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Abstract: - This paper studies and reviews several procedures for developing robust regression estimators of the 

seemingly unrelated regressions (SUR) model, when the variables are affected by outliers. To compare the 

robust estimators (M-estimation, S-estimation, and MM-estimation) with non-robust (traditional maximum 

likelihood and feasible generalized least squares) estimators of this model with outliers, the Monte Carlo 

simulation study has been performed. The simulation factors of our study are the number of equations in the 

system, the number of observations, the contemporaneous correlation among equations, the number of 

regression parameters, and the percentages of outliers in the dataset. The simulation results showed that, based 

on total mean squared error (TMSE), total mean absolute error (TMAE) and relative absolute bias (RAB) 

criteria, robust estimators give better performance than non-robust estimators; specifically, the MM-estimator is 

more efficient than other estimators. While when the dataset does not contain outliers, the results showed that 

the unbiased SUR estimator (feasible generalized least squares estimator) is more efficient than other 

estimators. 
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1 Introduction 
The seemingly unrelated regressions (SUR) model 

proposed by Zellner [1] is considered to be one of 

the most successful and efficient methods for 

estimating SUR and tests of aggregation bias. Many 

studies in econometrics are based on regression 

models containing more than one equation. 

Unconsidered factors that influence the error term in 

one equation often also influence the error terms in 

other equations. Ignoring this dependence structure 

of the error terms and estimating these equations 

separately using ordinary least squares (OLS) leads 

to inefficient estimates. Therefore, the SUR model 

has been developed. This model is composed of 

several regression equations that are linked by the 

fact that their error terms are contemporaneously 

correlated. This system of structurally related 

equations is simultaneously estimated with a 

feasible generalized least squares (FGLS) estimator 

that takes the covariance structure of the error terms 

into account. Each equation satisfies the 

assumptions of the classical linear regression model. 

The SUR model is a special case of the 

simultaneous equations model where no endogenous 

variables appear as regresses in any of the 

equations. Also, the SUR which considers joint 

modeling is a special case of the multivariate 

regression models (MLMs), see [1,2]. It is used to 

capture the effect of different covariates allowed in 

the regression equations. In all the estimation 

procedures developed for different SUR situations 

as reported above, FGLS basic recommendation for 

high contemporaneous correlation between the error 

vectors with uncorrelated explanatory variables 

within each response equations was also maintained. 

However, SUR Model depends on the FGLS 

estimator and assumes data without outliers but in 

some cases, this cannot be achieved. If the dataset 

contains outliers and influential observations, the 

FGLS estimator is not efficient. The SUR model 

assumption is used in a variety of econometric 

applications (or models), including panel data 

models and related fields, see [3,4], and many more. 

The robust estimation methods are considered 

the one important approach to dealing with outliers.  

In the SUR model, it is necessary to use robust 
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estimates to detect outliers and to provide resistant 

stable results in the presence of outliers, see [5,6]. 

The main purpose of this paper is to propose robust 

SUR estimators that can resist the potentially 

damaging effect of outliers in the dataset, and that 

do not require a separate estimation of the residual 

scale. To achieve these goals we investigate the 

efficiency of three robust estimators of the SUR 

model with outliers and compare them with (non-

robust) FGLS and maximum likelihood estimators. 

The remainder of this paper is organized as 

follows: Section 2 provides the SUR model and 

some methods of estimations. While in Section 3 

robust estimation methods for the SUR model have 

been discussed. Section 4 contains the Monte Carlo 

simulation study. Finally, Section 5 presents the 

concluding remarks. 

 

 

2 Classical SUR Model and Estimation 
The SUR model explains the variation of not just 

one dependent variable, as in the univariate multiple 

regression model, but the variation of a set of m 

dependent variables, The 𝑚 equations have no link 

or relationship with one another except that their 

disturbances are said to be correlated, this is the 

simplest version of a linear. Moreover, by joint 

analysis of the set of regression equations rather 

than equation by equation analysis, more precise 

estimates and predictions are obtained that lead to 

better solutions to many applied problems. For 

textbook and other analyses of the SUR model and 

its applications of it, see [7]. The SUR is used to 

reflect the fact that the individual equations are 

related to one another even though, superficially, 

they may not seem to be but are related through 

their error terms. 

Zellner [1] developed the SUR estimator for 

estimating models with dependent variables that 

allow for different regressor matrices in each 

equation ( e. g. 𝑋𝑖  ≠ 𝑋𝑗 ). and account for 

contemporaneous correlation; 𝑖. 𝑒. 𝐸(𝑢𝑖 𝑢𝑗) ≠ 0. 

Now we can assume that if there is a 𝑚 number of 

equations that are related to each other because the 

error terms are correlated. The regression equations 

in a SUR model can be combined into two 

equivalent single matrix form equations. Let diag (·) 
denote the operator that constructs a block diagonal 

matrix from its arguments. Moreover, let ⨂ denote 

the kronecker product and let Σ be a symmetric 

matrix with elements 𝜎𝑖𝑗. First, we can express it as 

a multiple linear regression model: 
 

 (

𝑌1
𝑌2
⋮
𝑌𝑚

)

𝑚𝑛×1

= (

𝑋1 0 … 0
0 𝑋2 … 0
⋮
0

⋮
0

⋱
…

⋮
𝑋𝑚

)

𝑚𝑛×𝐾 

(

𝛽1
𝛽2
⋮
𝛽𝑚

)

𝐾×1

 

+(

𝑢1
𝑢2
⋮
𝑢𝑚

)

𝑚𝑛 ×1

                                (1) 

This multiple equation can be simply re-written 

compactly as: 

       𝑌 =   𝑋𝛽 +  𝑈,                    (2) 
 

where the 𝑌 = (𝑦1
′ , … , 𝑦𝑚

′ )′ is the column vector of 

observation on the 𝑖𝑡ℎ endogenous variable, 𝑋 =
diag[𝑋𝑖]; with 𝑋𝑖(for i = 1,2,… ,𝑚)is a block 

diagonal design matrix of the exogenous non-

stochastic variables of equation number 𝑖 with 

dimension 𝑛 × 𝑘𝑖, and 𝛽 = (𝛽1
′ , … , 𝛽𝑚

′ )′ is the 

column vector of the stacked coefficient vectors of 

all equations, the total number of parameters 

estimated for all 𝑘 sub models is 𝐾 = ∑ 𝑘𝑖
𝑚
𝑖=1 , while 

𝑈 = (𝑢1
′ , … , 𝑢𝑚

′ )′ is the column vector of 

contemporaneous correlated random error. Second, 

the SUR model can be rewritten as another 

equivalent formulation uses the MLMs: 

�̃�
𝑛×𝑚

=  �̃�
𝑛×𝐾

 ℬ
 𝐾×𝑚

 +  𝒰
𝑛×𝑚

 ,                 (3) 
 

where �̃� = (𝑦1, … , 𝑦𝑚) is the response matrix, �̃� =
(𝑋1, … , 𝑋𝑚) is the design matrix, the coefficient 

matrix here has a constrained structure: 

ℬ = (

ℬ1 0 … 0
0 ℬ2 … 0
⋮
0

⋮
0

⋱
…

⋮
ℬ𝑚

) = diag(ℬ1, … , ℬ𝑚). 

The structured is a  𝐾 × 𝑚 parameter matrix, and 

𝒰 = (𝑢1, … , 𝑢𝑚) is the error matrix. Equivalently 

we can write the error matrix as  𝒰 = �̃� − �̃�ℬ̂ =
(𝓊1, … , 𝓊𝑛)

′ with 𝓊i the 𝑚-dimensional vector 

containing the errors of the 𝑖𝑡ℎ observation in each 

block. For an estimate �̂� = (�̂�1, … , �̂�𝑚)
′, Σ̂ uses the 

inner product matrix of residuals; 

        Σ̂ =
1

𝑛
(
�̂�1
′

⋮
�̂�𝑚
′
) (�̂�1, … , �̂�𝑚),                    (4) 
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2.1 SUR Model Assumptions 
 

A1: 𝐸(𝑈) = 0, error term has a normal distribution, 

and to be independent across individuals. 

A2: 𝑋𝑖  is fixed in repeated samples (non-stochastic 

matrix) and 𝑐𝑜𝑣(𝑋, 𝑈) = 0. 
A3: 𝑋 is full column rank matrix, i.e., 𝑟𝑎𝑛𝑘(𝑋) =
𝐾. 

A4: The random errors of SUR model are assumed 

to have the following variance-covariance matrix of 

errors; 

𝐸(𝑈𝑈′) = 𝑐𝑜𝑣(𝑈) 

= [

𝜎11 𝜎12 … 𝜎1𝑚
𝜎21  𝜎22 … 𝜎2𝑚
⋮
𝜎𝑚1

  
⋮

𝜎𝑚2 
⋱
…

 
⋮

𝜎𝑚𝑚

]⨂ 𝐼𝑛 = Σ ⨂ 𝐼𝑛, 

where 𝐼𝑛 is an 𝑛 × 𝑛 identity matrix and Σ = (𝜎𝑖𝑗) 

with positive definite and symmetric matrices (PDS) 

of dimension 𝑚 ×𝑚.Thus it must satisfy the 

assumptions that; 

 The error variance for every individual 

equation which is a part of SUR is constant 

(no heteroscedasticity). 

 The error variance may be different for every 

individual equation. 

 The errors for every individual equation which 

is a part of SUR are uncorrelated (no 

autocorrelation). 

 The errors for different individual equations 

are contemporaneously correlated. 

 

2.2 Methods of Estimation 
Each equation in Eq. (1) could be estimated 

separately using the OLS estimator but this would 

ignore the covariance structure of the errors. 

Consequently, it is generally less efficient and may 

yield inefficient estimates. The generalized least 

squares (GLS) estimator is a modification of the 

OLS estimator that can deal with any type of 

correlation, including contemporaneous correlation, 

GLS estimator is efficient and also fulfill the 

maximum likelihood requirement. Because it gives 

the best linear unbiased estimators (BLUEs). For the 

SUR model, the GLS estimator takes the form; 

 

  �̂�𝐺𝐿𝑆 = (X
′Ω−1X)−1(X′ Ω−1 Y),             (5) 

since Ω−1 = Σ−1 ⨂ 𝐼𝑛, GLS estimator is more 

efficient than the OLS estimator, but in most 

situations the covariance Σ needed in GLS estimator 

is unknown. FGLS estimator the elements of  Σ by 

Σ̂ = ∑ �̂�𝑖
𝑛
𝑖=1 �̂�𝑖

′,where �̂�𝑖 is the residual vector of the 

𝑖𝑡ℎ block obtained from OLS and then replace Σ in 

FGLS estimator by the resulting estimator Σ̂. The 

FGLS estimator takes the form; 

    �̂�FGLS = (X
′Ω̂−1X)

−1
(X′ Ω̂−1 Y).              (6) 

 

The variance-covariance matrix of the FGLS 

estimator can be evaluated by the following form;  

𝑐𝑜𝑣 (�̂�FGLS) = (X
′Ω̂−1X)

−1
.                   (7) 

 

Although the asymptotic efficiency of both GLS 

and FGLS methods is identical. The variance-

covariance matrix Σ̂ can then be re-estimated using 

the SUR residuals, and continue iterating the 

procedure until convergence is achieved. This is the 

iterated FGLS (IFGLS), see [8]. 

