mathbb{Q}(\sqrt{2}), k_{2}=\mathbb{Q}\left(\sqrt{p_{2}}\right)$ and $k_{3}=\mathbb{Q}\left(\sqrt{-q_{1}}\right)$. We have $\operatorname{rank}_{2}\left(C l\left(L_{2}\right)\right)=$ $\operatorname{ram}\left(L_{2} / k_{2}\right)-1-e\left(L_{2} / k_{2}\right)$. Since $e\left(L_{2} / k_{2}\right)=$ $2, \operatorname{rank}_{2}\left(C l\left(L_{2}\right)\right)=\operatorname{ram}\left(L_{2} / k_{2}\right)-3 \leq$ 3. In addition $\operatorname{rank}_{2}\left(C l\left(L_{2}\right)\right)=3 \overline{\text { iff }}$ $\left(\frac{2}{p_{2}}\right)=\left(\frac{q_{1}}{p_{2}}\right)=1$. Similarly, we have $\operatorname{rank}_{2}\left(C l\left(L_{1}\right)\right) \leq 3$ and $\operatorname{rank}_{2}\left(C l\left(L_{1}\right)\right)=3$
iff $\left(\frac{2}{p_{2}}\right)=\left(\frac{2}{q_{1}}\right)=1$.
We have $\operatorname{rank}_{2}\left(C l\left(L_{3}\right)\right) \leq 3$ with equality iff $\operatorname{ram}\left(L_{3} / k_{3}\right)=4$ and $e\left(L_{3} / k_{3}\right)=0$.
Suppose that $\operatorname{ram}\left(L_{3} / k_{3}\right)=4$ (i.e $\left(\frac{p_{2}}{q_{1}}\right)=$ $\left(\frac{2}{q_{1}}\right)=1$). Let \mathcal{P} be a prime ideal of k_{3} lying over p_{2}. We have

$$
\begin{aligned}
\left(\frac{-1, L_{3} / k_{3}}{\mathcal{P}}\right)= & \left(\frac{-1,2 p_{2}}{\mathcal{P}}\right) \\
= & \left(\frac{p_{2},-1}{\mathcal{P}}\right) \\
& =1
\end{aligned}
$$

Let \mathcal{Q} be a prime ideal of k_{3} lying over 2 . By lemma 4, we have

$$
\left(\frac{-1, L_{3} / k_{3}}{\mathcal{Q}}\right)=\left(\frac{-1}{p_{2}}\right)=1
$$

Then $e\left(L_{3} / k_{3}\right)=0$. We deduce that $\operatorname{rank}_{2}\left(C l\left(L_{3}\right)\right) \leq 3$ and $\operatorname{rank}_{2}\left(C l\left(L_{2}\right)\right)=3$ iff $\left(\frac{p_{2}}{q_{1}}\right)=\left(\frac{2}{q_{1}}\right)=1$.

4 Numerical verification

Our results can be checked. Indeed let k be a quadratic number field verifying $\operatorname{rank}\left(C l_{2}(k)\right)=$ 2. Using a computer algebra system, we can compute the rank of the 2 -class group of its three quadratic unramified extensions. Then, by lemma 3, we can decide if the tower of the Hilbert 2 -class field of k is metacyclic or not. We will do that, as an example, for the case where $k=$ $\mathbb{Q}\left(\sqrt{-p_{1} p_{2}}\right)$.
Let p_{1} and p_{2} be two positive prime integers $\equiv 1 \bmod (4)$ and $k=\mathbb{Q}\left(\sqrt{-p_{1} p_{2}}\right)$. The three quadratic unramified extensions of k are $L_{1}=$ $\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{-p_{2}}\right), L_{2}=\mathbb{Q}\left(\sqrt{p_{2}}, \sqrt{-p_{1}}\right)$ and $L_{3}=$ $\mathbb{Q}\left(i, \sqrt{p_{1} p_{2}}\right)$. We denote $r_{j}=\operatorname{rank}\left(C l_{2}\left(L_{j}\right)\right)$ for $j=1,2,3$.

