
Codes in the q-ary Lee Hypercube

Abstract: Let Fq = {0, 1, . . . , q − 1} be an alphabet of size q, so that Fn
q is the q-ary hypercube of dimension n.

Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two elements in Fn
q . The Lee distance between x and y is equal to∑n

i=1
min(|xi − yi|, q − |xi − yi|). Let C ⊆ Fn

q ; C is called a code. Given an integer radius r > 1, we consider
three types of codes with respect to the Lee distance: an r-dominating code C (also called an r-covering code) is
such that any element x ∈ Fn

q is within distance r from at least one codeword c ∈ C (then c r-dominates x); an r-

locating-dominating code C is (i) r-dominating and (ii) such that any two vertices x, y in Fn
q \C are r-dominated

by distinct sets of codewords; an r-identifying code C is (i) r-dominating and (ii) such that any two vertices x, y
in Fn

q are r-dominated by distinct sets of codewords. We look for minimum such codes. For the above three types

of codes, we give tables of upper bounds on their smallest cardinalities, for alphabet size q ∈ {4, 5, 6}, dimension
n up to 7, and radius r up to 5. These bounds are obtained mainly by using different heuristics (greedy, descent,
noising). We conclude with conjectures and open problems.
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1 Introduction
We consider the q-ary hypercube of dimension n,
endowed with the Lee distance and, using different
heuristics, we search for subsets of vertices, with the
smallest possible sizes, satisfying different properties
that we are now going to define in the more gene-
ral setting of a finite, undirected, connected graph
G = (V,E).

1.1 General notation and definitions

For a given integer radius r > 1 and a given distance
d, the closed r-neighbourhood of a vertex v ∈ V is
the set Nr[v] = {u ∈ V : 0 6 d(u, v) 6 r}.

A code is simply a subset of V , whose elements
are called codewords.

Two vertices within distance r from each other
are said to r-dominate each other. A vertex is r-
dominated by a code C if it is r-dominated by at least
one codeword. Two vertices x and y are r-separated
by a vertex z if we have z ∈ Nr[x] and z /∈ Nr[y]
or if we have z ∈ Nr[y] and z /∈ Nr[x] (note that
z can be equal to x or y). Two vertices x and y are
r-separated by a code C if they are r-separated by at
least one codeword.

Definition 1. An r-dominating code (r-D code for
short) is a code C ⊆ V such that any vertex has at
least one codeword at distance at most r:

∀ v ∈ V, ∃ c ∈ C such that d(v, c) 6 r.

Equivalently, every vertex is r-dominated by C , or
∪c∈CNr[c] = V , which implies:

∑

c∈C

|Nr[c]| > |V |. (1)

Dominating codes constitute a wide topic in graph
theory, explored mostly in the case r = 1. See, e.g.,
[16], [17].

Definition 2. An r-locating-dominating code (r-LD
code for short) is an r-D code C ⊆ V which more-
over satisfies:

∀ v1 ∈ V \ C, ∀ v2 ∈ V \ C, v1 6= v2 :
Nr[v1] ∩ C 6= Nr[v2] ∩ C.

Equivalently, a code C is an r-LD code if C is
r-dominating and r-separates all the pairs of non-
codewords. An r-LD code always exists in G (e.g.,
C = V ), and we can see that the previous defini-
tion states that every non-codeword is characterized
(or located) by the set of codewords r-dominating it.

Definition 3. An r-identifying code (r-Id code for
short) is an r-D code C ⊆ V which moreover satis-
fies:

∀ v1 ∈ V, ∀ v2 ∈ V, v1 6= v2 :
Nr[v1] ∩ C 6= Nr[v2] ∩ C.

Equivalently, a code C is an r-Id code if C is r-
dominating and r-separates all the pairs of vertices.
Here, every vertex, whether it is a codeword or not,
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is characterized (or identified) by the codewords r-
dominating it. It is easy to see that an r-Id code exists
in G if and only if we have:

∀ v1 ∈ V, ∀ v2 ∈ V, v1 6= v2 : Nr[v1] 6= Nr[v2].

Locating-dominating codes were introduced in
1983 [30], but for more easily accessible sources,
see [26] or [8]. The term “identifying code” is used
in [20], which certainly marks the starting point for
the blossoming of works on this topic, but the con-
cept is already contained in [27]. For both locating-
dominating and identifying codes, see the ongoing
bibliography at [23].

We usually search for the smallest possible codes
and introduce the notation γr(G), LDr(G), and
Idr(G) for the smallest sizes of an r-D, an r-LD, and
an r-Id code (when there is one), respectively. Any
code with this size is called optimal with respect to
the desired property. Obviously, every r-Id code is
r-LD and every r-LD code is an r-D code; hence:

γr(G) 6 LDr(G) 6 Idr(G). (2)

1.2 The q-ary Lee hypercube of dimension n

We now restrict our attention to a specific class of
graphs.

Let q be an integer, q > 2. Let Fq = {0, . . . , q−1}
be an alphabet of size q. All calculations will be
modulo q. The q-ary hypercube of dimension n, de-
noted Fn

q , is the Cartesian product of Fq, carried out
n times: its elements are the qn vertices or vectors
v = (v1, v2, . . . , vn), where vi ∈ Fq for 1 6 i 6 n.
One can define two distances on Fn

q :
- the Hamming distance between

u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) in
Fn
q is given by:

dH(u, v) = |{i ∈ {1, 2, . . . , n} : ui 6= vi}|

or equivalently dH(u, v) =
∑n

i=1
min{1, |ui − vi|};

- the Lee distance between u = (u1, u2, . . . , un)
and v = (v1, v2, . . ., vn) in Fn

q is given by:

dL(u, v) =

n∑

i=1

min{|ui − vi|, q − |ui − vi|}.

