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Abstract: To semisimple polynomials over a Galois field of arbitrary characteristics we mean polynomials 
formed by the product of two coprime irreducible polynomials with a priori unknown degrees. The main task of 
this study is to develop an efficient algorithm for factorizing the degree of semisimple polynomials. The 
efficient factorization algorithms are those that provide a minimum of computational complexity. The proposed 
algorithm is reduced to solving a system of two equations for the unknown degrees of the factors of a 
semisimple polynomial. The right-hand sides of the system of equations are as follows: one of them is the 
degree n  of a semisimple polynomial, known a priori, and the second, the cycle period C  of the polynomial, is 
calculated using the so-called fiducial grid. At each rung of the ladder, the simplest recurrent modular 
computations are carried out, after which the cycle period C  of the semisimple polynomial is determined, 
which is equal to the least common multiple of the degrees of the factors of the polynomial. Reducing the 
amount of calculations is achieved by switching from a linear scale when determining the cycle period C  to a 
logarithmic one. The proposed factorization algorithms are invariant to the characteristic of the field generated 
by irreducible polynomials. Various options for the relationship between the parameters n  and C  are 
considered. 
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1 Introduction  
One of the most important questions related to 
polynomials ( )nf x  of degree n  in one variable x  
with coefficients over a finite Galois field ( )GF p  
is the question of the type of expansion 
(factorization) of the polynomial ( )nf x . 

Definition 1. By the type of decomposition of a 
polynomial ( )nf x , we will mean [1] the number 
K  and degrees In  of irreducible polynomials 

1 2
, , ,

kn n nf f f   (possibly repeating), the product of 

which forms a given polynomial nf , 
1

k

i

i

n n
=

= . 

For the sake of completeness, we recall some 
facts and definitions related to irreducible 
polynomials (IP). 

A. Irreducible polynomials can be represented 
in two forms. The first of these is the so-called 
polynomial form, which we will call the algebraic 

form: 

1
1

0
( )

n
k n n

n k n n

k

f x x x x −

−

=

=  =  + +  

1 0
k

k x x+ + + +                      (1) 

and the second is the vector form, which is a set of 
coefficients k  of the polynomial, including zero 
coefficients of the absent monomials of series (1): 

1 1 0n n n kf −=      .               (2) 

 Expressions (1) and (2) are natural forms of 
writing IP, widely used, for example, in positional 
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number systems [2], in which the most significant 
digits are located on the left side of the number. 

B. Polynomials are characterized by some 
numeric parameters. One of these is the degree of 

the polynomial, which is equal to the maximum 
degree of the monomial included in the polynomial 
with a nonzero coefficient and is denoted 
deg( ( ))f x  — for an algebraic and deg( )f  — for a 
vector form. The second most important parameter 
of the IP is its order, also called the period or 
exponent — this is the smallest natural number m  
at which ( )f x  it turns out to be a divisor of a 
binomial 1mx − , that is displayed as follows: 

( ) 1m

nf x x −| .                       (3) 

The order of the polynomial is denoted as 
( )ord ( )nf x  or ord ( )nf  for the algebraic and 

vector forms, respectively. Where it seems more 
convenient, along with ord ( )nf  we will also use 
the notation nL . 

C. Finally, a distinction is made between 
primitive polynomials (PrP) and polynomials that 
are not primitive. For convenience, the latter will 
be called simple irreducible polynomials (SIP). 
Primitive polynomials are irreducible polynomials 
with the maximum order , maxnL , which is 

determined by the relation 

, max 1n

nL р= − ,                        (4) 

where n  — is the degree of the polynomial nf , 
and p  — is the characteristic of the extended 
Galois field generated by the IP nf . 

Along with semiprime, that is, numbers formed 
by the product of two primes [3], algebra [4] also 
considers semisimple polynomials (SiM-
polynomials). 

Definition 2. A polynomial [2] ( )
n

f x  over 

( )GF p  is called semisimple if, for any of its 
decomposition into a product of irreducible 
polynomials, the factors 

1
( )nf x  and 

2
( )nf x  are 

coprime 

The superscript 2 in square brackets just 
indicates that a SiM-polynomial [2] ( )

n
f x  is formed 

by the product of two relatively simple irreducible 
polynomials. 