Alternatively, a maximum likelihood (ML) 

estimator can be considered; see [9]. Assuming that 

the disturbances are normally distributed, and 

retaining all the basic assumptions specified in the 

introductory section. The log-likelihood of the SUR 

model is given by; 

ℓ(𝛽, Σ|𝑋, 𝑌) = −
𝑚𝑛

2
ln(2𝜋) −

𝑛

2
𝑙𝑛(|Σ|) −

1

2
(𝑌 − 𝑋𝛽)′(Σ−1 ⨂ 𝐼𝑛)(𝑌 − 𝑋𝛽).                           (8) 

Maximizing this log-likelihood with respect to 

(𝛽, Σ) yields the estimates (�̂�𝑀𝐿, Σ̂𝑀𝐿) which are the 

solutions of the equations: 

 �̂�𝑀𝐿 = {𝑋
′(�̂�𝑀𝐿

−1⨂ 𝐼𝑛)𝑋}
−1
𝑋′(�̂�𝑀𝐿

−1⨂ 𝐼𝑛)𝑌,     (9) 

    Σ̂𝑀𝐿 = (�̃� − �̃�ℬ̂𝑀𝐿)
′  (�̃� − �̃�ℬ̂𝑀𝐿) 𝑛,⁄         (10)  

with ℬ̂𝑀𝐿 the block diagonal form of �̂�𝑀𝐿. Hence, 

the ML estimator correspond to the fully IFGLS 

estimator. The resulting ML estimator is, under 

general conditions, consistent, asymptotically 

efficient, and asymptotically normally distributed. 

Thus the asymptotic properties of the ML estimator 

are the same as those of the previous estimates, see 

[10]. 

 

 

3 Robust Estimators for SUR Model 
It is well-known that traditional procedures like 

OLS, ML, and FGLS methods are all very sensitive 

to outliers in the data (observations that deviate 

from the main pattern in the data). Small anomalies 

in the data such as the presence of a few 

contaminated observations suffice to have a large 

impact on the resulting estimates. Outliers can 

appear in the data for several reasons. For example, 
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some observations can be governed by a different 

data generating process other than the majority of 

the data while yet interest is in modeling the bulk of 

the data. Also, outliers can originate from an 

incorrect recording of the true dataset. Hence, these 

estimates are expected to yield non-robust estimates. 

Therefore, we introduce robust estimates for the 

SUR model which can combine high robustness 

with high efficiency, and obtained efficient and 

powerful robust tests. The main purpose of robust 

estimation is to provide resistant results in the 

presence of outliers. To achieve this stability, robust 

regression limits the influence of outliers, see 

[11,12].  

Many robust methods have been proposed to 

achieve high robustness or high efficiency or both in 

several regression models, see e.g. [13-17]. In this 

section, we will review and compare some robust 

methods to determine the best robust method, and 

provides a detailed description of algorithms for 

these methods. 

3.1 M-Estimation Method 

 Koenker and Portnoy [18] proposed the M-

estimation method of the MLMs; these weighted M-

estimates achieve an asymptotic covariance matrix 

analogous to that of the SUR estimator. The M-

estimation method is a generalization of the ML 

estimator in the context of location models. That is 

nearly as efficient as traditional methods such as 

ML and FGLS. As the objective, the M-estimation 

method principle is minimizing the residual 

function; M-estimation is based on the residual scale 

of the FGLS estimator. It can be introduced the M-

estimation method for the context of SUR models. 

Definition 3.1: Let (𝑋𝑗, 𝑌𝑗) ∈ ℝ
𝑛×(𝑘𝑗+1)  for  𝑗 =

1,2,… ,𝑚 with 𝑛 ≥ 𝑘 +𝑚, and let  𝜌0 be a 𝜌-

function with parameter 𝑐0. Then, the M-estimator 

of the SUR model (ℬ̂, ∑̂) are the solutions that 

minimize |∑0| of the optimization problem; 

 

min
(𝛽,∑)

|∑|, subject to 
1

𝑛
∑  𝜌0
𝑛
𝑖=1   

{[(�̃�𝑖 − �̃�𝑖𝐵)
′∑0

−1 (�̃�𝑖 − �̃�𝑖𝐵)]
1

2}  = Υ.         (11) 
 

Where the minimization is over all                         

𝐵 =  diag(𝐵1, . . . , 𝐵𝑚) ∈ ℝ
𝑘×𝑚, and ∑0  ∈ PDS 

(𝑚) of dimension 𝑚×𝑚, since 𝐵 and ∑0 are initial 

estimates. The determinant of  ∑ is denoted by |∑|, 
and Υ is a positive constant. In order to obtain 

estimates which can resist outliers 𝜌 should satisfy 

the following conditions: 

Condition 3.1:  𝜌 is symmetric, twice continuously 

differentiable and satisfies 𝜌(0) = 0; 
Condition 3.2:  𝜌 is strictly increasing on [0, 𝑐] and 

constant on [𝑐,∞[ for some 𝑐 > 0. 

Here the constant Υ is given by                      

Υ =  𝐸𝐹{𝜌0(|𝑒|)}, to obtain a consistent estimator 

at an assumed error distribution 𝐹. A popular choice 

is Tukey's biweight 𝜌-function: 

𝜌(𝑢) =

{
 

 
𝑢2

2
−
𝑢4

2𝑐2
+
𝑢6

6𝑐4
,     |𝑢| ≤ 𝑐; 

 
𝑐2

6
,                               |𝑢| > 𝑐.  

 

Where 𝑐 is an appropriate tuning constant, the 

smaller value of c produce more resistance to 

outliers but comes at the price of loss in efficiency 

under the normal distribution. Usually, the tuning 

constant is picked to give reasonably high efficiency 

in the normal case for the Tukey's bisquare function, 

which generally, 𝑐 =  4.685 is used to produces 

95% efficiency, see [19].The derivative of this 

function is known as Tukey's bisquare function: 

𝜓(𝑢) = 𝜌′(𝑢) = { 𝑢 [1 − (
𝑢

𝑐
)
2

]
2

,         |𝑢| ≤ 𝑐; 

   0,                                 |𝑢| > 𝑐.   

 

Additionally, the minimization condition 

mentioned above the robust SUR estimators of 𝛽 

and Σ also satisfy the following equations: 
 

�̂�M = {𝑋
′( ∑̂FGLS

−1  ⨂ 𝑊M)𝑋}
−1
  

𝑋′( ∑̂FGLS
−1  ⨂ 𝑊M)𝑌,                                   (12) 

∑̂FGLS = 𝑚(�̃� − �̃�ℬ̂)
′
𝑊M 

(�̃� − �̃�ℬ̂){∑ 𝜐0(𝑤M𝑖)
𝑛
𝑖=1  }−1                 (13) 

where 𝑊M = diag{𝑢(𝑤𝑀1), , … , 𝑢(𝑤𝑀𝑛)} is a 

diagonal matrix of weights, 𝑤M𝑖
2 =

𝑒𝑖(ℬ̂)
′ ∑FGLS

−1  𝑒𝑖(ℬ̂), where 𝑒𝑖(ℬ̂)
′represents the 𝑖𝑡ℎ 

row of the residual matrix �̃� − �̃�ℬ̂, 𝑢(𝑤𝑀) =
𝜓0(𝑤𝑀) 𝑤𝑀⁄  ; 𝜓0(𝑤𝑀) = 𝜌0

′ (𝑤𝑀), and 𝜐0(𝑤M) =
𝜓0(𝑤𝑀)𝑤𝑀 − 𝜌0(𝑤𝑀) + Υ.  
 

 

The efficiency and breakdown point (BDP) [20] 

are two traditionally used important criteria to 

compare different robust methods. The efficiency is 

used to measure the relative efficiency of the robust 

estimates compared to the non-robust (ML and 

FGLS) estimates when the error distribution is 

exactly normal and there are no outliers. BDP is to 

measure the proportion of outliers an estimate can 

tolerate before it goes to infinity. Thus the higher 

the BDP of an estimator, the more robust is. 

Intuitively, a BDP cannot exceed 0.5. In fact, the 
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BDP of the M-estimator is BDP = 1 𝑛⁄ → 0, see 

[21]. 

Algorithm 3.1: M-Estimation 
Since the weights depend on the unknown 

parameter 𝛽 and ∑, we cannot calculate the 

weighted mean explicitly. But this weighted-means 

representation of the M-estimator leads to a simple 

iterative algorithm for calculating the M-estimator. 

By developing the algorithms for [22, 23], our 

algorithm 3.1 can be described in the following 

steps: 

Step (1): Let �̃�1
(0)
, … , �̃�𝑗

(0)
 ; 𝑗 = 1,2,… , 𝐽 is initial 

candidates estimate for 𝛽, and set an initial 

variance-covariance matrix ∑0  ∈ PDS (𝑚). 
Step (2): Design the variable (𝑋𝑖 , 𝑈𝑖); 𝑖 = 1,2,… ,𝑚. 

For each �̃�𝑗
(0)

: 

a. Estimate SUR model coefficients with all 

factors using a non-robust FGLS estimator, 

and test all assumptions.  

b. Detect the presence of outliers in the 

dataset. 

c. Calculate residuals matrix Σ̂ =
1

𝑛
�̂�′�̂�. 

Step (3):  Calculate the variance-covariance 

matrix Σ̂(�̂�FGLS), and weighted matrix 𝑊𝑀(�̂�FGLS). 
Step (4): Calculate M-estimator as in Eq. (11) for 

some 𝜌-function 𝜌0 by set 𝓆 = 0, where 𝓆 is a 

number of iteration and get the iterate following 

steps: 
 

(i) Let �̂�𝑗 (M)
(𝓆+1)

=

{𝑋′ ( ∑̂−1(�̂�𝑗 (FGLS))⨂𝑊M(�̂�𝑗 (FGLS)))𝑋}
−1
  

𝑋′(  ∑̂−1(�̂�𝑗 (FGLS)) ⨂ 𝑊M(�̂�𝑗 (FGLS)))𝑌. 