Note that both distances coincide for q ∈ {2, 3}.
If we draw edges between any two vectors which are
at distance one, we obtain, for given q and n, two
graphs, according to the distance we consider. We
shall use the obvious notation Hn

q and Ln
q ; by our pre-

vious observation, we have Hn
2 = Ln

2 and Hn
3 = Ln

3 .

Example. For r = 2 in L2
4:

- C = {(0, 0); (2, 1)} is a 2-D code (for instance,
(3, 2) is 2-dominated by (2, 1)) but not a 2-LD code:

for instance, (1, 1) and (3, 0) are not 2-separated by C
since they are both 2-dominated by (0, 0) and (2, 1),
nor a 2-Id code; hence γ2(L

2
4) 6 2;

- C = {(0, 1); (1, 2); (2, 0); (2, 1); (3, 1)} is a 2-
LD code but not a 2-Id code: for instance (2, 1) and
(1, 1) are both 2-dominated by the five codewords and
thus are not 2-separated by C; hence LD2(L

2
4) 6 5;

- C = {(0, 0); (0, 1); (0, 2); (1, 0); (2, 0); (3, 3)}
is a 2-Id code; hence Id2(L

2
4) 6 6.

These three codes are optimal, see Table 2.

The study of r-dominating codes in Hn
q (these

codes are also called r-covering codes or simply r-
coverings in this case) is of importance for coding and
information theory, see [7] and its large bibliography,
updated at [22]; the case q = 3 can lead to applica-
tions for football bets, see, e.g., [15]. Also in Hn

q , re-
sults on “good” locating-dominating and identifying
codes can be found in, among many others, [18], [3],
[12], [10]. Much less is known when considering Ln

q

for q > 4, see [1], [20], [21], [9], [28], [11].
From now on, we consider only the Lee distance,

that is, the graph Ln
q with q > 4. Due to the regularity

of the graph, the size of the r-neighbourhood is the
same for all vertices; we denote by Vn,r,q the size of
Nr[v] in Ln

q , where v is any vertex.

Consider v = (v1, v2, . . . , vn) ∈ Ln
q . When q is

even, the vertex (v1+
q
2
, v2+

q
2

, . . . , vn+
q
2
) is at Lee

distance δe = n× q
2

from v, and all other vertices are
at distance at most δe − 1 from v. When q is odd, the

2n vertices (v1 +
q±1

2
, v2 +

q±1

2
, . . . , vn + q±1

2
) are

at distance δo = n × q−1

2
from v, and the remaining

vertices are at distance at most δo − 1.
As a first consequence, if n, q and r are such that

r > δe for even q, or r > δo for odd q, then all
vertices are within distance r from each other in Ln

q .
Then obviously:

Remark 1. If n, q and r are such that r > n× q
2

for

even q, or r > n × q−1

2
for odd q, then γr(L

n
q ) = 1,

LDr(L
n
q ) = qn − 1 and Ln

q admits no r-identifying
code. Otherwise, it is easy to see that Ln

q admits r-
identifying codes.

Assume now that q is even and n, q and r are
such that r = n × q

2
− 1. Then all vectors are

within distance r from each other, except for the pairs
(v1, v2, . . . , vn) and (v1 + q

2
, v2 + q

2
, . . . , vn + q

2
),

which are at distance r + 1 from one another. In
other words, the r-th power (or r-transitive-closure)
of Ln

q , denoted (Ln
q )

r, is the complete graph deprived
of a perfect matching. Then it is not very difficult

to see that γ1((L
n
q )

r) = 2, LD1((L
n
q )

r) = qn

2
and

Id1((L
n
q )

r) = qn − 1, which in turns implies the fol-
lowing:

Remark 2. If n, q and r are such that q is even and
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r = n× q
2
− 1, then γr(L

n
q ) = 2, LDr(L

n
q ) =

qn

2
and

Idr(L
n
q ) = qn − 1.

Remark 3. Using (1) and (2) and Remarks 1 and 2,
one obtains the following bounds:

qn

Vn,r,q

6 γr(L
n
q ) 6 LDr(L

n
q ) 6 Idr(L

n
q ) 6 qn − 1.

(3)

Our goal here is to use different heuristics, already
used elsewhere for other optimization problems, in
order to construct r-D, r-LD and r-Id codes as small
as possible in Ln

q . As a result, for the above three
types of codes, Tables 2, 3 and 4 will provide upper
bounds on their smallest cardinalities, for alphabet
size q ∈ {4, 5, 6}, dimension n up to 7, and radius r
up to 5. Define the density of a code C as the ratio
|C|/qn between the cardinality of C and the number
of vertices; Tables 5, 6 and 7 will provide the den-
sities of the computed codes, also for alphabet size
q ∈ {4, 5, 6}, dimension n up to 7, and radius r up
to 5.

2 The methods for obtaining r-D,

r-LD or r-Id codes

2.1 The combinatorial optimization

problems
The combinatorial optimization problems that we
want to solve are the following: given n, r and q,
minimize |C| where C is an r-D or an r-LD or an
r-Id code in Ln

q . We call these problems (n, r, q)-
DP, (n, r, q)-LDP and (n, r, q)-IdP respectively. In
the general case of any graph, the decision problems
associated with these problems are NP-complete
(see [6], [14], [2] or [24] for more references).

In order to solve (n, r, q)-DP, (n, r, q)-LDP and
(n, r, q)-IdP, we solve subproblems that we define
now. For any subset C of V , let α(C) be the number
of vertices which are not r-dominated by C , ζ(C) be
the number of pairs of vertices belonging to V \ C
which are not r-separated by C , and ξ(C) be the
number of pairs of vertices belonging to V which
are not r-separated by C . We set: fD(C) = α(C),
fLD(C) = α(C)+ζ(C) and fId(C) = α(C)+ξ(C).
Observe that:
- C is an r-D code if and only if fD(C) is equal to 0;
- C is an r-LD code if and only if fLD(C) is equal
to 0;
- C is an r-Id code if and only if fId(C) is equal to 0.