The main task of this article is to develop 
efficient algorithms for the expansion of the degree 
of SSP [2] ( )

n
f x  in one variable over Galois fields 

( )GF p  of arbitrary characteristics p . Effective 
will include algorithms for factorizing the degree of 
polynomials [2] ( )

n
f x  that provide a minimum of 

computational complexity. 
The formulated research problem is a special 

case of a more general problem of factorization of 
polynomials, which is reduced to the representation 
of a given polynomial in the form of a product of 
polynomials of lower degrees. To date, a large 
number of papers have been published devoted to 
the factorization of composite polynomials [5 – 9]. 
At the same time, insufficient attention has been 
paid to the assessment of quantitative 
characteristics such as the expansion of 
polynomials. We can only cite the survey article [1] 
as an example, in which it is noted that there is an 
algorithm of polynomial complexity to answer the 
question about the type of decomposition of 
polynomials. At the same time, no clarifications 
regarding the essence of this algorithm are given in 
the cited work. This circumstance turned out to be 
the motive that predetermined the direction of this 
research. 

The problem statement can be explained as 
follows. Suppose that a SiM-polynomial [2] ( )

n
f x  of 

degree n  is given over the field ( )GF p , formed by 
the product of two coprime Ips 

1
( )nf x  and 

2
( )nf x

with a priori unknown degrees 1n  and 2n  such that 

1 2

[2]
n

p

n nf f f=  ,  1 2n n n+ = .           (5) 

Thus, the problem to be solved is reduced to 
determining the degrees 1n  and 2n  IP, which 

together form a polynomial [2]
n

f . The 

mathematical basis of this research was formed by 
the results presented in the article [10]. 
 There are various areas of fundamental and 
applied research, for which the problem of 
factorization of degrees of SiM-polynomials, 
considered in this article, plays an important role. 
Let us point out, for example, such areas as 
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cryptography [11], the algebraic theory of modular 
computing [12, 13], intelligent computing [14, 15], 
artificial intelligence [16, 17], etc. 
 

2 Axiomatic Foundations of  
Factorization of the Degree of   
DSemisimple Polynomials
 Let us present simple, often obvious (or well-
known) statements, formulated in the form of 
axioms, which, as we will see below, simplify the 
solution of the problem of factorization of 
semisimple polynomials. Such axioms will be 
denoted by kA , where is k − the number of the 
axiom. 

Axiom 1A . Arbitrary irreducible polynomials 
over a field (both simple and primitive) support 
comparison 

( )
[ 1]1 0 1(mod )

np

nf
−

 ,  2n  ,            (6) 

where [ ]

times

( ) m

m

a aa aa= . 

The axiom 1A  is a consequence of Lemma 2.3 
from [6], according to which the equality 

1(mod ) 1
np

nf − =  holds for each nonzero element 

1   of the field ( )nGF p  generated by the IP nf . 

( )
[ 1](1 0 ) 1

n

n

p

fRes
−

= ,  2n  ,             (7) 

where ( ) bRes a −  is the residue of the number a  
by modulo b . 

Computational operations of algorithms for 
factorization of semisimple polynomials (see 
Section 3) inherit some features of operations from 
relation (7). The main problem that manifests itself 
in the implementation of scheme (7) is associated 
with the large number of calculations required to 
confirm the comparison. Indeed, the number of 
successive calculation steps at the stage of the 
formation of the multiplicative group *( )nGF p , as 
well as the number of zero bits of the component 

( )
[ 1]0

np −  on the left-hand side of equality (7), 
obeys the law of the exponential function of the 
degree of the polynomial in base, that is, it grows 

faster than any polynomial function. To overcome 
the “nightmare of large numbers”, which arises as 
soon as the degree exceeds several tens, let us pass 
in (7) from a linear to a logarithmic “time scale”, 
the explanations for which are given below. 

Definition 3. A sequence of natural numbers 
0,1, ..., 1nk p= −  that are exponents of a 

generating element   of a multiplicative group of 
maximum order (MGMO) 

 * 0 1 1( ) , , , , ...,
nn k pGF p −=      

will be called the "linear scale" of the group. 

