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Abstract: The transport of energetic charged particles in turbulent magnetic fields is a topic of interest in var-
ious astrophysical and laboratory plasma contexts. In order to estimate the mean free path λ∥ of a particle in
the direction parallel to the mean magnetic field, one can use theoretical expressions that include the pitch-angle
diffusion coefficientDµµ. In this work we evaluate theories forDµµ in the context of the noisy reduced magneto-
hydrodynamic (NRMHD) model where turbulent fluctuations are absent at large parallel wavenumbers. For most
turbulence models, the standard quasilinear theory predicts zero pitch-angle diffusion only for particles with a 90◦
pitch angle, but for NRMHD a range of pitch angles is affected, leading to infinite λ∥. We examine two theories
that include resonance broadening which yield finite λ∥ and compare themwith test-particle computer simulations
in which the parallel mean free path can be readily obtained. We find that both theories are quite accurate in some
regions of the parameter space considered, but neither is particularly good when the particle Larmor radius RL
becomes much smaller than the quasilinear resonance limit.
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1 Introduction
The transport of energetic charged particles (e.g., cos-
mic rays) in turbulent magnetic fields is an impor-
tant process in various astrophysical and laboratory
plasma contexts. A quantity of interest is the parallel
(to the mean magnetic field direction) diffusion co-
efficient, κ∥, which can be expressed in terms of the
parallel mean free path λ∥ (e.g. [1]):

λ∥ =
3v

8

∫ 1

−1

(1− µ2)2

Dµµ(µ)
dµ, (1)

where v is the particle velocity and µ is the cosine
of its pitch angle with respect to the mean magnetic
field direction. This is expected to be valid when the
particle pitch-angle distribution function, f(µ, t), is
almost isotropic. The mean free path is related to the
diffusion coefficient via λ∥ = 3κ∥/v. Parallel diffu-
sion theory is dominated by the quasilinear theory [3]
and its various extensions (e.g. [12, 11]), which focus
on obtaining expressions for the pitch-angle diffusion
coefficient Dµµ(µ).

For ease of reading, Table 1 gives definitions and
assumed values for variables and parameters used in
this paper.

Test particle computer simulations are a useful tool
in the study of charged particle transport, and in par-

Table 1: Definitions of variables, parameters and val-
ues. Lengths, velocities and magnetic field strengths
are given in dimensionless units as noted in the text.

Parameter Symbol Value
Parallel length scale l∥ 1
Perpendicular length scale l⊥ 1
Particle velocity v 1
Pitch-angle cosine µ −1 ≤ µ ≤ 1
Larmor radius RL variable
Gyrofrequency Ω variable
Parallel wavenumber k∥ variable
Perpendicular wavenumber k⊥ variable
Mean magnetic field strength B0 1
Turbulence strength b/B0 variable
Perpendicular bend-over scale λ̂⊥ 2.4954
Dimensionless rigidity R variable

(RL/λ̂⊥)
Magnetic power spectrum S variable
Cut-off wavenumber kz = k∥ K π/2, π/20

ξ = Kλ̂⊥ ξ 0.39198
3.9198

ticular can be used to test theoretical expressions for
particle diffusion coefficients. For test particle sim-
ulations, the parallel diffusion coefficient can be ob-
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tained as shown in equation (2)

κ∥ = limt→∞
⟨(∆z)2⟩

2t
, (2)

where ∆z(t) is the displacement of a particle in the
parallel direction over a time t, and the angle brack-
ets denote an ensemble average over particles which
can be obtained by simulating the trajectories of a
large number of particles in turbulent magnetic fluc-
tuations up to a sufficiently large time where the limit
⟨(∆z)2⟩ ∝ t becomes constant. This occurs in most
contexts where the magnetic field has a well-defined
integral length scale. One could apply an analogous
expression for the pitch-angle diffusion

Dµµ(µ) = lim
t→∞

〈
(∆µ)2

〉
2t

, (3)

where ∆µ = µ(t) − µ is the pitch-angle displace-
ment from its initial value µ. However, this form has
a severe difficulty since the pitch-angle µ is bounded,
i.e. µ ∈ [−1, 1], so that (∆µ)2 ≤ 4, and in the infi-
nite limit one obtains Dµµ(µ) = 0. In the literature,
this problem is remedied by taking the value of this
expression at a sufficiently large time (see, e.g. [17]),
or simply after one gyroperiod tL of a particle, as sug-
gested by [18]. An alternative approach to obtainDµµ

involves following the evolution of the pitch-angle
distribution function f(µ, t) of the test particles and
assume that it obeys a pitch-angle diffusion equation
(and hence Fick’s law), so thatDµµ can be calculated
via the derivatives of f and the pitch-angle flux (e.g.
[4, 16, 2, 7]).