(ii) If either 𝓆 = 𝑚𝑎𝑥𝑖𝑡 ( maximum number 

of iterations) or  

‖�̂�𝑗 (M)
𝓆

− �̂�𝑗 (M)
(𝓆+1)

‖ < T‖�̂�𝑗 (M)
𝓆

‖, 

where T > 0 is a fixed small constant (the 

tolerance level), then set   �̂�𝑗 (M)
F = �̂�𝑗 (M)

𝓆
 

and break. 

(iii) Else, Calculate 𝑊M (�̂�𝑗 (M)
(𝓆+1)

) , ∑̂ (�̂�𝑗 (M)
(𝓆+1)

) 

and set 𝓆 ← 𝓆 + 1. 

Step (5): Calculate the objective function for each 

�̂�𝑗 (M)
F  ; 𝑗 = 1,2, … 𝐽, and select the one with the 

lowest value, that is, Select �̂�M which active; 

min
1≤𝑗≤𝐽

  

[
1

𝑛
∑  𝜌0{[(�̃�𝑖 − �̃�𝑖𝐵)

′𝑛
𝑖=1 ∑̂−1(�̂�j (M)

F ) (�̃�𝑖 − �̃�𝑖𝐵)]
1

2}]    

Step (6): Repeat steps 3 and 4 until the algorithm 

converges to obtain a convergent value of �̂�M using 

Eq. (12). 

The J initial candidates �̃�𝑗
(0)

 in Step 1 can be 

chosen in several ways. Intuitively we want them to 

correspond to different regions of the optimization 

domain. In linear regression problems, these initial 

points are generally chosen based on the sample, see 

[24]. 

3.2 S-Estimation Method  

Bilodeau and Duchesne [25] introduced a new class 

of robust SUR estimates; in response to the low 

BDP of the M-estimator, the regression estimates 

associated with M-estimator is the S-estimator is a 

member of the class of high BDP estimates. S-

estimator is based on the residual scale of M-

estimator. This method uses the residual standard 

deviation to overcome the weaknesses of the 

median; the idea behind the method is simple. For 

OLS, the objective is to minimize the variance of 

the residuals. [26] Gives an improved resampling 

algorithm for S-estimator for multivariate 

regression. They studied the robustness of the 

estimates in terms of their BDP and influence 

function in the context of univariate regression and 

multivariate location and scatter, and developed a 

fast and robust bootstrap method for the multivariate 

S-estimator to obtain inference for the regression 

parameters. With this algorithm, S-estimator is 

easier to calculate. In the next section, we will 

discuss how to adapt that algorithm to the context of 

SUR model. 

Definition 3.2: Let ∑̂M denote the M-estimator of 

covariance in Definition 3.1, and Let (𝑋𝑗, 𝑌𝑗) ∈

ℝ𝑛×(𝑘𝑗+1)   for  𝑗 = 1,2, … ,𝑚 and let  𝜌1 be a 𝜌-

function with parameter 𝑐1 in Condition 3.2. Then, 

the S-estimator of the SUR model (ℬ̂, ∑̂) are the 

solutions that minimize |∑| subject to the condition; 
 

min
(𝛽,∑)

|∑|, subject to 
1

𝑛
∑  𝜌1
𝑛
𝑖=1   

{[(�̃�𝑖 − �̃�𝑖𝐵)
′∑0

−1 (�̃�𝑖 − �̃�𝑖𝐵)]
1

2}  = 𝜇.         (14) 
 

Where the minimization is over all                        

𝐵 =  diag(𝐵1, . . . , 𝐵𝑚) ∈ ℝ
𝑘×𝑚, ∑0  ∈ PDS (𝑚), 

since 𝐵 and ∑0 are initial estimates and 𝜇 is a 

positive constant. 

This formulation is between the S-estimator of 

regression and the multivariate S-estimator since we 

have to minimize a multivariate measure of scale in 

the presence of 𝑚 regression models. As before, the 

regression coefficient estimates in the matrix ℬ̂ can 

also be collected in the vector �̂� = ( �̂�1
′ , … , �̂�𝑚

′  )′. 
The first-order conditions corresponding to the 
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above minimization problem yield the following 

fixed-point equations for S-estimator; 
 

�̂�S = {𝑋
′( ∑̂M

−1 ⨂ 𝑊S)𝑋}
−1
 𝑋′( ∑̂M

−1 ⨂ 𝑊S)𝑌,    (15) 

∑̂M = 𝑚(�̃� − �̃�ℬ̂)
′
𝑊S(�̃� − �̃�ℬ̂) 

{∑ 𝜐1(𝑤S𝑖)
𝑛
𝑖=1  }−1.                                    (16) 

With diagonal matrix; 

 𝑊S = diag{𝑢(𝑤S1),… , 𝑢(𝑤S𝑛)}, where 

𝑤S𝑖
2 = 𝑒𝑖(ℬ̂)

′ ∑M
−1 𝑒𝑖(ℬ̂);                               

𝑢(𝑤S) =  𝜓1(𝑤S) 𝑤S⁄ ;  𝜓1(𝑤S) = 𝜌1
′ (𝑤S), and 

𝜐1(𝑤S) =  𝜓1(𝑤S)𝑤S − 𝜌1(𝑤S) + 𝜇. 
 

Starting from the initial M-estimator, the S-

estimator is calculated easily by iterating these 

estimating equations until convergence. The S-

estimating equations (15) and (16) reduce to the 

normal ML estimating equations, and similarities to 

the FGLS, see [10]. Unlike the ML and M-

estimator. S-estimator satisfies the first-order 

conditions of M-estimator see [27], so they are 

asymptotically normal. However, the choice of the 

tuning parameter c0 involves a trade-off between 

BDP (robustness) and efficiency in the central 

model. For this reason, S-estimators are less 

adequate for robust inference. The choice of BDP 

affects the efficiency of the estimator under a 

Gaussian model. The higher the BDP, the lower the 

efficiency and vice versa. Hence, S-estimator can 

attain the maximal BDP of 50%. 
 

Algorithm 3.2: S-Estimation 
In this algorithm, we compute S-estimator for the 

SUR model, our algorithm 3.2 can be described in 

the following steps: 

Step (1): Let �̃�1
(0)
, … , �̃�𝑗

(0) ; j = 1,2,… , 𝐽 is initial 

candidates estimate for 𝛽, and set an initial 

variance-covariance matrix ∑0  ∈ PDS (𝑚). 
Step (2): Generate, and design the 

variable(𝑋𝑖 , 𝑈𝑖); 𝑖 = 1,2,… ,𝑚. For each �̃�𝑗
(0)

: 

a. Estimate SUR model coefficients with 

all factors using a non-robust FGLS 

estimator, and test all assumptions.  

b. Detect the presence of outliers in the 

dataset. 

c. Calculate residuals matrix Σ̂ =
1

𝑛
�̂�′�̂�. 

Step (3): Calculate �̂�M using Algorithm 3.1, and 

Calculate  𝑊S (�̂�𝑀), Σ̂(�̂�𝑀). 
Step (4): Calculate S-estimator as in Eq. (14) for 

some 𝜌-function 𝜌1 by set 𝒽 = 0, where 𝒽 is a 

number of iteration and get the iterate following 

steps: 
 

(i) Let �̂�𝑗 (S)
(𝒽+1)

=

{𝑋′( ∑̂−1(�̂�𝑗 (M)) ⨂ 𝑊𝑆(�̂�𝑗 (M)))𝑋}
−1

 

𝑋′(  ∑̂−1(�̂�𝑗 (M)) ⨂ 𝑊𝑆(�̂�𝑗 (M)))𝑌.  

(ii) If either 𝒽 = 𝑚𝑎𝑥𝑖𝑡 (maximum number of 

iterations) or;  

‖�̂�𝑗 (S)
𝒽 − �̂�𝑗 (S)

(𝒽+1)
‖ < T‖�̂�𝑗 (S)

𝒽 ‖, 
 

where T > 0 is a fixed small constant (the 

tolerance level), then set    �̂�𝑗 (S)
F = �̂�𝑗 (S)

𝒽  

and break. 

(iii) Else, Calculate 𝑊S (�̂�𝑗 (S)
(𝒽+1)

) , ∑̂ (�̂�𝑗 (S)
(𝒽+1)

) 

and set 𝒽 ← 𝒽 + 1 

Step (5): Calculate the objective function for 

each �̂�𝑗 (S)
F  ; 𝑗 = 1,2,… 𝐽, and select the one with the 

lowest value, that is, Select �̂�S which active; 

min
1≤𝑗≤𝐽

  

[
1

𝑛
∑  𝜌1{[(�̃�𝑖 − �̃�𝑖𝐵)

′ ∑̂−1(�̂�j (S)
F ) (�̃�𝑖 − �̃�𝑖𝐵)]

1

2} 𝑛
𝑖=1 ].  

Step (6): Repeat steps 3 and 4 until the algorithm 

converges to obtain a convergent value of �̂�S using 

Eq. (15). 

3.3 MM-Estimation Method 

Peremans and Van Aelst [28] proposed the MM-

estimator in the context of the SUR model to obtain 

estimates that have both high BDP and a high 

normal efficiency. A fast and robust bootstrap 

procedure is developed to obtain robust inference 

for these estimates, by combining S-estimation with 

M-estimation. The initial estimate is a high BDP 

estimate using S-estimator, and the second stage 

computes an M-estimator of the scale of the errors 

from the initial high BDP estimate residuals matrix. 

Recently, [29, 30] studied the efficiency of some 

robust estimates by different applications (Economy 

and insurance), and showed that MM-estimator is 

highly efficient, and not sensitive to leverage points 

compared to other robust estimates. 

Let ∑̂S denote the S-estimator of variance 

covariance matrix. Decompose ∑̂S into a scale 

component σ̂ and a shape matrix Γ̂ such that ∑̂S =

σ̂2 Γ̂ with |Γ̂| = 1. 
 

Definition 3.3: Let (𝑋𝑗 , 𝑌𝑗) ∈ ℝ
𝑛×(𝑘𝑗+1)  for  𝑗 =

1,2,… ,𝑚 and let  𝜌2 be a 𝜌-function with parameter 

𝑐2 in Condition 3.2. Given the S-scale σ̂. 