It is quite obvious that the number of 
equidistantly spaced points 0,1, ..., 1np −  on a 
linear scale, for a degree n , which, for example, in 
cryptographic applications is often several 
thousand, can reach nightmarishly large values. To 
overcome such a nightmare, we will perform the 
transition from a linear to a logarithmic scale, at 
each equidistantly spaced point of which 

1, 2, ...,r n=  the corresponding component of the 
MGMO is calculated. 

Definition 4. A sequence of natural numbers 
1, 2, ...,r n= , which are indicators of the degree 

of characteristics p  of a group *( )nGF p  in an 

element , 1r

r pt p= − , will be called the logarithmic 

scale of the group. 

Let us introduce (Table 1) for 2p =  auxiliary 
numerical parameters r  and , 2rt . The subscript 2 

corresponds to characteristic p  of the field ( ).GF p  

Table 1. Auxiliary parameters MGMO for (2)GF  

r  1 2 3 4 5 6 7 8 … 

, 2rt  1 3 7 15 31 63 127 255 … 

Let us "tie" the parameters from Table 1 to the 
characteristics of the so-called fiducial grid (Fig. 1), 
which consists of a set of parallel straight lines 
(grid steps). 

 

 

Fig. 1. Fiducial grid 

1 2 3 4 5 6 7 8r

| | | | | | | |
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Table 1 the following designations are adopted: 
r −  number of the step of the fiducial grid; ,2rt −   

the degree of the binary polynomial rCV , let's call 
it the Coordinate Vector, the left bit of which is 1, 
and the rest are filled with zeros, i.e.  

, 2

100...0
r

r

t

CV = .                          (8) 

 The marks , 2rt , being evenly spaced along with 

the index r  on a certain axis, just form the 
aforementioned "logarithmic time scale". The 
parameter , 2rt  is nothing more than the order 

(length) of the zero vector of the polynomial, the 
number of zero digits of which is determined by the 
formula ,2 2 1r

rt = − . 

 We represent the fiducial grid (Fig. 1), 
corresponding to the polynomial nf , in the form of 

a vector [ ]

бит

11 111 n

n

= . Each r − th unit in [ ]1 n  

symbolizes a coordinate vector rCV  calculated at 
the r − th step of the fiducial grid. The law of 
changing the order , 2rt  of zero digits of a binary 

vector rCV  can be easily established by analyzing 
the data in the bottom line of Table 1. Namely 

,2 1,22 1r rt t −=  + , 0 0t = , 1,r n= .         (9) 

 Let us introduce some notations. Let 
( )

nr r fRes CV=S  denote the residue of the 

coordinate vector rCV  modulo a polynomial nf . 
Relations (9) form the fundamental basis of the 
proposed algorithm for factorizing semisimple 
polynomials, which is reduced to a sequence of 
simple recurrent computations 

1( )
nr r k fRes s

−
= S S , 1=  0

r r
s

−
S , 0 1=S , 1,r n= , 

or else (for a field (2)GF ) 

2
1( 0)

nr r fRes −=S S , 0 1=S , 1,r n= .      (10) 

 When the index r  reaches the last rung of the 
fiducial ladder n , if it turns out that 1n =S , then 
this will mean, by 1 А , the fulfillment of the 

comparison conditions (6). The sequence of 
residues rS  on the steps of the fiducial grid, 

formed by an arbitrary polynomial nf , will be 
called a −S sequence of residues. 
 We introduce an additional numerical 
characteristic of polynomials nf , which we call the 
cycle order generated by the polynomial nf . We 
will call this characteristic the "polynomial cycle 
period", sometimes omitting the word polynomial, 
and denoting it Cord ( )nf . 

 Definition 5. The cycle period of an arbitrary 
polynomial nf  is the number of non-repeating 
residues rS  generated by the polynomial nf  on the 

steps of the fiducial grid.  

 Let us explain the concept of "cycle period" by 
numerical examples, choosing as the first tested 
polynomial binary PrP of the sixth degree 

(1)
6 1000011f = , and the second — SIP 
(2)

6 1001001f = . After performing calculations by 

formula (10), we obtain 

Table 2. The sequence of 
  −S residues generated by PrP (1)

6f  

1

2

3

10;

1000;

110;

=

=

=

S

S

S

 
4

5

6

101000;

100101;

.