Let B_{1} and B_{2} be respectively the truth values (0 if false and 1 if true) of the proposition "The Hilbert 2-class field tower of k is metacyclic" and the statement "After a permutation of p_{1} and p_{2}, we have $\left(C_{1}\right)$ or $\left(C_{2}\right)$, the two conditions in theorem 2 ". In the following table, We compute B_{1} and B_{2}. By comparing them, we can see that they are equivalent. This is in agreement with Theorem 2.
The numerical results in this table were obtained using Pari [8].

p_{1}	p_{2}	r_{1}	r_{2}	r_{3}	B_{1}	$p_{1} \bmod (8)$	$p_{2} \bmod (8)$	$\left(\frac{p_{1}}{p_{2}}\right)$	B_{2}
5	13	1	1	1	1	5	5	-1	1
5	17	1	2	2	1	5	1	-1	1
5	29	2	2	2	1	5	5	1	1
5	241	2	3	2	0	5	1	1	0
13	17	2	3	2	0	5	1	1	0
13	29	2	2	2	1	5	5	1	1
13	149	1	1	2	1	5	5	-1	1
13	233	2	3	2	0	5	1	1	0
13	241	1	2	2	1	5	1	-1	1
17	41	2	2	3	0	1	1	-1	0
17	53	3	2	2	0	1	5	1	0
17	89	3	3	3	0	1	1	1	0
17	109	2	1	2	1	1	5	-1	1
17	149	3	2	2	0	1	5	1	0
29	37	1	1	2	1	5	5	-1	1
29	89	1	2	2	1	5	1	-1	1
29	149	2	2	2	1	5	5	1	1
29	233	2	3	2	0	5	1	1	0
37	41	2	3	2	0	5	1	1	0
37	53	2	2	2	1	5	5	1	1
37	149	2	2	2	1	5	5	1	1
37	193	1	2	2	1	5	1	-1	1
41	53	2	1	2	1	1	5	-1	1
41	61	3	2	2	0	1	5	1	0
41	89	2	2	3	0	1	1	-1	0
41	113	3	3	3	0	1	1	1	0
53	61	1	1	2	1	5	5	-1	1
53	73	1	2	2	1	5	1	-1	1
53	113	2	3	2	0	5	1	1	0
61	73	2	3	2	0	5	1	1	0
61	89	1	2	2	1	5	1	-1	1

References:

[1] A. Azizi and A. Mouhib: Sur le rang du 2-groupe de classes de $\mathrm{Q}\left(\sqrt{ }^{\mathrm{m}}, \sqrt{ } \mathrm{d}\right)$ où $\mathrm{m}=2$ ou un premier p $\equiv 1 \bmod (4)$, Transactions of the american mathematical society 353 (7) (2001) 2741-2752.
[2] S. Essahel, A. Dakkak and A. Mouhib: Real quadratic number fields with metacyclic Hilbert 2class field tower, Mathematica Bohemica doi: 10.21136/MB.2018.0102-17.
[3] E.S. Golod and I.R. Shafarevich, On the class field tower, Izv, Akad. Nauk SSSR. Ser. Mat. 28(1964), 261-272(In Russian); English transl: Amer. Math. Soc. Transl. 48(1965), 91-102.
[4] W. Jehne: On knots in algebraic number theory, J. Reine Angew. Math. 311/312(1979), 215-254.
[5] H. Kisilevsky, Number fields with class number congruent to $4 \bmod 8$ and Hilbert's theorem 94, J. Number Theory 8(1976), 271-279.
[6] J. Martinet, Tour de corps de classes et estimations de discriminants, Invent. Math. 44(1978), 65-73.
[7] A. Mouhib, Infinite Hilbert 2-class field tower of quadratic number fields. Acta. Arith. 145, 267272(2010).
[8] The PARI Group, Univ. Bordeaux, PARI/GP version 2.9.3, 2017, http://pari.math.ubordeaux.fr/

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en US