Then the MM-estimator of the SUR model 

(ℬ̂, Γ̂) are the solutions that minimize |∑| subject to 

the condition; 
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min
(𝛽,∑)

|∑|, subject to 
1

𝑛
∑  𝜌2
𝑛
𝑖=1   

{[(�̃�𝑖 − �̃�𝑖𝐵)
′∑0

−1 (�̃�𝑖 − �̃�𝑖𝐵)]
1

2/�̂�}           (17) 
 

where the minimization is over all                        

𝐵 =  diag(𝐵1, , . . . , 𝐵𝑚) ∈ ℝ
𝑘×𝑚, ∑0  ∈ PDS (𝑚) 

with |∑| = 1, since 𝐵 and ∑0 are initial estimates, 

The MM-estimator for covariance is defined as 

∑̂MM = σ̂
2 Γ̂. 

The MM-estimator of the regression 

coefficients ℬ̂ can also be written as                      

�̂� = ( �̂�1
′ , … , �̂�𝑚

′  )′ in vector form. Similarly, as for 

S-estimator, the first-order conditions corresponding 

to the above minimization problem yield a set of 

fixed-point equations: 

�̂�MM = {𝑋
′( ∑̂S

−1 ⨂ 𝑊MM)𝑋}
−1

  

𝑋′( ∑̂S
−1 ⨂ 𝑊MM)𝑌,                                 (18)  

∑̂S = 𝑚(�̃� − �̃�ℬ̂)
′
𝑊MM(�̃� − �̃�ℬ̂)   

{∑  𝜓2(𝑤MM𝑖)
𝑛
𝑖=1 𝑤MM𝑖 }

−1                   (19) 

With diagonal matrix; 

 𝑊MM = diag{𝑢(𝑤MM1),… , 𝑢(𝑤MM𝑛)}; 
Where; 𝑤MM𝑖

2 = 𝑒𝑖(ℬ̂)
′ ∑S

−1 𝑒𝑖(ℬ̂), 
𝑢(𝑤MM) =  𝜓2(𝑤MM) 𝑤MM⁄  ;  𝜓2(𝑤MM) =
𝜌2
′ (𝑤MM). 

 

Starting from the initial S-estimator, the MM-

estimator is calculated easily by iterating these 

estimating equations until convergence. MM-

estimator inherits the BDP of the initial S-estimator. 

Hence, they can attain the maximal BDP if an initial 

high-BDP S-estimator is used, see [31]. 

 

Algorithm 3.3: MM-Estimation 
In this algorithm, we compute MM-estimator for the 

SUR model. Our algorithm 3.3 can be described in 

the  following steps: 

Step (1): Let �̃�1
(0)
, … , �̃�𝑗

(0) ; j = 1,2,… , 𝐽 is initial 

candidates estimate for 𝛽, and set an initial 

variance-covariance matrix ∑0  ∈ PDS (𝑚). 
Step (2): Generate, and design the variable 

(𝑋𝑖 , 𝑈𝑖); 𝑖 = 1,2,… ,𝑚. For each �̃�𝑗
(0)

: 

a. Estimate SUR model coefficients with all 

factors using a non-robust FGLS estimator, 

and test all assumptions.  

b. Detect the presence of outliers in the 

dataset. 

c. Calculate residuals matrix Σ̂ =
1

𝑛
�̂�′�̂�. 

Step (3): Calculate �̂�S using Algorithm 3.2, and 

Calculate  𝑊MM (�̂�S), Σ̂(�̂�S). 

Step (4): Calculate MM-estimator as in Eq. (16) for 

some 𝜌-function 𝜌2 by set ℊ = 0, where ℊ is a 

number of iteration and get the iterate following 

steps: 

(i) Let �̂�j (MM)
(ℊ+1)

=

{𝑋′( ∑̂−1(�̂�𝑗 (S)) ⨂ 𝑊MM(�̂�𝑗 (S)) )𝑋}
−1

 

𝑋′(  ∑̂−1(�̂�𝑗 (S))  ⨂ 𝑊MM(�̂�𝑗 (S)))𝑌.  

(ii)  If either ℊ = 𝑚𝑎𝑥𝑖𝑡 (maximum number 

of iterations) or; 

‖�̂�𝑗 (MM)
ℊ

− �̂�𝑗 (MM)
(ℊ+1)

‖ < T‖�̂�𝑗 (MM)
ℊ

‖, 
 

where T > 0 is a fixed small constant (the 

tolerance level), then set; �̂�𝑗 (MM)
F =

 �̂�𝑗 (MM)
ℊ

 and break. 

(iii) Else, Calculate 

𝑊MM (�̂�𝑗 (MM)
(𝑚+1)

) , ∑̂ (�̂�𝑗 (MM)
(𝑚+1)

) and set ℊ ←

ℊ + 1. 

Step (5): Calculate the objective function for each 

�̂�𝑗 (MM)
F  ; 𝑗 = 1,2, … 𝐽, and select the one with the 

lowest value, that is, select �̂�MM which active; 
 

min
1≤𝑗≤𝐽

[
1

𝑛
∑  𝜌2{[(�̃�𝑖 −
𝑛
𝑖=1

�̃�𝑖𝐵)
′ ∑̂−1(�̂�j (M)

F ) (�̃�𝑖 − �̃�𝑖𝐵)]
1

2/�̂�} ]    

Step (6): Repeat steps 3 and 4 until the algorithm 

converges to obtain a convergent value of �̂�MM 

using Eq. (18). 

Practically, while MM-estimator has maximal 

BDP, there is some loss of robustness because the 

bias due to contamination is generally higher as 

compared to S-estimator. However, it turns out that 

more accurate and powerful tests are obtained if a 

more efficient MM-estimator is used. Now using 

these algorithms it became easy to calculate the 

three robust estimators (M-estimation, S-estimation, 

and MM-estimation), which we will use in the 

simulation study. 

 

 

4 Monte Carlo Simulation Study 
In this section, we conduct a comparative study 

between the classical non-robust (ML and FGLS) 

estimators and the three robust (M-estimation, S-

estimation, and MM-estimation) methods for the 

SUR model, through the Monte Carlo simulation 

study. In our simulation study, Monte Carlo 

experiments were performed based on the model in 

equations (2) and (3).To investigate the performance 
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of these estimates in different situations, we will use 

different simulation factors as shown in Table 1. R 

software “version 4.1.2” is used to perform this 

study. For further information on how to make 

Monte Carlo simulation studies using R, see e.g. 

[32, 33]. 

 

Table 1. The simulation factors of our study 

No. Simulation factor    Symbol Levels 

1 The number of parameters (𝜷) in each equation (without intercept)  𝑘𝑖 4 or 6 

2 The number of equations  𝑚 3,6 or 8 

3 The true values of the parameters (𝜷) (as [34]) 𝛽 𝛽1 = ⋯ = 𝛽𝑚 = 𝟏 

4 The values of sample size in each equation  𝑛 20,30,50,80 or100 

5 The exogenous variables: 𝑋~𝑀𝑉𝑁(1, 𝛴𝑥), where diag (𝛴𝑥) = 1 

and The percentages of outliers (𝜏%) in the endogenous variables 𝜏% 0, 10, 20, 30 or 40 

6 The error term: 𝑈~𝑀𝑉𝑁(0, Ω), the variance-covariance matrix of 

𝑈(Ω = 𝛴 ⨂ 𝐼𝑛) is defined as diag (Σu) = 1, and off-diag (Σu) = 𝜌
𝛴
  

𝜌𝛴 0.70 or 0 .90 

7 The outliers generated from normal distribution with (𝛿, 1); where 𝛿 = 4 × IQR(𝑌), and IQR is the 

interquartile range (as [13-17]). 

 

All Monte Carlo experiments involved 1000 

replications and all the results of all separate 

experiments are obtained by precisely the same 

series of random numbers. To compare the 

performance of the estimates with different 

𝑛,𝑚, 𝑘𝑖, 𝜌Σ , and 𝜏%, we evaluated their total mean 

squared error (TMSE) and total mean absolute error 

(TMAE) for �̂�. 
 

TMSE =
1

𝐿 
 ∑  (�̂�𝑙 − 𝛽)

′
(�̂�𝑙 − 𝛽)

𝐿 
𝑙=1 ;  

TMAE =
1

𝐿
 ∑  |(�̂�𝑙  − 𝛽)|

𝐿
𝑙=1 , 

where �̂�𝑙 is the vector of estimated parameters at 𝑙𝑡ℎ 

experiment of L = 1000 Monte Carlo experiments, 

while 𝛽 is the vector of true parameters.  

4.1 The Simulation Algorithm 
The simulation study is based on the following 

algorithm: 

Step (1): Generate the exogenous non-stochastic 

variables, 𝑋 = diag[𝑋𝑖]; with 𝑋𝑖  (for 𝑖 = 1,… ,𝑚) 
is a block diagonal design matrix, 

from 𝑀𝑉𝑁(1, Σ𝑥).  
Step (2): Set the true values of 𝛽𝑖. 
Step (3): Simulate the vector of random errors (𝑈) 

from 𝑀𝑉𝑁(0, Ω). 
Step (4): The outliers are generated from 

contaminated normal distribution under different 

scenarios. 

Step (5): The endogenous variables are then 

generated from the values already obtained for 

the 𝑋𝑖’s (step 1), the values assigned to 𝛽𝑖 (step 2), 

and the error term 𝑈’s (step 3), according the 

following formula; 

 

𝑌𝑖 =  𝑋𝑖𝛽𝑖  + 𝑈𝑖;           𝑖 = 1,… ,𝑚. 

 

 

Step (6): Estimate SUR Parameters using non-

robust (ML and FGLS) estimators. 

Step (7): Estimate the SUR model using robust 

estimators (M-estimation, S-estimation, and MM-

estimation), through the proposed algorithm for 

each method in Section 3. 

Step (8): Repeat steps from step (3) to step (7) 1000 

times and then calculate the parameter 

estimates (�̂�𝑖), TMSE and TMAE criteria for 

different estimators. 

4.2 Simulation Results  
The simulation results are presented in Tables 2 to 

9. Specifically, Tables 2, 3,6 and 7 present the 

TMSE and TMAE values of the estimates 

when 𝑘𝑖 = 4, while the case of 𝑘𝑖 = 6 is presented 

in Tables 4, 5, 8 and 9 with different percentages of 

outliers (𝜏%) for the SUR model. Each table has 

five sections that represent the percentages of 

outliers in which each row represents a different 

sample size. Moreover, our simulation study has 

revealed four factors that have a bearing on the 

performance of the multivariate robust parameters in 

terms of TMSE and TMEA criteria. These factors 

are the number of equations (𝑚), the number of 

observations (𝑛), the percentages of outliers (𝜏%) 
and the percentages of contemporaneous correlation 

among equations (𝜌Σ). In all cases the performance 

of the multivariate robust parameters, in terms of the 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.28 Ahmed H. Youssef, Mohamed R. Abonazel, Amr R. Kamel

E-ISSN: 2224-2880 225 Volume 21, 2022



above factors, From Tables 2 to 9, we can 

summarize the effects of the main simulation factors 

on TMSE and TMAE values for all estimates 

(robust and non-robust) as follows: 

 As 𝑚 increases, the values of TMSE and 

TMAE are increases for all simulation 

situations.  