=

=

=1

S

S

S

 

Table 3. The sequence of 
  −S residues generated by SIP (2)

6f  

1

2

3

10;

1000;

10010;

=

=

=

S

S

S

 
4

5

6

1001;

10000;

.

=

=

=1

S

S

S

 

 As follows from Tables 2 and 3, the periods of 

the cycles of the polynomials (1)
6f  and (2)

6f  

coincide with the degree of the IP, i.e. 
(1)

6Cord ( )f =  (2)
6Cord ( ) 6f= = , whereas 

(1)
6ord ( ) 63f =  and (2)

6ord ( ) 9f =  are different 

and determine the orders of the same polynomials. 
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 Now let's turn to IP over Galois fields ( )GF p , 
2p  . Let's make Table 4 similar to Table 1, for 

example, for characteristics 3p = . 
 

Table 4. Auxiliary parameters MGMO for (3)GF  

r  1 2 3 4 5 6 7 … 

rt  1 8 26 80 242 728 2186 … 

 Let's equip (to disambiguate) the character rS  

with an additional subscript p . From a comparison 
of the data in Table 1 and 4, we arrive at such 
generalized relations for the degree ,r pt  and residue 

,r pS  of the coordinate vector rCV  

, 1, ( 1)r p r pt p t p−=  + − ,  0, 0pt = ,  1,r n= ;    

, 1,
1

( 0...0)
n

p

r p r p f

p

Res −

−

=S S , 0, 1p =S , 1,r n= .  (11) 

 Let's look at a numerical example. Let the 
chosen IP of the sixth degree (3)

6 1323401f =  over 

the field (5)GF . The sequence of deductions, 
calculated by the formula (11), is presented in 
Table 5 

Table 5. The sequence of 
  −S residues generated by SIP (3)

6f  

1

2

3

10000;

40240;

302403;

=

=

=

S

S

S

 
4

5

6

414114;

130222;

.

=

=

= 1

S

S

S

 

 As in the previous versions of irreducible 
polynomials (1)

6f  and (2)
6f  for the polynomial 

(3)
6f  we have (3)

6Cord ( ) 6f = , whereas 
(3)

6ord ( )f =  3906= , the value of which is 
obtained from the results of computer calculations. 
 Based on the examples considered, we arrive at 
the following axiom. 

 Axiom 2A . The cycle period Cord  of both 
simple and primitive irreducible polynomials nf  is 
invariant to the characteristic p  of a simple Galois 
field ( )GF p  to which the IP coefficients k  

belong, and coincides with the degree of the 
polynomial, that is Cord( )nf п= . 

 The axiom 2A  makes it possible, without loss 
of generality, in the subsequent numerical examples 
to be limited to considering only polynomials over 

(2)GF . 

3 General Solution to the Problem
of Factorization of the Degree
of Semisimple Polynomials 
Let us introduce ( )nSP p  the notation for the subset 

of polynomials [2]
nf  over a field ( )GF p  that 

belongs to the set of SiM-polynomials. Recall that 
the main problem considered in this work is to 
determine, for a given value [2] ( )n nf SP p , the 

unknown values of the degrees 1x n=  and 2y n=  

IP 
1nf  and 

2nf  satisfying equalities (5). To solve 

the problem of factorizing polynomials [2]
nf , it is 

necessary to compose a system of two equations 
with two unknowns x  and y . 

The first of these equations is contained in (5) 
and is written as 

x y n+ = .                           (12) 

The second equation can be constructed based 
on Theorem 3.11, [6], according to which (as a 
special case for a finite field of characteristic p ) if 

[ ]

1 i

k
k

n n
i

f f
=

= , then 

[ ]

1
ord( ) LCM( ord( ))

i

k
k

n n

i

f f
=

=  .       (13) 

In (13), the designations are used that are 
somewhat different from the designations adopted 
in the original but are equivalent to them. For SiM-
polynomials we obtain 

1 2

[2]ord( ) LCM(ord( ), ord( ))n n nf f f= .  (14) 

 The order of the cycle Cord  of the polynomial 
[2]
nf  is determined by the same relation (14), 

which determines the order of the polynomial, i.e. 
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1 2

[2]Cord( ) LCM(Сord( ), Сord( ))n n nf f f= =  

1 2= LCM( ),n n .                   (15) 

 Changing places of the components that close 
equality (15) and using the substitutions 1x n=  and 

2y n=  introduced above, we arrive at the missing 

equation of the second-order system 

LCM( , )x y C= ,                     (16) 

in which for brevity it is indicated [2]= Cord( )nC f . 