If we have a theoretical expression for Dµµ, we
can then compare it with the corresponding value of
Dµµ in computer simulations, or we can use Eq. 1 to
compare it with the parallel mean free path in the com-
puter simulations obtained via Eq. 2. In this work
we study pitch-angle diffusion in the noisy reduced
magnetohydrodynamic (NRMHD) model[10], a syn-
thetic model of homogeneous magnetic turbulence.
The model is interesting in that it has no magnetic
fluctuations at higher parallel wavenumber, kz > K.
According to the classical quasilinear scattering the-
ory [3], particles are in resonance with magnetic fluc-
tuations when kz = 1/(|µ|RL), where µ is the cosine
of the pitch angle and RL is the particle’s Larmor ra-
dius. This implies that whenever RL < 1/K, there is
no resonant scattering, so that the particle’s mean free
path λ∥ will be infinite. Due to higher order nonlin-
ear effects, λ∥ is actually finite, but can become very
large at smallRL. This presents a problem for the the-
ory and the standard quasilinear approach, as detailed
below, cannot be used. We here consider a variant of
the second order quasilinear theory (SOQLT) [11] and
a special case of the weakly nonlinear theory (WNLT)
[12].

Below we provide details of the NRMHD model
and test particle simulations that we compare directly
with the SOQLT and WNLT theories in terms ofDµµ

and λ∥, as discussed above. This work is quite sim-
ilar to that of [9], but our computational simulations
are performed using a discrete magnetic field mesh,
rather than a locally-evaluated continuous magnetic
field. Here we also use a slightly different parame-
ter regime (stretching into the non-resonant scattering
region), evaluate SOQLT in detail and contrast Dµµ

results. This work is quite similar to [7], where the
widely-studied slab and two-component turbulence
models were considered.

2 Noisy RMHD Turbulence
The noisy reducedmagnetohydrodynamic (NRMHD)
model can be applied to different systems such as fu-
sion plasma and the solar corona (for details of the
model, see, e.g. [10]). NRMHD is a model that char-
acterizes RMHD turbulence, which comes from a re-
duced set ofMHD equations, that has 2D-like and 3D-
like properties [6]. The model was developed by [10],
and it has been applied in studies of the field line ran-
dom walk (related to test-particle transport, [15]) and
in some particle transport studies (see, e.g., [9, 13]).
The total magnetic field is expressed as

B⃗(x⃗) = B0
ˆ⃗z + b⃗(x, y, z), b⃗ ⊥ ˆ⃗z, (4)

where B⃗0 = B0
⃗̂z is the mean magnetic field, which

is taken to be aligned along the ˆ⃗z direction and to be
strong compared with a transverse fluctuating mag-
netic field b⃗(x⃗) with zero mean ⟨⃗b(x⃗)⟩ = 0⃗. We as-
sume that the magnetic fields are static and homoge-
neous, which means that the field does not depend on
time and the statistical properties of themagnetic field
are invariant under translations. Although magnetic
fields will evolve over time, this time can be large
compared with the time taken by particles to become
diffusive and the variation can be neglected. This can
be justified in a variety of physical contexts, espe-
cially for highly relativistic particles, but in general
one could compare the length and timescales associ-
ated with the magnetic field to the particle’s velocity
magnitude.