 As 𝑛 increases, the values of TMSE and 

TMAE are decreases in all situations. 

 As 𝜏% increases, the values of TMSE and 

TMAE are increases in all situations. 

 As 𝜌Σ increases, the values of TMSE and 

TMAE are decreases (almost). 

 

However, if the values of  𝑘𝑖  is increased, the 

TMSE and TMAE values of ML and FGLS 

estimates are increased more than robust estimates. 

In all simulation cases, it is noticeable that the 

values of TMSE and TMAE for robust estimates are 

smaller than those of TMSE and TMAE for non-

robust estimates. In another word, we can conclude 

that robust estimates are more efficient than ML and 

FGLS estimates. Specifically, among the robust 

estimates MM-estimator is the best estimator 

because it has minimum TMSE and TMAE values 

in all simulation situations.  

Moreover, it is noticeable that for the 

percentages of outliers 𝜏 = 0%, the TMSE and 

TMAE for FGLS estimator are smaller than those of 

TMSE and TMAE for ML and robust estimates. We 

can conclude that in the absence of outliers FGLS 

estimator is more efficient than robust and non-

robust (ML) estimates. 

Graphically, we illustrate the average TMSE 

values for different estimates in all cases with 

different main factors by 3D graphs are shown in 

Figures 1 to 3. It is clear that, the FGLS estimator 

has the largest average TMSE values, followed by 

M-estimator, S-estimator, and finally MM-

estimator. Moreover, the Figures confirm that MM-

estimator is the best estimator for this model, 

especially when τ% increases. 

On the other hand, we also depend on another 

comparative performance level called relative 

efficiency (RE).  The RE values are given by 

dividing the TMSE of ML by the TMSE of the 

estimator. The RE values of the estimates for 𝜌Σ =
0.70  and 𝜌Σ = 0.90 by 2D graphs are shown in 

Figures 4 and 5, respectively. 

Figure 4 indicates that RE values of the MM-

estimator are greater than RE values of different 

robust estimates for all 𝑛 values, since MM-

estimator has the largest RE values. This suggests 

that the MM-estimator is more efficient than the 

robust estimates in different 𝑛 and 𝜏% values. 

However, when 𝑛 and 𝜏% increase, the efficiency of 

the MM-estimator increases. In Figure 5, the 

efficiency of the robust estimates is close, but the 

MM-estimator is still more efficient than different 

robust estimates.  

4.3 Relative Absolute Bias 
To compare the performance of the selected 

estimators under different scenarios, we also depend 

on another comparative level is called relative 

absolute bias (RAB); it indicates a comparative 

performance level of an estimate based on its inputs 

and outputs with those of others in the collection. It 

can be considered as the absolute bias divided by its 

true value, which is calculated as: 

 

RAB =  
|(�̂�𝑙  − 𝛽)|

𝛽
. 

The RAB results are presented in Tables 10 to 13 

revealing the estimation results for each 

parameter �̂�i and RAB values to show the efficiency 

of the different estimators. The previous simulation 

algorithm presented in Section 4.1 has been used, 

when  𝑚 = 3, 𝑘𝑖 = 5, 𝑛 = 20, 𝜏 = 10% or 40% , 
𝜌Σ = 0.70 or 0.90, and the true values of the 

parameters 𝛽 is (1,2,3,4,5)′. 
According to results, specifically Tables 10-11 

present the estimation for each parameter �̂�𝑖 and 

RAB values of the estimates when 𝜌Σ = 0.70. 

While case of 𝜌Σ = 0.90  is presented in Tables 12-

13. It can be noted that, the robust estimates 

improve the efficiency of the estimates for the SUR 

model when the dataset contains outliers. It is clear 

that when 𝜏% increases, the values of RAB are 

increases for all estimates. This increase is somehow 

large for non-robust (ML and FGLS) estimates. 

Robust estimates still have minimum RAB values; 

we can conclude that robust estimates are more 

efficient than non-robust estimates. Specifically, the 

MM-estimator is the best robust estimator because it 

has minimum RAB values. 

Finally, the Final conclusion from the simulation 

study along with the results of RE values is that 

MM-estimator outperforms the other estimates in 

the sense of RAB, TMSE and TMAE criteria. 

Moreover, MM-estimator has the best performance 

in the simulation in most or all cases. 
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Table 2. TMSE and TMAE values for different estimates when 𝑚 = 6 , 𝑘𝑖 = 4 and  𝜌Σ = 0.70 

𝒏 
                           TMSE                            TMAE 

ML FGLS M S MM ML FGLS M S MM 

      𝝉 = 𝟎%      

30 0.6449 0.5485 1.7336 0.6418 0.6372 4.1114 3.8222 6.6976 4.1629 4.1480 
50 0.2939 0.2839 0.9697 0.3535 0.3512 2.9606 2.7606 5.0758 3.0971 3.0860 
80 0.1736 0.1624 0.6207 0.2108 0.2090 2.4628 1.9802 4.0578 2.3941 2.3843 

100 0.1374 0.1253 0.5215 0.1690 0.1673 1.9750 1.8125 3.7239 2.1373 2.1270 

     𝝉 = 𝟏𝟎%      

30 145.5312 117.4314 69.9230 17.2961 14.1768 44.0170 39.7458 23.9825 15.4728 13.7377 
50 84.4440 80.4268 16.4373 9.0381 8.4713 34.8697 31.0649 12.3955 11.3988 10.8913 
80 62.5679 60.6152 8.1222 5.7643 4.6562 30.3540 28.1370 9.7702 9.5720 9.0952 

100 54.9215 52.4693 7.0713 4.5548 4.0643 28.7037 26.5993 8.9193 8.4496 8.1644 

     𝝉 = 𝟐𝟎%      

30 281.9233 231.5541 108.5037 56.6098 39.2795 63.1778 57.7044 35.6429 24.5447 22.4001 
50 181.5560 175.1858 63.3612 33.9467 24.4077 52.2595 51.4116 28.5852 21.4592 18.4585 
80 151.6483 150.0597 49.1791 25.6107 17.2553 48.7713 45.5762 25.6778 18.6915 15.5372 

100 138.0080 134.4415 40.6304 21.7928 14.3843 47.1391 43.0848 24.1521 17.3645 14.2700 

     𝝉 = 𝟑𝟎%      

30 404.6679 340.7385 139.6607 89.6089 75.8728 76.9916 71.0476 53.1248 29.7552 26.8209 
50 293.6038 285.8037 106.6324 56.5487 42.0847 67.4903 66.7943 43.9418 28.1067 24.4463 
80 260.1241 258.9050 87.7246 48.4947 32.5188 65.6506 63.6540 40.1426 26.1948 21.4918 

100 242.2294 240.6620 79.2175 43.4430 28.1141 63.5898 60.7654 38.1352 25.0312 20.1323 

     𝝉 = 𝟒𝟎%      

30 507.2812 438.1510 194.3324 96.8271 84.0558 86.2553 81.1094 63.5899 48.8008 43.5644 
50 405.0117 398.6224 126.1240 85.3366 63.5409 80.7761 74.5166 54.4618 45.0508 41.9157 
80 383.6447 380.2413 107.0231 59.6454 48.2619 73.7036 68.1605 50.4742 36.9624 33.8848 

100 360.5484 357.8497 98.1965 46.9293 35.1803 70.9126 64.6742 47.9862 34.8114 32.7669 

     Note: The best performance for each percentage of outliers is given in bold. 
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Table 3. TMSE and TMAE values for different estimates when  𝑚 = 6 , 𝑘𝑖 = 4 and  𝜌Σ = 0.90 

𝒏 
                           TMSE                            TMAE 

ML FGLS M S MM ML FGLS M S MM 

      𝝉 = 𝟎%      

30 0.5276 0.5171 2.2213 0.6535 0.6461 5.7666 5.7308 11.6167 6.4528 6.4197 
50 0.2382 0.2255 1.2693 0.3499 0.3463 3.9028 4.0350 8.7805 4.7361 4.7143 
80 0.1358 0.1241 0.7297 0.2032 0.2010 2.9544 3.0209 6.6719 3.6190 3.6009 

100 0.1141 0.1055 0.6757 0.1738 0.1721 2.5759 2.6183 6.4033 3.3386 3.3237 

     𝝉 = 𝟏𝟎%      
30 129.1042 104.4606 47.0596 15.0850 13.9512 41.1930 37.2495 22.9168 15.6322 15.0993 
50 76.1349 72.5108 15.9527 11.8782 8.5732 32.7935 30.0472 11.9435 12.8531 12.8980 
80 56.8294 51.9891 9.8027 9.1482 7.5975 28.8939 26.6952 10.3911 10.3687 9.2051 

100 48.8852 43.4880 7.4582 7.0432 5.3791 27.0419 25.9422 9.2942 9.2872 8.0323 
     𝝉 = 𝟐𝟎%      

30 244.9528 204.0295 91.3063 52.7848 35.2396 58.5062 53.5759 33.4293 26.6371 23.6838 
50 164.5525 158.7848 57.2550 39.7133 19.7736 49.4495 45.6445 26.9896 22.5045 20.5202 
80 136.1537 134.7512 43.3156 22.0107 12.1175 46.1006 40.9166 24.0619 19.7443 16.7637 

100 123.2675 120.7956 37.4221 19.5295 10.6728 43.4377 38.3891 20.5885 18.2691 14.3103 
     𝝉 = 𝟑𝟎%      

30 351.8149 296.3762 135.8456 86.0209 73.9701 71.0489 65.5477 49.1075 38.6158 33.5693 
50 265.4046 258.3169 113.2356 62.8905 37.9236 63.7553 60.1135 41.4111 32.5360 30.5304 
80 234.1565 230.0934 99.5767 49.9201 28.7060 62.1860 58.1886 37.8176 24.6202 20.2042 

100 214.4017 211.8465 86.6459 37.3062 21.1810 60.6683 56.8491 35.5299 20.1300 18.6629 
     𝝉 = 𝟒𝟎%      