The subproblems associated with (n, r, q)-DP,
(n, r, q)-LDP and (n, r, q)-IdP consist in generating
codes C and in trying to minimize fD(C), fLD(C)
or fId(C) respectively. If we find a code C0 with
fD(C0) = 0, fLD(C0) = 0 or fId(C0) = 0, then C0

is an r-D or an r-LD or an r-Id code respectively and
we may try again with a smaller code.

In order to minimize fD, fLD or fId, we apply
a greedy algorithm, some metaheuristics (namely, a
descent method and a noising method; for references
on metaheuristics, see for instance [29] or [25] among
many possibilities) and, for small instances, an exact
enumerative method.

2.2 Greedy method
The greedy method performed here consists in adding
new vertices successively to the code C in construc-
tion until C becomes an r-D or an r-LD or an r-Id
code according to the studied problem. More pre-
cisely, at each step of the method, we choose to add
one vertex; the chosen vertex is such that the decrease
of fD for (n, r, q)-DP, of fLD for (n, r, q)-LDP, or
of fId for (n, r, q)-IdP is as large as possible. The
aim of such additions of extra vertices is to obtain a
value equal to 0 for fD, fLD or fId, in which case
the current code is an r-D or an r-LD or an r-Id code
respectively.

We may start from the empty set for C . Other
possibilities consist in starting from a random subset
of V or, for (n, r, q)-LDP and (n, r, q)-IdP, from an r-
dominating set of Ln

q (for instance, from the solution

obtained for (n, r, q)-DP); this allows to save time but
may build less good r-LD or r-Id codes (similarly, we
may start from an r-LD code for (n, r, q)-IdP).

The greedy method can be improved thanks to the
following two remarks.
1. For (n, r, q)-LDP or (n, r, q)-IdP, when a vertex v
is added to C , the complexity for evaluating the varia-
tions of ζ(C) or ξ(C) is about Vn,r,q × (qn − Vn,r,q).
Another way to compute this variation consists in
scanning a list containing the pairs of vertices which
are not r-separated and, for each such pair {a, b} of
this list, in checking whether v is a r-neighbour of a
but not of b or of b but not of a. The complexity is
then about the number of pairs of vertices which are
not r-separated. So, when this number becomes less
than Vn,r,q× (qn−Vn,r,q), we build an array contain-
ing the pairs of vertices which are not r-separated.
Of course, we update this array when a vertex is
added to the current code. This speeds up the greedy
method, and even more and more as the method runs
since the number of pairs of vertices which are not
r-separated decreases (anyway, we cannot apply this
trick from the beginning, because it usually requires
a too large memory-space).
2. When we look for a vertex which maximizes the
decrease of the objective function, we keep all the
vertices yielding this maximum decrease in a list L.
Let µ denote this maximum decrease. Then we go
through the list L. For each vertex v of L, if adding
v to the current code still allows to decrease the
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objective function by µ with respect to the current
code (this is necessarily the case for the first element
of L), then v is added to the current code before
considering the next element of L. This avoids the
computation of the maximal decrease at each step,
which is usually long; thus this considerably speeds
up the greedy algorithm, specially at the end of its
run.

2.3 Descent method (iterative improvement

method)
In order to improve the r-D or r-LD or r-Id code
provided by the greedy algorithm (or by any other
constructive method), we design a descent method
(also called iterative improvement method, or still hill
climbing method for a maximization problem).

We start from an r-D or an r-LD or an r-Id
code C . We wish to decrease the cardinality of C
by removing vertices of C , one by one. For this, we
first remove a vertex randomly chosen in C . We up-
date the objective function fD, fLD or fId according
to the problem. Then we try to restore an r-D or an
r-LD or an r-Id code without changing the current
number of codewords. If we succeed, we apply the
same process (i.e., removing a vertex) to the new r-D
or r-LD or r-Id code.

In order to recover an r-D or an r-LD or an r-
Id code, we perform elementary transformations (or
local transformations) with respect to the current
code C . An elementary transformation consists here
in removing a vertex u belonging to C and, simul-
taneously, in adding a vertex v which does not be-
long to C . The vertices u and v are randomly chosen.
We say that the transformation is good if the objec-
tive function fD, fLD or fId does not increase (the
variation of the objective function can be equal to 0);
otherwise, we say that it is bad.

Observe a main difference with respect to a usual
design of a descent method: in order to ensure the
convergence of the process, a good transformation
is quite often required to involve a strict decrease of
the objective function (this variation cannot be equal
to 0). It appears from our experiments that allowing
transformations which do not change the value taken
by the objective function may be preferable. Indeed,
when we cannot improve the current configuration
with only one transformation, then it is necessary to
perform several transformations if we want to escape
a local minimum in order to reach a better configura-
tion. The negative counterpart of this is that the pro-
cess can cycle without improving the current configu-
ration; it is then necessary to upper bound the number
of iterations performed by the method.

So, in the descent method, we try a given number
of elementary transformations, which is a parameter

of the method (of course directly related to the CPU
time that we want to spend to find an r-D or an r-LD
or an r-Id code). Only the good transformations are
actually performed: the objective function can never
increase. If the objective function fD, fLD or fId
according to the problem becomes equal to 0, then
the current code is again an r-D or an r-LD or an
r-Id code respectively; in this case, we remove a ran-
domly chosen vertex from the new r-D code or r-LD
code or r-Id code and we start a new descent. On
the contrary, if we perform the total number of trials
without obtaining a new r-D or r-LD or r-Id code,
we stop the whole process.