The statistically homogeneous fluctuating field is
given in terms of wave vectors k⃗, for which the po-
tential function in k-space can be written as [10]

a(k⃗) =

{
C
√

A2D(k⊥)e
iφ(k⃗) for |kz| ≤ K

0 for |kz| > K,
(5)

where φ(k⃗) is a random phase, A2D(k⊥) is the 2D
spectrum and K is a cut-off wavenumber in kz . This
has a different random phase for every independent k⃗
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(in 3D), and has a finite extent of the spectrum in kz .
The normalization constant C is chosen to satisfy a
condition on the mean energy density in the magnetic
field. The properties of NRMHD are controlled by
the dimensionless parameters b/B0 and Kλ̂⊥, where
b is the rms fluctuation strength (in units of mag-
netic field strength) and the other parameters are as
in Table 1. In computer simulations the magnetic
field is constructed on a three-dimensional grid of size
Nx × Ny × Nz , first in wavevector space, then ap-
plying an inverse FFT to each component. We use
Nx = Ny = 512 and Nz = 4096 grid points. Multi-
ple realisations of the field are constructed by taking
different random values of φ. The details of the syn-
thetic field construction can be found in [15].

3 Test Particle Simulations
For each particle in a realization we solve the (dimen-
sionless) Newton-Lorentz equations for the particle
trajectory x⃗(t) and velocity v⃗(t),

dv⃗

dt
= αv⃗ × B⃗ [x⃗(t)] ,

dx⃗

dt
= v⃗, (6)

where α = qB0l⊥/(γmv0), with q the particle
charge, γ the Lorentz factor, m the particle rest mass
and v0 the unit of velocity. Note that these equa-
tions imply that |v⃗| is constant, or in other words, the
particle energy is conserved. For simplicity we take
|v⃗| = 1 in units of v0, B0 = 1 and then vary the pa-
rameter α to control the dimensionless Larmor radius
RL/l⊥ = γmv0/(|q|B0).

We take a large number of particles with initial lo-
cations uniformly distributed in space over the mag-
netic field grid. The initial velocity distribution de-
pends on what quantity wewish to evaluate. To calcu-
late the parallel mean free path λ∥ we take initially an
isotropic velocity distribution and then integrate the
equations of motion up to a time when Eq. 2 con-
verges for an ensemble of particle trajectories and
magnetic field realisations. In the case of evaluat-
ing Dµµ in simulation, we take a distribution of ve-
locities parallel to the mean field such that the dis-
tribution of pitch angle cosines µ has a constant gra-
dient, i.e. f(µ, 0) ∝ µ on some interval in [−1, 1].
The details of obtaining Dµµ in simulations by cal-
culating ∂df/∂µ and the pitch-angle flux are given
in [7]. In the following, we denote this quantity as
Dµµ[FD], and the λ∥ obtained directly from simula-
tions as λ∥[sim].

4 Pitch Angle Diffusion Theories
In the following we make a specific choice for the 2D
spectrum A(k⊥) in order to implement the model in

computer simulations and evaluate theoretical expres-
sions. We take (see [5])

A(k⊥) =
A0[

1 + (λ̂⊥k⊥)2
]7/3 , (7)

where A0 = 8b2λ̂4
⊥/9.

4.1 Quasilinear theory
QLT was originally developed by Jokipii [3]. It is the
simplest approach for describing spatial diffusion. In
QLT the actual particle trajectory in theNRMHD field
is approximated by the trajectory of a particle in the
mean field, i.e. it is assumed that the turbulent fluctu-
ations are relatively weak. With this approximation, a
particle is taken to rotate in the direction perpendicu-
lar to the mean field and to move with constant veloc-
ity along the mean field, i.e., a particle’s trajectory is
assumed to be a helical motionwith a constant Larmor
radius. We employ this concept to compute the pitch-
angle diffusion coefficient Dµµ(µ) for NRMHD tur-
bulence as in the following expression [9]:

DQLT
µµ (µ) = πΩ2

2v|µ|R2
LKB2

0

∫∞
0

∑+∞
n=−∞ k⊥A(k⊥)

×H
(
K −

∣∣∣nΩvµ ∣∣∣)n2J2
n(W )dk⊥. (8)

where W = RLk⊥
√

1− µ2, H the Heaviside step
function and Jn the Bessel function of order n of the
first kind. We denote this estimate by Dµµ[QLT].