 Expressions (12) and (16) together form the 
system of equations 

LCM ( , )
x y n

x y C

+ =


=
,                       (17) 

using which the problem of factorization of the 
degree of SiM-polynomials is uniquely solved. 
 Depending on the relationship between the 
degree n  and the cycle period C  of the 
polynomials [2]

nf  (see Table 6), there are five 

alternative options (options) for solving the system 
of equations (17). In the right column of the table. 6 
explains the nature of the relationship between 
degrees 1n  and 2n  factors [2]

nf . Option 5* is a 

special one, the characteristics of which will be 
given at the end of this section of the work. 

Table 6. System solution options 
equations (17) for semisimple polynomials 

Variant 
number 

Ratio between 
n  and C  Consequence 

1 
C n , 

GCD( , ) 1C n =  1 2n n  

2 
C n , 

GCD( , ) 1C n   1 2n nł  

3 / 2n C n   1 2n nl  

4 / 2C n=  1 2n n=  

5* C nl  kn C=  

 Where it seems convenient, we will supplement 
the subscript of the set ( )nSP p  with a parameter 

that determines   which of the options 1, 5 =  the 

polynomial [2]
nf  belongs to. 

 Option 1 assumes that the cycle period of the 
polynomial [2]

,1 ( )n nf SP p  exceeds its degree, that 

is C n , moreover GCD( , ) 1C n = . The latter 

means that the degrees 1n  and 2n  factors [2]
nf  — 

are different coprime numbers and. 

 According to the conditions of option 1: 
LCM( , )x y x y=  , and system (17) takes the form: 

x y n

x y C

+ =


 =
,                         (18) 

which is reduced to the quadratic equation 

2 0x n x C−  + = .                     (19) 

 The classical solution (19) consists in 
determining the unknowns    

1 2;
2 2

n D n D
x x

+ −
= = ,           (20)    

where the discriminant 

2 4D n C= − .                        (21) 

 The roots 1x  and 2x  equations (19) presented in 

(20) are precisely the required powers 1n  and 2n  

of factors of the SiM-polynomial [2]
nf . The 

indicator of the relative simplicity of the degrees of 
the factors of the polynomial [2]

nf  is the 

discriminant (21) of equation (19). Let us show that 
the following holds. 

 Statement 1. If the degrees 1n  and 2n   factors 

of the polynomial are coprime, moreover 1 2n n  

and 1 2n n , then the square root of the 

discriminant D  of equation (19) is a natural 
number N  such that 1 2( ) 1N n n= −  . 

 Indeed, setting in (18) 1x n=  and 2y n= , from 

equality (21) it follows that 
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2 2 2
1 2 1 2 1 2( ) 4 ( )D n n n n n n N= + − = −  .   (22) 

 Thus, firstly, the provisions of Statement 1 are 
confirmed and, secondly, substituting the value of 
the discriminant D  calculated by the formula (21) 
into (20), we arrive at the desired values of the 
degrees 1n  and 2n  factors of the polynomial 

[2]
, 1( )n nf SP p . 

 Let's take an example. Let us choose a SiM-
polynomial [2]

8 101000111f =  formed by the 

modular product of PrP of the fifth 5 100101f =  

and third 3 1011f =  degree. The polynomial [2]
7f  

forms the residues on the ladder steps, shown in 
Table 7. 

Table 7. The sequence of 
  −S residues generated by [2]

7f  

1

2

3

4

5

6

7

10;

1000;

10000000;

11111;

100100;

10010110;

10111001;

=

=

=

=

=

=

=

S

S

S

S

S

S

S

 

8

9

10

11

12

13

14

15

10100101;

10001011;

10010101;

10110011;

101101;

10100;

1010110;

.