2.4 Noising method
This metaheuristic (see [5] for a review of its prin-
ciples and of applications) can be seen as a genera-
lization of the simulated annealing method (as well
as other metaheuristics; see [4]). The version of the
noising method applied in our experiments is very
close to the usual scheme of simulated annealing,
from which we draw the terminology of temperature.
In particular, a bad transformation may be accepted,
unlike in the descent method.

Four parameters are involved: the initial tempe-
rature T0, the number of temperature changes, the
number of elementary transformations tried for each
value of the temperature and a fixed real number λ
with 0 < λ < 1, meant to control the geometric
decrease of the temperature T : when T changes, T
becomes λT . The values of these parameters depend
on the considered problem. For example, to find a
2-D code of size 30 for (5, 2, 4)-DP, we applied the
noising method with an initial temperature equal to
50, 100 temperature changes, 107 elementary trans-
formations and λ = 0.95 (the CPU time was equal to
268 014 seconds, i.e. a little more than three days).

Consider an elementary transformation involving
a variation ∆ of the objective function fD, fLD or
fId (with ∆ > 0 when we deal with a bad elemen-
tary transformation). For each tried transformation,
we draw a real number p between 0 and 1 with a uni-
form distribution. The transformation is accepted if
we have ∆ 6 pT (hence, the main difference here
with simulated annealing is that, in simulated annea-
ling, the acceptance criterion would be ∆ 6 −T ln p;
the results obtained by a classic simulated annealing
are about the same as the ones reported below; the
noising method applied here avoids the computations
of logarithms). When T becomes less than 1, the
behaviour of the noising method at the end of its run
is qualitatively the same as the one of a descent.

2.5 Removing the unnecessary vertices
At the end of any of the previous methods, we con-
sider each vertex v of the computed r-D or r-LD
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or r-Id code according to the problem. If removing
v leaves anyway a suitable code, we definitively re-
move v.

According to our experiments, this simple prin-
ciple may improve the current configuration quite
often, especially when many elementary tranforma-
tions were performed with a variation of the objec-
tive function equal to 0 (see above). Indeed, these
zero-variation transformations then achieve a “mi-
xing” that increases diversity by changing the code-
words inside the current configuration, which can be
profitable to move away from a local minimum.

2.6 Exact method
For small values of n and q, we also looked for mini-
mum r-D or r-LD or r-Id codes by using an exact
method. Such a method is based on an exhaustive
enumeration of the codes. We start with a code C of
low cardinality k. While C is not an r-D or an r-LD
or an r-Id code according to the considered problem,
we generate the next (according to the lexicographic
order) code of cardinality k. If all the codes of size k
have been tried in vain, we increase k and we repeat
the same process.

Another way to apply this enumerative method is
to start with an r-D or an r-LD or an r-Id code of
size k and to decrease k: while we find a suitable code
with a given cardinality k, we decrease k; when we
do not find any longer a suitable code of cardinality k,
we conclude that k + 1 is the minimum size. This
is particularly useful for checking the optimality of a
given r-D or r-LD or r-Id code of cardinality k, when
k is not too large: we try all the (k−1)-sized codes to
check that none of them is appropriate. In the tables
below, this is indicated by the key “*b”; more gene-
rally, a star “*” denotes the minimum cardinality of
an r-D or an r-LD or an r-Id code.

3 Tables of results
Tables of bounds for identifying codes are given in
[11] for 4 6 q 6 6, 2 6 n 6 7 and 1 6 r 6 5.
This is why we chose the same values for the para-
meters q, n, r in our study, even if we considered
codes other than identifying, namely dominating and
locating-dominating.

The lower bounds ⌈ qn

Vn,r,q

⌉ given in Table 1 are

weak, specially for locating-dominating codes and
identifying codes, but probably also for dominating
codes. Indeed, even for small values of r and n, we
may observe that the lower bounds and the minimum
values are not equal (for instance, for n = 3, r = 1,
q = 4: 10 versus 12, see Table 2; for n = 2, r = 2,
q = 5: 2 versus 3, see Table 3; for n = 2, r = 2,
q = 6: 3 versus 4, see Table 4). For identifying
codes, better lower bounds exist for q = 4 (see [21]

for r = 1 and [11] for r > 1), and for q > 4, q even
and r = 1 [20]. They are given in Tables 2, 3 and 4,
together with the upper bounds (all constructive).

The results reported in these tables were obtained
with different computers and by the application of
different methods among the ones depicted above.
The aim of this paper is not to study and to compare
the efficiency of these methods by putting them in
competition, but on the contrary to make them colla-
borate in order to compute the best possible codes.
For these reasons, we do not report the CPU times
required to compute the r-D, r-LD or r-Id codes.
These CPU times can be very large, up to several
weeks: for instance, we needed 699 809 seconds (i.e.
a little more than 8 days) to improve by 1 a 4-D code
with 119 vertices for n = q = 6 by the descent
method, and then 1 448 007 extra seconds (i.e. about
16.8 days) in order to obtain a code with 117 vertices
from the code with 118 vertices.

The r-D, r-LD or r-Id codes that we computed
and of which the sizes are reported in Tables 2, 3
and 4 can be found at the following address:

https://perso.telecom-
paristech.fr/hudry/LeeHypercubesCodes.html

The codewords available in the files displayed
at this address are encoded as integers thanks to
the function ϕ defined as follows. Each vertex
u of Ln

q , i.e. a vector u = (u1, u2, . . . , un),
can be associated with an integer ϕ(u) defined by
ϕ(u) =

∑n
i=1

uiq
i−1. For instance, for q = 4, we get

ϕ(1, 2, 0, 2) = 1×40+2×41+0×42+2×43 = 137.
Obviously, ϕ is a one-to-one function between the
vertices of Ln

q and the integer values between 0 and
qn − 1. This representation saves space.

If we succeed in improving the values reported in
Tables 2, 3 and 4 later on, we will update these files.