4.2 Second-order quasilinear theory
The 90◦ scattering problem is a well-known problem
in diffusion theory (see, e.g., [14]). The SOQLT pro-
vided a solution of this problem of finding a diffusion
formula for µ = 0, i.e., at a pitch angle of 90◦. Here
for NRMHD we adopt the simplified form of SOQLT
pitch angle diffusion coefficient as in [9],

DSOQLT
µµ (µ) =

2πΩ2

R2
LKB2

0

+∞∑
n=0

∫ K

0

∫ ∞

0
Rn(µ, kz)dkz

× k−2
⊥

A(k⊥)

2π
n2J2

n(W )dk⊥,

(9)

with resonance function Rn

Rn(µ, kz) =

√
π

v|kz|
B0

b
exp

[
−(µRLkz + n)2B2

0

(RLkzb)2

]
,

(10)
with the various other quantities as defined previ-
ously. We denote this estimate by Dµµ[SOQLT].
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4.3 Weakly non-linear theory
As shown in [9], the weakly nonlinear pitch-angle
diffusion coefficient can be obtained from the theory
[12]. The WNLT formula for Dµµ(µ) that we use in
our calculations is

DWNLT
µµ =

8

9ξR4|µ|
b2

B2
0

∫ ∞

0

x

(1 + x2)7/3

×
+∞∑
n=1

n2J2
n

(
Rx

√
1− µ2

)
×
[
arctan

(
n+RL|µ|K
RLD⊥k

2
⊥/2

)
− arctan

(
n−RL|µ|K
RLD⊥k

2
⊥/2

)]
dx.

(11)

In (11), we take the form of D⊥(µ) to be

D⊥(µ) = (ν + 1)|µ|νκ⊥, (12)

where κ⊥ is the particle perpendicular diffusion coef-
ficient and ν is an arbitrary parameter (0 ≤ ν < 1).
D⊥ is the pitch-angle dependent perpendicular diffu-
sion coefficient, and the form used here was originally
proposed by [14, 9] based on 2D field simulation re-
sults and might not be the most appropriate form for
NRMHD.

In our calculations, we have tested a range of val-
ues of ν in the resonant regime RL > |n|

µK and found
that ν = 0 usually gave either the best value for the
diffusion coefficients or an acceptable value. In this
case,

D⊥ = κ⊥, (13)
which is independent of µ. This model requires an
estimate for κ⊥. In our WNLT calculations, we take
κ⊥ from computer simulations.

5 Results
In our numerical calculations for the NMRHDmodel,
we used the values of parameters summarized in Ta-
ble 1. As shown in Tables 2, 3 and 4, we carried
out test-particle simulations for 12 sets of values of
b/B0 and RL/l⊥ and computed the λ∥[sim]/l⊥ and
λ∥[FD]/l⊥ values. For the same 12 sets of values,
we calculated the λ∥/l⊥ values from the SOQLT and
WNLT theories.

The values for λ∥[sim]/l⊥ in Table 2 were com-
puted from the test-particle simulation results for κ∥
using

λ∥ =
3

v
κzz. (14)

The values for λ∥[FD]/l⊥ and λ∥[SOQLT]/l⊥ were
computed using Eq. (1) from values for the pitch an-
gle coefficients Dµµ(µ) computed from the flux and

derivative, and SOQLT (Eq. (9)) formulas. The val-
ues for λ∥[WNLT]/l⊥ in Table 4 was computed using
Eq. (11) from values for the pitch-angle coefficients
Dµµ(µ). The errors in Tables 2, 3 and 4 are relative
errors computed from the formula

λ∥[·]error =

∣∣λ∥[sim]/l⊥ − λ∥[·]/l⊥
∣∣

λ∥[sim]/l⊥
. (15)

Table 2: Comparison of the values of parallel mean
free path (λ∥) computed from test-particle simulations
with estimates λ∥[FD].
b/B0 RL/l⊥ λ∥[sim]/l⊥ λ∥[FD]/l⊥ λ∥[FD] error
0.3 0.37 7478.19 7480.52 0.0003
0.3 1.93 560.19 561.27 0.0019
0.3 3.73 935.34 927.22 0.0087
0.3 10.0 7801.61 7837.17 0.0046
0.5 0.2 292.08 297.13 0.0173
0.5 0.5 154.36 154.30 0.0004
0.5 1.93 92.54 92.07 0.0051
0.5 10.0 1652.40 1650.90 0.0009
1.0 0.2 7.91 7.91 0.0006
1.0 0.5 9.23 9.23 0.0003
1.0 1.93 14.13 14.12 0.0005
1.0 10.0 272.59 272.62 0.0001