30 437.9722 379.0437 167.8719 95.8737 82.4057 79.2538 74.4384 58.7349 53.9845 44.7871 
50 370.5123 364.3977 127.1102 77.8285 61.2421 76.4940 73.2409 51.5080 35.3245 28.5749 
80 342.3235 339.7887 105.8272 56.4329 43.8695 72.0450 70.4726 47.2605 26.4356 23.7126 

100 321.7174 316.7481 101.5156 46.1344 35.3904 67.3612 64.0871 44.9760 22.6495 20.6532 

       Note: The best performance for each percentage of outliers is given in bold. 
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Table 4. TMSE and TMAE values for different estimates when  𝑚 = 6 , 𝑘𝑖 = 6 and  𝜌Σ = 0.70 

𝒏 
                           TMSE                            TMAE 

ML FGLS M S MM ML FGLS M S MM 

      𝝉 = 𝟎%      

30 0.9468 0.9206 2.5687 1.0504 1.0448 7.7293 7.3832 14.3156 9.2018 9.1796 
50 0.4970 0.4397 1.1760 0.5040 0.5031 6.3933 5.9525 9.7531 6.4371 6.4307 
80 0.2689 0.2469 0.5939 0.2936 0.2936 4.7372 4.4945 6.9970 4.9430 4.9424 

100 0.2174 0.2074 0.5153 0.2329 0.2330 4.1395 3.8523 6.5090 4.3953 4.3972 

     𝝉 = 𝟏𝟎%      
30 236.7644 208.1461 81.1941 25.9744 19.0315 67.6543 64.3024 36.7668 26.9935 22.4755 
50 131.9086 126.3575 39.6762 18.4750 15.2936 55.3219 52.0475 24.4006 22.1796 19.7311 
80 88.0985 84.7778 17.7650 11.6467 10.8537 44.0977 43.1315 15.5958 17.7444 13.9878 

100 75.5432 73.3401 16.4025 10.6078 9.6791 42.4872 40.3896 14.0191 12.1528 11.6530 
     𝝉 = 𝟐𝟎%      

30 426.4927 387.8449 123.4940 62.8194 55.5711 96.0983 91.2297 66.4781 35.3564 33.9758 
50 352.4068 241.4068 110.3439 49.8590 40.5694 78.1093 73.0477 46.2102 31.9344 29.2316 
80 184.2984 179.3090 69.0886 38.2695 31.5299 66.3529 63.9161 37.3146 28.2812 24.5428 

100 165.0145 160.5570 58.3372 32.2898 23.6757 62.5092 60.6745 34.5523 26.0526 22.6162 
     𝝉 = 𝟑𝟎%      

30 607.5306 547.3879 146.1978 96.3106 84.1927 115.2914 109.2588 85.1167 49.2880 42.3600 
50 363.2953 356.4610 121.8265 73.4655 66.5410 92.5863 89.3676 69.5004 38.9070 33.5978 
80 284.0429 279.6431 93.9534 65.3239 47.4196 84.5215 80.8659 57.0963 35.4167 31.0785 

100 261.0352 258.3064 86.2610 59.2066 40.4774 80.3973 78.3635 50.6596 30.6766 28.0041 

     𝝉 = 𝟒𝟎%      

30 749.6527 680.5225 217.1058 124.2992 106.3162 130.4198 122.3600 97.3313 58.5610 52.2773 
50 468.3829 460.1729 149.9310 108.3619 93.6996 108.5413 102.7551 89.4199 54.0609 50.2988 
80 391.1478 386.0914 113.1978 82.7282 65.4907 98.9015 96.6531 81.7926 44.3549 40.6617 

100 367.9219 363.8788 107.1333 65.0909 51.5284 95.6713 93.0857 77.6091 41.7737 39.3203 

Note: The best performance for each percentage of outliers is given in bold. 

 

 

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.28 Ahmed H. Youssef, Mohamed R. Abonazel, Amr R. Kamel

E-ISSN: 2224-2880 229 Volume 21, 2022



Table 5. TMSE and TMAE values for different estimates when  𝑚 = 6 , 𝑘𝑖 = 6 and  𝜌Σ = 0.90 

𝒏 
                           TMSE                            TMAE 

ML FGLS M S MM ML FGLS M S MM 

      𝝉 = 𝟎%      

30 0.7262 0.7117 3.0577 0.8996 0.8893 6.7844 6.2742 13.6670 7.5917 7.5527 
50 0.3279 0.3104 1.7472 0.4816 0.4767 4.5917 4.3747 10.3303 5.5720 5.5464 
80 0.1870 0.1708 1.0044 0.2797 0.2767 3.4759 3.2554 7.8495 4.2578 4.2364 

100 0.1571 0.1452 0.9300 0.2392 0.2369 3.1305 3.0805 7.5335 3.9279 3.9104 

     𝝉 = 𝟏𝟎%      
30 221.1813 197.1476 61.9059 26.1573 20.2306 75.5191 63.9641 33.3135 22.0346 21.8194 
50 120.4342 113.7169 34.3213 19.9130 15.2921 53.1203 49.4990 19.9642 17.2164 16.3173 
80 77.3602 74.9280 20.9429 11.0718 11.3283 44.9712 40.4753 13.7421 12.5258 11.5515 

100 65.7502 62.2731 15.2447 10.1456 9.1258 39.5759 37.0838 12.3404 11.3834 10.8263 
     𝝉 = 𝟐𝟎%      

30 369.6532 333.2891 109.7337 68.8135 49.0722 91.5352 84.0985 57.8944 33.4833 32.4411 
50 201.9114 195.0401 95.9744 42.4803 35.5455 72.5917 64.9762 43.1790 29.6925 27.6404 
80 153.2585 149.2244 64.3770 34.4412 25.7216 56.0660 53.3351 36.1790 26.7104 23.4563 

100 141.1818 137.4720 54.8934 28.4822 20.4071 51.6723 48.9139 33.7412 24.5314 20.6179 

     𝝉 = 𝟑𝟎%      

30 568.7293 484.9511 146.5433 94.7937 81.9606 104.2307 93.9518 80.6831 56.7814 48.5773 
50 354.6912 349.8161 122.8340 73.8079 58.1147 85.1963 73.8546 63.6807 42.1507 35.0507 
80 268.1570 262.7963 113.1883 57.8095 42.7152 73.6069 69.8979 53.2112 34.8496 30.2510 

100 243.3130 237.2691 106.7808 51.8249 36.8945 70.1026 65.3408 50.4770 31.3564 28.3533 
     𝝉 = 𝟒𝟎%      

30 622.3340 552.2631 180.7879 103.2528 93.5939 103.7687 97.7644 93.3615 72.9710 67.9497 
50 484.7617 471.6830 150.3779 86.6461 64.7116 89.2152 81.0080 73.3443 64.1589 56.8442 
80 386.4686 381.0374 120.8739 62.7029 52.0914 85.8742 79.2827 63.3082 45.9977 43.4831 

100 351.1662 349.6917 118.5967 58.5677 45.5407 81.1460 77.7343 59.6490 38.2049 32.4237 

   Note: The best performance for each percentage of outliers is given in bold. 

 

 

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.28 Ahmed H. Youssef, Mohamed R. Abonazel, Amr R. Kamel

E-ISSN: 2224-2880 230 Volume 21, 2022



Table 6. TMSE and TMAE values for different estimates when  𝑚 = 8 , 𝑘𝑖 = 4 and  𝜌Σ = 0.70 

𝒏 
                           TMSE                            TMAE 

ML FGLS M S MM ML FGLS M S MM 

      𝝉 = 𝟎%      

30 1.8813 1.8293 5.1040 2.0872 2.0760 11.4657 10.9523 21.2357 13.6499 13.6170 
50 0.9875 0.8737 2.3368 1.0014 0.9998 9.4839 8.8300 14.4678 9.5488 9.5392 
80 0.5342 0.4906 1.1801 0.5834 0.5834 7.0272 6.6672 10.3794 7.3324 7.3315 

100 0.4320 0.4121 1.0240 0.4627 0.4630 6.1406 5.7145 9.6555 6.5200 6.5228 

     𝝉 = 𝟏𝟎%      
30 291.5543 253.6436 97.4179 40.7617 31.8662 96.1699 89.9097 57.6981 42.3609 35.2708 
50 207.0042 198.2928 62.2639 38.9929 24.0003 80.8166 74.6782 38.2919 34.8065 30.9640 
80 138.2530 133.0418 30.6014 23.2772 17.0326 69.2024 67.6862 24.4745 21.9510 27.8463 

100 118.5500 115.0926 21.3246 18.6469 15.1895 66.6752 61.3835 22.1422 18.2871 15.9329 
     𝝉 = 𝟐𝟎%      

30 537.7993 476.3786 142.2134 78.9893 69.6445 123.8937 117.6170 85.7062 45.5829 43.8029 
50 425.0590 383.6534 121.2598 61.2802 52.3037 100.7016 94.1760 59.5761 41.1711 37.6865 
80 292.8944 284.9651 87.0718 49.3386 36.1698 85.5448 82.4032 48.1074 36.4612 31.6416 

100 263.2477 255.1636 65.2106 41.6293 30.5236 80.5894 78.2240 44.5462 33.5880 29.1576 
     𝝉 = 𝟑𝟎%      

30 643.5927 581.0710 168.5980 121.1478 95.5208 158.1913 149.9140 106.7886 67.6280 58.1221 
50 498.4775 487.1001 147.1581 101.8020 81.3009 127.0377 122.6213 95.3615 53.3843 46.0996 
80 389.7352 383.6983 118.9135 87.6309 64.0644 115.9719 110.9561 78.3419 48.5952 42.6429 

100 358.1664 354.4703 98.3587 76.2374 53.5390 109.3131 102.5226 69.5100 42.0913 38.4245 
     𝝉 = 𝟒𝟎%      

30 910.4704 826.5102 185.3905 143.3941 113.7550 171.4399 160.8450 127.9442 76.9798 68.7198 
50 662.8618 658.8906 163.0877 122.4442 99.1703 142.6800 135.0739 117.5445 69.0643 62.1190 
80 475.0580 468.9169 129.8012 108.7481 86.0890 130.0083 127.0527 93.5183 58.3055 51.4508 

100 446.8496 439.9391 121.8292 92.5635 67.7352 125.7621 120.3633 88.0189 50.9125 46.6875 

  Note: The best performance for each percentage of outliers is given in bold. 
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Table 7. TMSE and TMAE values for different estimates when  𝑚 = 8 , 𝑘𝑖 = 4 and  𝜌Σ = 0.90 