Keys to Tables 2, 3 and 4
Lower bounds are given for r-identifying codes, for
q = 4, and q = 6 with r = 1. They are in italics.
Also for identifying codes, our new upper bounds are
followed by the previously best known upper bounds
between brackets. Keys are mainly for identifying
codes, relying on [20], [21], and [11]:
a = because LDr(G) 6 Idr(G) (but none of our
heuristics could find the LD-code; this happens only
once, for n = 7, r = 1, q = 6)
∗b = optimal: exhaustive search
∗c = optimal: r = n× q

2
−1 for q even (for r-D, r-LD

and r-Id-codes, see Remark 2)

∗d = optimal: r > n × q
2
, q even, and r > n × q−1

2
,

q odd (for r-D or r-LD-codes, see Remark 1)
∗e = optimal: the upper bound coincides with the
lower bound given in Table 1
∗f = optimal, other cases
g, h and i refer to articles: g = [20], h = [21], i = [11].
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4 Analysis of the results, conjectures

and open problems
Tables 2, 3 and 4 provide upper bounds for the mini-
mum sizes of r-D codes, r-LD codes and r-Id codes
in the graphs Ln

q for 4 6 q 6 6, 2 6 n 6 7 and
1 6 r 6 5 (remember that, for q = 2 and q = 3, Lee
distance and Hamming distance are the same, yiel-
ding the equality Ln

q = Hn
q ; so we do not give results

for q ∈ {2, 3}: they can be found in the references
given above, in Section 1).

Some of these values are optimal: they are indi-
cated by a star in the tables. Is it possible to improve
some of the others? This is a challenge...

From the values displayed in Tables 2, 3 and 4, we
may observe interesting phenomena.

• Almost all the known upper bounds are signifi-
cantly improved.

• For any fixed parameters n and q, γr(L
n
q ) is

non-increasing when r increases; this is quite
obvious, since the size Vn,r,q of the closed r-
neighbourhood of any vertex increases with r:
any vertex r-dominates more and more vertices
and any r-dominating code is also an (r + 1)-
dominating code.

• This is not the case for LDr(L
n
q ) and Idr(L

n
q ).

Indeed, when r increases, the number of vertices
r-dominated by a given codeword increases too,
exactly as for γr, but not necessarily the number
of r-separated vertices. More precisely, for any
fixed parameters n and q, the computed values
for LDr(L

n
q ) and Idr(L

n
q ) first non-incresase and

then non-decrease. This suggests the following
conjecture:

Conjecture 1 and open problem 1. [Unimodality
with respect to r] Let n and q be given. When r in-
creases (starting from r = 1), the function LDr(L

n
q ),

after a possible non-increase, non-decreases until it
reaches the value qn−1; the function Idr(L

n
q ), after a

possible non-increase, non-decreases until Ln
q admits

no r-identifying code.
If so, what are the values of r in function of n and

q for which LDr(L
n
q ) and Idr(L

n
q ) reach their mini-

mum values?

• If now whe fix r and q, we observe that
γr(L

n
q ) non-decreases when n increases

(note that γr may be steady: for instance
γ3(L

2
4) = γ3(L

3
4) = 2). This behaviour is sys-

tematic, as shown by the following proposition:

Proposition 1. Let r and q be given. When n
decreases until n = 2, the function γr(L

n
q ) is non-

increasing.

Proof. Let Cn+1 be an optimal r-dominating
code in Ln+1

q , and Cn be the code defined in

Ln
q by Cn = {(c1, . . . , ci−1, ci+1, . . . , cn+1) :

∃j ∈ {0, 1, . . . , q − 1} such that
(c1, c2, . . . , ci−1, j, ci+1, . . . , cn+1) ∈ Cn+1},
that is, we simply delete the i-th coordinate in
Cn+1, for one i ∈ {1, 2, . . . , n + 1}. In the follo-
wing, for simplicity, we take i = n + 1. Consider
any vertex (v1, . . . , vn) ∈ Ln

q . For every vertex

v = (v1, . . . , vn, vn+1) ∈ Ln+1
q , there is a codeword

c = (c1, . . . , cn, cn+1) ∈ Cn+1 with dL(v, c) 6 r.
Then dL((v1, . . . , vn), (c1, . . . , cn)) 6 r, which
proves that Cn is r-dominating in Ln

q . Hence

γr(L
n
q ) 6 |Cn| 6 |Cn+1| = γr(L

n+1
q ). �

• The behaviour of LDr(L
n
q ) is not the same as

the one of γr(L
n
q ) and seems more erratic when

n increases with fixed r and q: for r = 5 and
q = 4, LD5(L

n
4 ) first increases (LD5(L

2
4) = 15,

LD5(L
3
4) = 32) then decreases and, if we

consider the computed values, finally increases
again (21 for n = 4, 16 for n = 5, 25 for
n = 6, 41 for n = 7). Such a behaviour
may be rather surprising since the number of ver-
tices to be r-dominated and the number of pairs
of vertices to be r-separated increase dramati-
cally: thus LDr(L

n
q ) may be expected to increase

when n increases. Similarly, Idr(L
n
q ) does not

inscrease with every value of n. But in fact, these
phenomena seem to appear only when n is small
enough with respect to r. Hence the following
conjecture and open problem:

Conjecture 2 and open problem 2. [Increase of LDr

and Idr with respect to n for n large enough] Let r
and q be given. There exist integers NLD(r, q) and
NId(r, q) such that, respectively for n > NLD(r, q)
and n > NId(r, q), the values of LDr(L

n
q ) and of

Idr(L
n
q ) increase when n increases.

If so, what are the values of NLD(r, q) and
NId(r, q) in function of r and q?

• When considering the Hamming distance, we
have the following inequality ([13]; see also [3]):

for p > r > 1, Idr(H
n+p
2

) 6 2pIdr(H
n
2 ). On

the other hand, we have the following theorem
for γr, thanks to the so-called direct sum cons-
truction:

Theorem 1. Let r and q be given. Then,
for any dimension n, we have the inequality
γr(L

n+1
q ) 6 q × γr(L

n
q ).