Table 3: Comparison of the values of parallel mean
free path (λ∥) computed from test-particle simulations
with estimates λ∥[SOQLT] based on Eq. (9)

b/B0 RL/l⊥ λ∥[SOQLT]/l⊥ λ∥[SOQLT] error
0.3 0.37 4.90× 1014 6.55× 1010

0.3 1.93 195.75 0.6506
0.3 3.73 394.68 0.5780
0.3 10.0 2503.04 0.6792
0.5 0.2 5.20× 1017 1.78× 1015

0.5 0.5 1738.47 10.2624
0.5 1.93 46.82 0.4940
0.5 10.0 837.05 0.4934
1.0 0.2 10208.36 1289.5638
1.0 0.5 5.71 0.3814
1.0 1.93 9.50 0.3277
1.0 10.0 211.14 0.2254

As shown by the small errors in the λ∥[FD] er-
ror column in Table 2, the flux derivative method
gives very good agreement with the test-particle sim-
ulations. These results show that the flux deriva-
tive method, which is based on interpreting Dµµ as
a Fokker-Planck coefficient, gives very good results
in all cases.

The SOQLT has been discussed by Reimer and
Shalchi [9] who concluded that the SOQLT was not
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Table 4: Comparison of the values of parallel mean
free path (λ∥) computed from test-particle simulations
with estimates λ∥[WNLT] based on Eq. (11)

b/B0 RL/l⊥ λ∥[WNLT]/l⊥ λ∥[WNLT] error
0.3 0.37 124.33 0.9834
0.3 1.93 789.43 0.4090
0.3 3.73 1572.02 0.6807
0.3 10.0 7229.86 0.0733
0.5 0.2 13.65 0.9530
0.5 0.5 37.20 0.7590
0.5 1.93 134.82 0.4569
0.5 10.0 1473.36 0.1084
1.0 0.2 2.45 0.6903
1.0 0.5 5.09 0.4485
1.0 1.93 14.04 0.0064
1.0 10.0 215.46 0.2096

useful. They argued that as their theory predicts a
dependence exp(B2

0/b
2) (see Eq. (10)) it would give

very large parallel mean free paths for b < B0. How-
ever, their simulation results did not seem to have
huge parallel mean free paths and therefore their con-
clusion that SOQLT was not useful seemed reason-
able. In contrast, in the cases shown in Table 2, we
usually consider small b/B0 and our results show very
large λ∥ values when b/B0 < 0.5. Also, our results
are actually better than expected for SOQLT as the
λ∥[SOQLT] values are of a similar order of magni-
tude to the λ∥[sim] values for all values of b/B0, ex-
cept in the small RL = 0.2, 0.37 cases. A possi-
ble explanation for the results is that RL/l∥ < 2/π is
the condition for the QLT non-resonant regime. The
standard QLT would have Dµµ = 0 for all µ and so
infinite parallel mean free path (see Eq. (1)). In the
SOQLT the QLT resonant wavenumber of the parti-
cles is broadened and this has the effect of smoothing
the QLT result so that it looksmore like the simulation
result. However, theRL = 0.2 cases are far below the
QLT resonant scattering regime and therefore also the
SOQLT regime. In this regime, the simulation result
is determined by higher-order nonlinear scattering.

The WNLT results in Table 4 are for the special
case of ν = 0. In their recent paper onWNLT, Reimer
and Shalchi [9] studied the dependence of the diffu-
sion coefficients on ν for 0 ≤ ν < 1 and found that
theWNLT results agreedwell with the simulation val-
ues with suitable choices for ν.

The plots in Figs. 1, 2, 3 show the values of the
pitch angle diffusion coefficients calculated from the
FD, SOQLT, QLT and WNLT(ν = 0) methods for
the 12 cases in Tables 2 and 4. In each figure, panels
(a)-(l) show plots of Dµµ(µ) values calculated from
the diffusion equation integration method Dµµ[FD]

(solid lines) ([2, 7]), the second-order quasilinear the-
ory Dµµ[SOQLT] (dashed lines), the quasilinear the-
ory Dµµ[QL] (dotted lines) and the weakly nonlinear
theory with ν = 0 Dµµ[WNLT] (dot-dash lines).