𝒏 
                           TMSE                            TMAE 

ML FGLS M S MM ML FGLS M S MM 

      𝝉 = 𝟎%      

30 1.4727 1.4433 4.2007 1.8243 1.8035 8.7946 8.1333 17.7166 9.8411 9.7906 
50 0.6649 0.6294 2.0543 0.9767 0.9667 5.9522 5.6709 13.3912 7.2230 7.1897 
80 0.3791 0.3464 1.0369 0.5672 0.5612 4.5058 4.2200 10.1753 5.5194 5.4917 

100 0.3186 0.2945 0.9886 0.4851 0.4805 4.0581 3.9932 9.7657 5.0917 5.0690 

     𝝉 = 𝟏𝟎%      
30 273.2766 232.7162 74.4755 38.7085 31.6434 97.4499 81.9490 56.2215 37.1866 36.8234 
50 203.2508 191.9143 57.9224 27.4827 23.2460 79.6485 73.5370 33.6926 29.0552 27.5379 
80 130.5569 126.4523 30.3443 18.6853 18.8058 75.8957 68.3081 23.1919 21.1392 19.4949 

100 110.9633 105.0953 22.7276 17.1222 15.0401 66.7902 62.5844 20.8262 19.2111 18.2710 
     𝝉 = 𝟐𝟎%      

30 486.7583 359.0368 117.2892 81.7037 58.2644 117.8352 108.2617 74.5287 43.1037 41.7621 
50 320.4982 309.5913 98.9524 54.6858 45.7585 93.4488 83.6452 55.5852 38.2237 35.5820 
80 211.5240 205.1207 76.4362 40.8927 30.5397 66.5684 63.3259 42.9561 31.7138 27.8501 

100 208.4812 202.5926 65.1761 33.8175 24.2298 61.3516 58.0765 40.0616 29.1266 24.4801 
     𝝉 = 𝟑𝟎%      

30 600.8170 512.3121 161.4656 109.6213 94.7809 124.9101 112.5918 96.6906 68.0468 53.2150 
50 474.7028 469.5527 140.0477 85.3529 67.2050 102.0992 88.5074 76.3149 50.5134 42.0048 
80 293.2864 287.6233 130.8932 66.8521 49.3967 88.2105 83.7656 63.7682 41.7637 36.2528 

100 277.0407 270.6558 121.4834 59.9313 42.6655 84.0110 78.3044 60.4916 37.5775 33.9785 
     𝝉 = 𝟒𝟎%      

30 808.2251 717.2241 193.6317 123.4439 102.8316 133.0300 125.3326 113.8879 81.0144 72.8891 
50 629.5601 612.5747 165.2202 95.1981 71.0987 114.3726 103.8512 89.4698 70.2648 63.3419 
80 501.9068 494.8532 132.8041 68.8917 57.2328 110.0895 101.6393 77.2271 56.1107 48.0433 

100 456.0596 454.1446 130.3022 64.3484 50.0356 104.0281 99.6543 72.7634 46.6047 39.5524 

 Note: The best performance for each percentage of outliers is given in bold. 
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Table 8. TMSE and TMAE values for different estimates when  𝑚 = 8 , 𝑘𝑖 = 6 and  𝜌Σ = 0.70 

𝒏 
                           TMSE                            TMAE 

ML FGLS M S MM ML FGLS M S MM 

      𝝉 = 𝟎%      

30 2.8025 2.7251 7.6034 3.1093 3.0927 15.1863 14.5063 28.1267 18.0793 18.0357 
50 1.4710 1.3015 3.4811 1.4918 1.4893 12.5614 11.6953 19.1626 12.6474 12.6347 
80 0.9077 0.8335 2.0049 0.9913 0.9911 9.3075 8.8307 13.7475 9.7118 9.7106 

100 0.7339 0.7001 1.7397 0.7861 0.7866 8.1332 7.5689 12.7887 8.6357 8.6394 

     𝝉 = 𝟏𝟎%      

30 462.9620 402.7633 124.6908 64.7259 50.6006 132.7091 121.7686 91.6193 67.2652 56.0069 
50 328.7041 314.8711 98.8694 51.9172 38.1103 118.3296 113.5822 60.8041 55.2695 49.1681 
80 219.5334 211.2585 48.5923 36.9620 27.0463 109.8872 107.4796 38.8633 34.8562 44.2174 

100 215.2467 208.7568 33.8616 29.6096 22.1195 105.8742 97.4714 35.1599 29.0383 25.2999 
     𝝉 = 𝟐𝟎%      

30 698.4399 618.6729 161.4712 92.6845 76.4828 146.0088 138.6116 118.1460 62.8360 60.3823 
50 552.0242 498.2507 135.3541 73.4566 62.6964 118.6769 110.9865 82.1256 56.7543 51.9508 
80 380.3820 370.0842 94.3729 59.1422 43.3567 100.8146 97.1122 66.3161 50.2618 43.6180 

100 341.8798 331.3810 78.1679 49.9011 36.5887 94.9746 92.1869 61.4070 46.3011 40.1938 

     𝝉 = 𝟑𝟎%      

30 835.6408 754.4626 175.1880 133.0687 104.9200 173.7099 164.6206 127.9434 81.0251 69.6361 
50 647.2232 632.4508 158.6384 111.8193 89.3009 139.5001 134.6504 114.2526 63.9597 55.2319 
80 506.0322 498.1939 120.6145 96.2538 70.3684 127.3488 121.8409 93.8614 58.2219 51.0904 

100 465.0433 460.2442 111.0372 83.7392 58.8073 120.0367 115.5800 84.2800 50.4296 46.0363 

     𝝉 = 𝟒𝟎%      

30 1203.0045 1092.0679 196.7326 157.3710 129.1224 207.9565 195.1049 143.2771 92.2218 82.3263 
50 875.8393 870.5921 177.4563 139.7492 110.2852 173.0709 163.8447 120.8183 82.7391 74.4185 
80 627.6942 619.5799 158.7468 113.9990 98.2869 157.7001 154.1149 102.0349 69.8500 61.6380 

100 590.4223 581.2916 151.9971 107.2052 82.8402 152.5494 146.6592 97.4466 60.9932 55.9316 

     Note: The best performance for each percentage of outliers is given in bold. 
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Table 9. TMSE and TMAE values for different estimates when  𝑚 = 8 , 𝑘𝑖 = 6 and  𝜌Σ = 0.90 

𝒏                                    TMSE                            TMAE 

ML FGLS M S MM ML FGLS M S MM 

      𝝉 = 𝟎%      

30 2.2599 2.2148 6.4459 2.7994 2.7675 13.8379 12.7974 27.8763 15.4846 15.4051 
50 1.0203 0.9659 3.1523 1.4988 1.4835 9.3656 8.9230 21.0705 11.3651 11.3128 
80 0.6576 0.6008 1.5912 0.8703 0.8611 7.0896 6.6400 16.0104 8.6845 8.6410 

100 0.5525 0.5109 1.5170 0.7445 0.7373 6.3853 6.2832 15.3659 8.0116 7.9759 

     𝝉 = 𝟏𝟎%      

30 366.8192 312.3749 92.3347 47.9908 39.2315 118.1949 99.3943 68.1899 45.1029 42.6624 
50 272.8236 257.6066 71.8122 34.0730 28.8203 96.6039 89.1915 40.8651 35.2405 33.4002 
80 175.2465 169.7369 37.6208 23.1661 23.3155 92.0523 82.8494 28.1290 25.6393 23.6450 

100 148.9461 141.0694 28.1777 21.2281 18.6467 81.0085 75.9073 25.2597 23.3008 22.1606 
     𝝉 = 𝟐𝟎%      

30 598.6494 441.5685 128.5215 92.3146 65.8312 143.6128 131.9451 98.9014 52.6008 50.5468 
50 394.1711 380.7570 111.8033 61.7879 51.7011 113.8916 101.9434 68.7483 47.5097 43.4887 
80 260.1470 252.2718 86.3630 46.2034 34.5059 98.1309 96.1791 55.5140 42.0748 36.5131 

100 256.4048 249.1626 73.6405 38.2094 26.3766 87.7728 84.7813 51.4045 38.7592 33.6467 
     𝝉 = 𝟑𝟎%      

30 780.2810 665.3397 175.6144 120.7319 98.3873 159.8265 144.0648 108.4751 76.3402 59.7008 
50 616.4966 609.8081 154.0544 94.0038 74.0165 130.6392 113.2481 85.6161 56.6699 47.1243 
80 380.8910 373.5363 143.9843 73.6278 58.4033 112.8682 107.1808 71.5403 46.8538 40.6713 

100 359.7928 351.5007 133.6334 66.0056 47.9898 106.4948 99.1930 67.8643 42.1574 38.1198 
     𝝉 = 𝟒𝟎%      

30 985.2264 874.2961 195.7165 134.8985 112.8708 172.3883 162.4135 116.6462 85.5495 77.6303 
50 767.4337 746.7286 172.5972 110.9724 82.8797 148.2109 134.5766 96.0638 78.4069 66.3277 
80 611.8244 603.2261 154.8098 80.3070 66.7163 142.6606 131.7104 87.2347 63.3819 53.9170 

100 555.9366 553.6022 150.8933 75.0109 58.3265 134.8058 129.1381 72.1925 52.6440 44.6778 

    Note: The best performance for each percentage of outliers is given in bold. 
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Table 10. Estimation results and RAB values for different estimates when  𝑛 = 20, 𝜌Σ = 0.70 and 𝜏 = 10% 

The true value of  𝛽 is (1,2,3,4,5)′ 

 

Equations 

 

Parameters 
ML FGLS M S MM 

  Estimate RAB Estimate RAB Estimate RAB Estimate RAB Estimate RAB 

Equation 1  
                            

 𝛽11 3.5781 2.5781 3.5013 2.5013 1.6956 0.6956 1.3956 0.3956 0.9299 0.0701 

 𝛽12 6.2300 2.1150 6.3030 2.1515 3.1152 0.5576 2.3948 0.1974 1.9248 0.0376 

 𝛽13 0.5800 0.8067 0.6159 0.7947 1.9670 0.3443 2.4404 0.1865 2.7210 0.0930 

 𝛽14 0.5154 0.8711 2.7603 0.3099 4.1986 0.0496 4.0662 0.0165 3.9465 0.0134 

 𝛽15 8.4105 0.6821 8.2618 0.6524 3.9317 0.2137 4.0732 0.1654 4.4955 0.1009 

Equation 2            

 𝛽21 -0.1413 1.1413 0.1844 0.8156 0.6111 0.3890 1.2427 0.2427 0.9283 0.0717 

 𝛽22 4.4380 1.2190 3.3552 0.6776 2.8854 0.4427 2.5407 0.2703 1.9035 0.0482 

 𝛽23 1.3254 0.5582 4.3075 0.4358 4.2300 0.4100 3.6733 0.2244 3.1628 0.0543 

 𝛽24 -0.8510 1.2128 -1.0132 1.2533 2.3393 0.4152 3.6095 0.0976 4.0912 0.0228 

 𝛽25 9.3800 0.8760 9.0175 0.8035 7.6545 0.5309 6.2571 0.2514 5.1298 0.0260 

Equation 3            

 𝛽31 3.1950 2.1950 2.6386 1.6386 0.6520 0.3480 0.8324 0.1676 0.9486 0.0514 

 𝛽32 0.3080 0.8460 0.3599 0.8201 2.3579 0.1789 1.4862 0.2569 1.7563 0.1219 

 𝛽33 4.6952 0.5651 3.8782 0.0588 3.1765 0.0588 3.1362 0.0454 3.0456 0.0152 

 𝛽34 5.3467 0.3367 5.6180 0.4045 4.8462 0.2116 4.4371 0.1093 4.1038 0.0259 
 𝛽35 9.2022 0.8404 6.1314 0.2263 6.1457 0.2291 5.3607 0.0721 4.6938 0.0612 