Proof. Let Cn be a minimum r-D code in
Ln
q : |Cn| = γr(L

n
q ). For each codeword

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.24 Irene Charon, Olivier Hudry, Antoine Lobstein

E-ISSN: 2224-2880 178 Volume 21, 2022



u = (u1, u2, ..., un) of Cn, consider the q vertices
(u1, u2, ..., un, i) of Ln+1

q with i ∈ {0, 1, ..., q − 1}.

Let Cn+1 be the code of Ln+1
q thus obtained.

Let v = (v1, ..., vn, vn+1) be any vertex of
Ln+1
q . Since Cn is an r-D code of Ln

q , there

exists a codeword (u1, u2, ..., un) ∈ Cn with
dL((v1, ..., vn), (u1, ..., un)) 6 r. Hence the inequa-
lity dL((v1, ..., vn, vn+1), (u1, ..., un, vn+1)) 6 r.
Since (u1, ..., un, vn+1) belongs to Cn+1, Cn+1 is an
r-D code of Ln+1

q with q × γr(L
n
q ) codewords. �

Note that, if the computed values for γ1(L
6
4)

and γ1(L
7
4), i.e. 385 and 1540, or for γ1(L

4
6), γ1(L

5
6),

γ1(L
6
6) and γ1(L

7
6), i.e. respectively 144, 864, 5 184

and 31 104, are the minimum ones, then the inequa-
lity γ1(L

n+1
q ) 6 q× γ1(L

n
q ) of the theorem would be

tight for these values.
These observations lead us to the following

conjecture (which would extend the inequality

Idr(H
n+p
2

) 6 2pIdr(H
n
2 ) to any value of p, in

particular for r = p = 1):

Conjecture 3. [Bounded increase of LDr and
Idr when the dimension n increases by 1].
Let r and q be given. For any dimen-
sion n, we have LDr(L

n+1
q ) 6 q×LDr(L

n
q ) and

Idr(L
n+1
q ) 6 q×Idr(L

n
q ).

• Tables 5, 6 and 7 provide the densities of the
computed codes, i.e. the ratios between the
computed cardinalities and the number of ver-
tices. For γr, the computed densities are non-
increasing both with respect to n (as announ-
ced by Theorem 1) and r (see above for the
decrease with respect to r) but not with res-
pect to q (compare for instance the – exact –
densities for γ1(L

2
5) and γ1(L

2
6)). For LDr

and Idr, the computed densities are decreasing
with respect to n (see Conjecture 3) but not
with respect to r or to q (compare for instance
the values for LD2(L

2
4) and LD3(L

2
4), the va-

lues for LD1(L
3
4) and LD1(L

3
5), the values for

Id2(L
2
4) and Id3(L

2
4), the values for Id1(L

5
4) and

Id1(L
5
5)).

Conjecture 4. [Non-increase of the densities with
respect to n]. Let r and q be given. Conjecture 3
is equivalent to the non-increase of the densities for
LDr(L

n
q ) and Idr(L

n
q ); furthermore, we conjecture

that the densities for γr(L
n
q ), LDr(L

n
q ) and Idr(L

n
q )

tend towards 0 when n increases.

• The compared costs of r-domination, r-location-
domination and r-identification, i.e. the diffe-
rences between optimal cardinalities, are studied

for general graphs in [19]. While the gaps bet-
ween optimal cardinalities can be very large for
general graphs, the differences between the com-
puted values for Ln

q are, for a large majority of
cases, rather small with respect to the number qn

of vertices, as shown by Tables 5, 6 and 7. In
particular, the computed values of LDr(L

n
q ) and

Idr(L
n
q ) become very close when n increases for

given r and q: r-separating all the pairs of ver-
tices does not cost much more than r-separating
only the pairs of non-codewords. Sometimes, the
computed values of LDr(L

n
q ) and Idr(L

n
q ) are

the same (see Tables 2, 3 and 4). Hence an open
problem:

Open problem 3. [Equality between LDr(L
n
q ) and

Idr(L
n
q )]. Can we characterize the values of n, r and

q for which we have LDr(L
n
q ) = Idr(L

n
q )?

• Figures 1, 2 and 3 allow to see the evolu-
tion of the ratios γr(L

n
q )/Id(Ln

q ), or rather their
approximations, based on the computed va-
lues of these two parameters, respectively for
q = 4, q = 5 and q = 6. Each figu-
re contains five curves, one for each value
of r ∈ {1, 2, 3, 4, 5}. The x-axis represents
the dimension n; the y-axis provides the
approximation of γr(L

n
q )/Id(Ln

q ). As we have

γr(L
n
q ) 6 Id(Ln

q ), the ratios are always upper
bounded by 1. In a sense, a curve illustrates,
for the associated radius r, the part of the code
required for the r-domination and the one requi-
red for the r-separation. Except for few va-
lues, we observe that the curves are rather in-
creasing, which would mean that the part of the
r-domination becomes more and more impor-
tant inside the code when n increases, for fixed
q and r. Of course, as the computed values
of LD(Ln

q ) and of Id(Ln
q ) are quite similar, we

would observe the same phenomenon if studying
the ratios γr(L

n
q )/LD(Ln

q ). This suggests the
next open problem.

Open problem 4. [Increase of γr(L
n
q )/LD(Ln

q )
and of γr(L

n
q )/Id(Ln

q ) with respect to n for n large
enough] Let r and q be given. Do there exist inte-
gers NLD(r, q) and NId(r, q) such that, respectively
for n > NLD(r, q) and n > NId(r, q), the values
of γr(L

n
q )/LD(Ln

q ) and of γr(L
n
q )/Id(Ln

q ) increase
when n increases?