For theQLT non-resonant smallRL cases shown in
panels (a) and (e),Dµµ[WNLT] deviates significantly
from Dµµ[FD].
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Figure 1: Plots of pitch-angle diffusion coef-
ficients in case b/B0 = 0.3. Dµµ[FD] (solid
lines), Dµµ[SOQLT] (dashed lines), Dµµ[QLT] (dot-
ted lines) and Dµµ[WNLT(ν = 0)] (dash-dot lines)
(see Tables 2, 4)
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Figure 2: Plots of pitch-angle diffusion coef-
ficients in case b/B0 = 0.5. Dµµ[FD] (solid
lines), Dµµ[SOQLT] (dashed lines), Dµµ[QLT] (dot-
ted lines) and Dµµ[WNLT(ν = 0)] (dash-dot lines)
(see Tables 2, 4)

6 Discussion
In this work we have compared different theo-
ries for calculating the pitch-angle diffusion coeffi-
cient,Dµµ(µ), with test-particle simulation results for
NRMHD turbulence and assessed their ability to pre-
dict the parallel mean free path λ∥ using Eq. (1). As
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Figure 3: Plots of pitch-angle diffusion coef-
ficients in case b/B0 = 1.0. Dµµ[FD] (solid
lines), Dµµ[SOQLT] (dashed lines), Dµµ[QLT] (dot-
ted lines) and Dµµ[WNLT(ν = 0)] (dash-dot lines)
(see Tables 2, 4)

was seen in previous work [7], we find that Dµµ[FD]
(from test-particle simulations) provides λ∥ in this
way that is very close to the value obtained via Eq. (2)
in simulations, as shown in Table 2 (i.e. the differ-
ences between the third and fourth columns are very
small). On this basis, we take Dµµ[FD] as reference
value that theories should try to replicate.

The weakly non-linear theory (WNLT), as in
Eq. 11, was found to give λ∥ closest to simulations
when taking a µ−independent D⊥, with ν = 0. This
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does not seem to be consistent with D⊥ used in the-
ory [12] or found in previous simulations [8]. Further
study into an appropriate form of D⊥ could help us
to understand this discrepancy. WNLT only seems
to work well for RL/l⊥ ≲ 2/π ≈ 0.64, which is
the quasilinear limit of parallel resonant scattering.
Below this limit, Dµµ[WNLT] seems too large when
compared with Dµµ[FD], especially near µ = 0, as
seen in Fig. 2(a) and Fig. 2(b), so the parallel mean
free path is underestimated. When RL is large, as in
Figs. 1(d), 2(d) and 3(d), the WNLT theory shifts the
QLT value up near µ = 0 to a value close to the FD
result, so does very well with predicting λ∥.

The second-order quasilinear theory (SOQLT),
calculated here in detail for the first time for NRMHD
turbulence, gives λ∥ to within a factor of a few for
large RL and is still quite accurate for RL = 0.5
when b/B0 = 1 (where we might expect the theory
to work). In other cases, particularly at small RL, the
results are unacceptably large, as shown in Table 4.
Here we have adopted the same form of SOQLT as
in [9], who concluded that the SOQLT was not use-
ful. They argued that as their theory predicts a depen-
dence exp(B2

0/b
2) (see Eq. (10)) it would give very

large parallel mean free paths for b < B0. However,
their simulation results did not seem to have huge par-
allel mean free paths and therefore their conclusion
that SOQLT was not useful seemed reasonable. It is
possible an alternative, and more complicated, vari-
ant of the theory from [11] could be applied to give
greater accuracy.

In summary, for the parameters used here, at least
one of the theories for Dµµ will provide a λ∥ value
within a factor of a few of the simulation value, pro-
videdRL is not too much smaller that 1/K, the quasi-
linear resonance limit. Although the original QLT of
Eq. 8 provides Dµµ of similar shape to the simula-
tions, it always yields an infinite parallel mean free
path due to the troublesome resonance gap that NM-
RHD turbulence presents. The two other theories pre-
sented here broaden the resonance and close up the
gap, but not in a way that is broadly consistent with
the test-particle simulations. Thus NRMHD turbu-
lence remains a challenge for parallel diffusion theo-
ries. Since WNLT looks promising, a detailed exam-
ination of D⊥ in computer simulations may provide
clues on how to proceed.
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