    Note: The best performance is given in bold. 
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Table 11. Estimation results and RAB values for different estimates when 𝑛 = 20,  𝜌Σ = 0.70 and 𝜏 = 40% 

The true value of  𝛽 is (1,2,3,4,5)′ 

 

Equations 

 

Parameters 
ML FGLS M S MM 

  Estimate RAB Estimate RAB Estimate RAB Estimate RAB Estimate RAB 

Equation 1                              

 𝛽11 4.1142 3.1142 4.0205 3.0205 2.4257 1.4257 1.3892 0.3892 1.1825 0.1825 

 𝛽12 8.0690 3.0345 7.8837 2.9419 5.0352 1.5176 1.8532 0.0734 2.2489 0.1245 

 𝛽13 3.6605 0.2202 3.2681 0.0894 3.7235 0.2412 3.8727 0.2909 2.9568 0.0144 

 𝛽14 3.5332 0.1167 3.1267 0.2183 5.3817 0.3454 4.6905 0.1726 4.0872 0.0218 

 𝛽15 -0.1007 1.0201 -1.1943 1.2389 4.6905 0.0619 4.5852 0.0830 4.6193 0.0761 

Equation 2            

 𝛽21 5.5691 4.5691 5.1302 4.1302 3.4755 2.4755 0.8918 0.1082 1.1384 0.1384 

 𝛽22 6.8121 2.4061 5.9068 1.9534 2.7553 0.3777 2.4283 0.2142 1.8935 0.0533 

 𝛽23 2.1074 0.2975 2.0212 0.3263 2.4452 0.1849 2.7985 0.0672 2.5834 0.1389 

 𝛽24 8.2854 1.0713 5.0367 0.2592 5.4912 0.3728 4.7360 0.1840 3.5946 0.1014 

 𝛽25 14.8642 1.9728 13.4798 1.6960 6.6065 0.3213 5.9740 0.1948 4.6787 0.0643 

Equation 3            

 𝛽31 9.5633 8.5633 8.5704 7.5704 3.6054 2.6054 1.0905 0.0905 1.2531 0.2531 

 𝛽32 3.9257 0.9628 4.4539 1.2270 1.7285 0.1358 1.5037 0.2481 1.7627 0.1187 

 𝛽33 5.8704 0.9568 5.1775 0.7258 3.3082 0.1027 3.5785 0.1928 2.9363 0.0212 

 𝛽34 5.7541 0.4385 6.8425 0.7106 5.4272 0.3568 3.8959 0.0260 4.3064 0.0766 

 𝛽35 6.3037 0.2607 7.4357 0.4871 6.5601 0.3120 4.5713 0.0857 5.0669 0.0134 

    Note: The best performance is given in bold. 
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Table 12. Estimation results and RAB values for different estimates when 𝑛 = 20, 𝜌Σ = 0.90 and 𝜏 = 10% 

The true value of  𝛽 is (1,2,3,4,5)′ 

 

Equations 

 

Parameters 
ML FGLS M S MM 

  Estimate RAB Estimate RAB Estimate RAB Estimate RAB Estimate RAB 

Equation 1  
                            

 𝛽11 3.4240 2.4240 3.4742 2.4742 1.5787 0.5787 2.9822 1.9822 0.9365 0.0635 

 𝛽12 2.6304 0.3152 2.7377 0.3689 2.3995 0.1998 2.0690 0.0345 2.2978 0.1489 

 𝛽13 -0.8983 1.2994 -1.0462 1.3487 2.5970 0.1343 3.2850 0.0950 2.7241 0.0920 

 𝛽14 4.4219 0.1055 4.9867 0.2467 3.7380 0.0655 4.1477 0.0369 4.1206 0.0302 

 𝛽15 8.0989 0.6198 8.3205 0.6641 4.8353 0.0329 5.2344 0.0469 4.7901 0.0420 

Equation 2            

 𝛽21 -0.1622 1.1622 1.2389 0.2389 1.1553 0.1553 0.8578 0.1422 0.8964 0.1036 

 𝛽22 6.0623 2.0311 3.1781 0.5890 2.5371 0.2686 2.6117 0.3059 2.0371 0.0186 

 𝛽23 3.9057 0.3019 4.0876 0.3625 2.7637 0.0788 2.8045 0.0652 2.9148 0.0284 

 𝛽24 -0.6517 1.1629 -0.7834 1.1959 2.4205 0.3949 3.0699 0.2325 3.5748 0.1063 

 𝛽25 9.6272 0.9254 8.8977 0.7795 5.5196 0.1039 4.4435 0.1113 4.8486 0.0303 

Equation 3            

 𝛽31 3.1525 2.1525 2.5950 1.5950 0.7965 0.2035 0.8590 0.1410 0.8746 0.1254 

 𝛽32 -2.0528 2.0264 -0.3481 1.1741 1.3070 0.3465 1.4489 0.2755 1.7650 0.1175 

 𝛽33 3.8804 0.2935 3.6991 0.2330 3.1417 0.0472 3.1593 0.0531 3.0420 0.0140 

 𝛽34 6.1190 0.5298 5.6147 0.4037 4.6416 0.1604 4.2450 0.0613 4.4538 0.1135 
 𝛽35 10.1303 1.0261 8.6816 0.7363 6.0919 0.2184 5.4760 0.0952 5.1368 0.0274 

    Note: The best performance is given in bold. 
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Table 13. Estimation results and RAB values for different estimates when 𝑛 = 20, 𝜌𝛴 = 0.90 and 𝜏 = 40% 

The true value of  𝛽 is (1,2,3,4,5)′ 

 

Equations 

 

Parameters 
ML FGLS M S MM 

  Estimate RAB Estimate RAB Estimate RAB Estimate RAB Estimate RAB 

Equation 1  
                            

 𝛽11 3.7416 2.7416 3.6695 2.6695 2.2403 1.2403 0.5768 0.4232 1.1510 0.1510 

 𝛽12 -0.4599 1.2300 -0.7879 1.3939 3.5526 0.7763 1.8392 0.0804 2.0912 0.0456 

 𝛽13 3.5703 0.1901 3.2170 0.0723 3.4361 0.1454 2.8112 0.0629 2.6963 0.1012 

 𝛽14 5.6196 0.4049 5.0466 0.2616 4.2526 0.0631 4.4901 0.1225 4.1527 0.0382 

 𝛽15 7.4023 0.4805 7.2352 0.4470 4.3472 0.1306 3.2583 0.3483 4.8516 0.0297 

Equation 2            

 𝛽21 5.0903 4.0903 4.6945 3.6945 2.9804 1.9804 1.5639 0.5639 1.1874 0.1874 

 𝛽22 6.5210 2.2605 5.4194 1.7097 3.3424 0.6712 2.4715 0.2357 1.7815 0.1093 

 𝛽23 2.2483 0.2506 2.1725 0.2758 2.5627 0.1458 3.0728 0.0243 2.8153 0.0616 

 𝛽24 8.2770 1.0692 5.3216 0.3304 4.9076 0.2269 4.6894 0.1724 4.0464 0.0116 

 𝛽25 13.7882 1.7576 12.5479 1.5096 6.0136 0.2027 5.2807 0.0561 5.1787 0.0357 

Equation 3            

 𝛽31 8.5755 7.5755 7.7164 6.7164 1.5376 0.5376 1.4845 0.4845 0.8742 0.1258 

 𝛽32 3.8490 0.9245 4.2817 1.1408 3.5793 0.7896 2.7164 0.3582 2.1418 0.0709 

 𝛽33 5.5357 0.8452 4.9268 0.6423 3.1674 0.0558 0.5432 0.8189 3.0574 0.0191 

 𝛽34 5.5064 0.3766 6.4702 0.6176 4.9688 0.2422 1.2153 0.6962 3.9026 0.0243 
 𝛽35 7.0574 0.4115 6.0721 0.2144 4.7276 0.0545 4.5584 0.0883 4.8913 0.0217 

    Note: The best performance is given in bold. 
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Fig. 1: Average TMSE values for different estimates in all cases when  𝑚 = 6 
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Fig. 2: Average TMSE values for different estimates in all cases when  𝑘𝑖 = 4 
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Fig. 3: Average TMSE values for different estimates in all cases when  𝜌Σ = 0.90 
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Fig. 4: Relative efficiency for the different estimates when 𝜌𝛴 = 0.70 

 
 

 Fig. 5: Relative efficiency for the different estimates when 𝜌𝛴 = 0.90 
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5 Conclusions 
In this paper, we have reviewed three robust (M, S, 

and MM) estimators of the SUR model and 

compared these estimators with non-robust (ML and 

FGLS) estimators when the outliers are present. 

Moreover, our new algorithm for robust SUR 

provides robust parameter estimates and useful 

outlier diagnostics, as illustrated in the simulation 

study. Simulation study results indicated that, in 

general, non-robust estimators are very sensitive to 

outliers, while robust estimators are more effective. 

In addition, the MM-estimator is more efficient than 

other robust estimators because it has minimum 

RAB, TMSE, and TMAE values in all simulation 

situations. Also, the results showed that in the 

absence of outliers the FGLS estimator is more 

efficient than ML, M, S, and MM estimators. 

In future work, we plan to study the efficiency of 

the robust estimators in other models, such as semi-

parametric regression models [35,36] and the 

autoregressive integrated moving average (ARIMA) 

model [37,38]. Moreover, we can study how to 

combine robust estimators with neural networks 

(NN) or artificial intelligence (AI) methods [39]. 
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