If so, what are the values of the limits of
γr(L

n
q )/LD(Ln

q ) and of γr(L
n
q )/Id(Ln

q )? Are they

equal to 1? Otherwise, is the limit of LD(Ln
q )/Id(Ln

q )
anyway equal to 1?
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r = 1 r = 2 r = 3 r = 4 r = 5

n (qn) Vn,r,q ⌈ qn

Vn,r,q

⌉ Vn,r,q ⌈ qn

Vn,r,q

⌉ Vn,r,q ⌈ qn

Vn,r,q

⌉ Vn,r,q ⌈ qn

Vn,r,q

⌉ Vn,r,q ⌈ qn

Vn,r,q

⌉

q = 4

2 (16) 5 4 11 2 15 2 16 1 16 1

3 (64) 7 10 22 3 42 2 57 2 63 2

4 (256) 9 29 37 7 93 3 163 2 219 2

5 (1024) 11 94 56 19 176 6 386 3 638 2

6 (4096) 13 316 79 52 299 14 794 6 1145 4

7 (16384) 15 1093 106 155 470 35 1471 12 3473 5

q = 5

2 (25) 5 5 13 2 21 2 25 1 25 1

3 (125) 7 18 25 5 57 3 93 2 117 2

4 (625) 9 70 41 16 121 6 257 3 417 2

5 (3125) 11 285 61 52 221 15 581 6 1173 3

6 (15625) 13 1202 85 184 365 43 1145 14 2777 6

7 (78125) 15 5209 113 692 561 140 2045 39 5797 14

q = 6

2 (36) 5 8 13 3 23 2 31 2 35 2

3 (216) 7 31 25 9 60 4 108 2 156 2

4 (1296) 9 144 41 32 125 11 285 5 517 3

5 (7776) 11 707 61 128 226 35 626 13 1378 6

6 (46656) 13 3589 85 549 371 126 1211 39 3143 15

7 (279936) 15 18663 113 2478 568 493 2136 132 6392 44

Table 1: lower bounds given by (3), for 4 6 q 6 6, 2 6 n 6 7 and 1 6 r 6 5.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.24 Irene Charon, Olivier Hudry, Antoine Lobstein

E-ISSN: 2224-2880 182 Volume 21, 2022



n (qn) r = 1 r = 2 r = 3 r = 4 r = 5

γ LD Id γ LD Id γ LD Id γ LD Id γ LD Id

2 (16) 4∗e 6∗b 7∗f [7h] 2∗e 5∗b 4i 6∗f [7i] 2∗c [8∗c] 15∗b[15∗c] 1∗d [15∗d] - 1∗d [15∗d] -

3 (64) 12∗b 16 18h 19 [21i] 4∗b 8∗b 8∗f [8i] 2∗e 7∗b 5i 7∗b[7i] 2∗e 15 4i 18 [20i] 2∗c [32∗c] [63∗c]

4 (256) 32 56 56h 62 [67i] 12 20 17i 21 [22i] 4∗b 13 8i 13 [14i] 2∗e 11 5i 13 [14i] 2∗e 21 4i 21 [22i]

5 (1024) 120 203 183h 211 [266i] 30 57 42i 60 [92i] 12 28 17i 28 [51i] 4∗b 16 8i 16 [24i] 2∗e 16 5i 18 [28i]

6 (4096) 385 723 623h 748 [1064i] 104 174 115i 187 [352i] 31 67 35i 70 [154i] 12 34 16i 34 [64i] 4∗e 25 8i 25 [46i]

7 (16384) 1540 2690 2164h 2711 [4256i] 341 568 334i 586 [1407i] 96 182 81i 184 [462i] 33 77 32i 78 [176i] 13 41 15i 41 [112i]

Table 2: bounds for q = 4

n (qn) r = 1 r = 2 r = 3 r = 4 r = 5

γ LD Id γ LD Id γ LD Id γ LD Id γ LD Id

2 (25) 5∗e 9∗b 10∗b [10g] 3∗b 6∗b 6∗b [6i] 2∗e 9∗b 10∗b [11i] 1∗d [24∗d] - 1∗d [24∗d] -

3 (125) 20 32 36 [39i] 8∗b 14 15 [16i] 3∗e 10 11 [11i] 2∗e 13 14 [15i] 2∗e 27 32 [33i]

4 (625) 84 139 150 [195i] 20 44 48 [73i] 9 23 25 [42i] 4∗b 18 18 [18i] 3∗b 20 20 [20i]

5 (3125) 397 624 654 [975i] 98 163 175 [365i] 31 69 70 [160i] 13 37 37 [52i] 5∗b 27 27 [38i]

6 (15625) 1792 2811 2912 [4875i] 391 639 685 [1521i] 113 217 219 [624i] 40 93 93 [256i] 16 52 52 [176i]

7 (78125) 8422 13135 13539 [24375i] 1648 2613 2701 [7605i] 419 733 739 [2847i] 130 264 265 [1168i] 48 121 124 [520i]

Table 3: bounds for q = 5

n (qn) r = 1 r = 2 r = 3 r = 4 r = 5

γ LD Id γ LD Id γ LD Id γ LD Id γ LD Id

2 (36) 8∗e 12∗b 12g 14∗b [14i] 4∗b 7∗b 8∗b [9g] 2∗e 7∗b 8∗b [9i] 2∗e 9∗b 13∗b [14i] 2∗c [18∗c] [35∗c]

3 (216) 36 52 54∗g 54 [54∗g] 12 23 24 [27i] 6∗b 14 14 [16i] 2∗e 11 11 [13i] 2∗e 14 14 [16i]

4 (1296) 144 288 260g 310 [324g] 47 94 98 [149i] 16 46 47 [75i] 9 26 27 [48i] 4∗b 23 23 [29i]

5 (7776) 864 1552 1296g 1609 [1701g ] 241 416 445 [756i] 79 167 168 [378i] 30 79 81 [224i] 14 47 47 [117i]

6 (46656) 5184 8616 6666g 8747 [8748g ] 1195 1992 2039 [2916i] 338 636 644 [1458i] 117 255 259 [729i] 47 126 128 [432i]

7 (279936) 31104 [34992a] [34992∗fg] 5961 9378 10540 [17496i] 1517 2583 2882 [8046i] 473 887 901 [4023i] 177 376 389 [2025i]

Table 4: bounds for q = 6
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n (qn) r = 1 r = 2 r = 3 r = 4 r = 5

γ LD Id γ LD Id γ LD Id γ LD Id γ LD Id

2 (16) 25 %* 37.5 %* 43.75 %* 12.5 %* 31.25 %* 37.5 %* 12.5 %* 50 %* 93.75 %* 6.25 %* 93.75 %* - 6.25* % 93.75* % -

3 (64) 18.75 %* 25 % 29.69 % 6.25 %* 12.5 %* 12.5 %* 3.13 %* 10.94 %* 10.94 %* 3.13 %* 23.44 % 28.13 % 3.13 %* 50 %* 98.44 %*

4 (256) 12.5 % 21.88 % 24.22 % 4.69 % 7.81 % 8.20 % 1.56 %* 5.08 % 5.08 % 0.78 %* 4.30 % 5.08 % 0.78 %* 8.20 % 8.20 %

5 (1024) 11.72 % 19.82 % 20.61 % 2.93 % 5.57 % 5.86 % 1.17 % 2.73 % 2.73 % 0.39 %* 1.56 % 1.56 % 0.20 %* 1.56 % 1.76 %

6 (4096) 9.40 % 17.65 % 18.26 % 2.54 % 4.25 % 4.57 % 0.76 % 1.64 % 1.71 % 0.29 % 0.83 % 0.83 % 0.10 %* 0.61 % 0.61 %

7 (16384) 9.40 % 16.42 % 16.55 % 2.08 % 3.47 % 3.58 % 0.59 % 1.11 % 1.12 % 0.20 % 0.47 % 0.48 % 0.08 % 0.25 % 0.25 %

Table 5: upper bounds for densities for q = 4

n (qn) r = 1 r = 2 r = 3 r = 4 r = 5

γ LD Id γ LD Id γ LD Id γ LD Id γ LD Id

2 (25) 20 %* 36 %* 40 %* 12 %* 24 %* 24 %* 8 %* 36 %* 40 %* 4 %* 96 %* - 4 %* 96 %* -

3 (125) 16 % 25.6 % 28.8 % 6.4 %* 11.2 % 12 % 2.4 %* 8 % 8.8 % 1.6 %* 10.4 % 11.2 % 1.6 %* 21.6 % 25.6 %

4 (625) 13.44 % 22.24 % 24 % 3.2 % 7.04 % 7.68 % 1.44 % 3.68 % 4 % 0.64 %* 2.88 % 2.88 % 0.48 %* 3.2 % 3.2 %

5 (3125) 12.7 % 19.97 % 20.93 % 3.14 % 5.22 % 5.6 % 0.99 % 2.21 % 2.24 % 0.42 % 1.18 % 1.18 % 0.16 %* 0.86 % 0.86 %

6 (15625) 11.47 % 17.99 % 18.64 % 2.50 % 4.09 % 4.38 % 0.72 % 1.39 % 1.40 % 0.26 % 0.60 % 0.60 % 0.10 % 0.33 % 0.33 %

7 (78125) 10.78 % 16.81 % 17.33 % 2.11 % 3.34 % 3.46 % 0.54 % 0.94 % 0.95 % 0.17 % 0.34 % 0.34 % 0.06 % 0.15 % 0.16 %

Table 6: upper bounds for densities for q = 5

n(qn) r = 1 r = 2 r = 3 r = 4 r = 5

γ LD Id γ LD Id γ LD Id γ LD Id γ LD Id

2 (36) 22.22 %* 33.33 %* 38.89 %* 11.11 %* 19.44 %* 22.22 %* 5.56 %* 19.44 %* 22.22 %* 5.56 %* 25 %* 36.11 %* 5.56 %* 50 %* 97.22 %*

3 (216) 16.67 % 24.07 % 25 %* 5.56 % 10.65 % 11.11 % 2.78 %* 6.48 % 6.48 % 0.93 %* 5.09 % 5.09 % 0.93 %* 6.48 % 6.48 %

4 (1296) 11.11 % 22.22 % 23.92 % 3.63 % 7.25 % 7.56 % 1.23 % 3.55 % 3.63 % 0.69 % 2.01 % 2.08 % 0.31 %* 1.77 % 1.77 %

5 (7776) 11.11 % 19.96 % 20.69 % 3.10 % 5.35 % 5.72 % 1.02 % 2.15 % 2.16 % 0.39 % 1.02 % 1.04 % 0.18 % 0.60 % 0.60 %

6 (46656) 11.11 % 18.47 % 18.75 % 2.56 % 4.27 % 4.37 % 0.72 % 1.36 % 1.38 % 0.25 % 0.55 % 0.56 % 0.10 % 0.27 % 0.27 %

7 (279936) 11.11 % 12.5 % 12.5 %* 2.13 % 3.35 % 3.77 % 0.54 % 0.92 % 1.03 % 0.17 % 0.32 % 0.32 % 0.06 % 0.13 % 0.14 %

Table 7: upper bounds for densities for q = 6
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Figure 1: Approximation of the ratios γr(L
n
4 )/Id(Ln

4 ) from the computed values.

Figure 2: Approximation of the ratios γr(L
n
5 )/Id(Ln

5 ) from the computed values.
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Figure 3: Approximation of the ratios γr(L
n
6 )/Id(Ln

6 ) from the computed values.
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