=

=

=

=

=

=

=

= 1

S

S

S

S

S

S

S

S

 

 We pass to factorization of the degree of SiM-
polynomials [2]

nf , which belong to the subset 

, 2 ( )nSP p . 

 Thus, we have: 8n = , 15C = , and, according 
to (21), 4D =  that is 2N = . And, as a result, from 
(20) we get: 1 5n =  and 2 3n = , which coincides 

with the initial data, which we assumed to be 
unknown for the polynomial [2]

7f  a priori. 

 We pass to factorization of the degree of SiM-
polynomials [2]

nf , which belong to the subset 

,2 ( )nSP p . 

 Option 2 assumes, firstly, that (as in option 1) 
the cycle period C  of the polynomial exceeds its 
degree n , that is C n , and, secondly, 
GCD( , ) 1C n  . The last condition means that the 

degrees 1n , 2n  factors [2]
nf  (assuming 1 2n n ) 

are not coprime numbers and, moreover, 1 2n nł . 

 Statement 2. Semisimple polynomials [2]
nf  

belong to a subset ,2 ( )nSP p  if and only if the 

degrees 1n  and 2n  of factors [2]
nf  are 

representable in the form of generalized expansions 
into natural factors 

1  n =  ;  2  n =    ;     ,         (23) 

each of which exceeds 1, and besides  ,   — 
coprime numbers. 
 Proof. By expressions (17) and (23), the 
parameters ( )n = +   and С =  , firstly, 
ensure the inequality C n , since for any natural 
numbers 1  , 1   and    , the relation 

( )  +   is observed. And, secondly, they 
support condition GCD( , ) 1C n  , since 
GCD( , ( )) 1  +  =   . Therefore, all 
conditions of option 2 are satisfied, which 
completes the proof of Statement 2. 

 The algorithm for factorizing the degree of 
polynomials [2]

,2 ( )n nf SP p  is reduced to such 

transformations. Using substitutions (23) and 
substitutions 1x n=  and 2y n= , we reduce the 

general solution of problem (17) to the form 

(β + γ)
βγ

n

C

 =


 =
.                      (24) 

 The form of representation of the degrees 1n  

and 2n  in (23) and the system of equations (23) 

determines the following sequence of calculations. 
First, we determine the common factor of the 
known parameters n  and C . We have 

GCD( , )n C =  .                     (25) 

 Dividing and in (24) by  , we arrive at a 
system of equations (similar to the system (18)) 
with two unknowns   and   
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β γ

β γ

n

C

+ =


 =
,                         (26) 

where /n n=   and /C C = . 
 The solution of the system of equations (26) 
repeats the solution of the system (18) and, 
according to (20), leads to the following results 

;
2 2

n D n D+ −
 =  = ,           (27) 

where 
2 4D n C= − .   

 The numerical parameters  ,   and  , 
calculated by formulas (25) – (28), being 
substituted in (24), lead to the desired solution. 

Let us support the theoretical results on the 
factorization of the degree of semisimple 
polynomials corresponding to option 2 with a 
numerical example. We will consider the 
polynomial [2] 10110001001nf =  formed by the 

product of two polynomials with a priori unknown 
degrees. The −S sequence of residues generated 
by the polynomial [2]

nf  is shown in Table 8. 

Table 8. The sequence  
  −S residues generated by [2]

10f  

1

2

3

4

5

6

10;

1000;

10000000;

1011110;

1111011;

1101001011;

=

=

=

=

=

=

S

S

S

S

S

S

 

7

8

9

10

11

12

1101001000;

1101000010;

1111001010;

1100010100;

1100110001;

.

=

=

=

=

=

= 1

S

S

S

S

S

S

 

 Thus, we have two initial parameters: the degree 
of the polynomial 10n =  and the cycle period 

12C =  of the polynomial. Since the square root of 
the determinant defined by expression (21) is not a 
natural number and, in addition C n , this allows 
us to assume that [2]

10f  is a SiM-polynomial 

belonging to option 2. Let us check the stated 
hypothesis. Using relations (24) – (28), we obtain 
the values of the degrees 1 4n =  and 2 6n =  

factors of the polynomial [2]
10f . This means that the 

above assumption is true and the degree of the 
polynomial [2]

10f  is uniquely factorized. 

 Let us turn to the construction of algorithms for 
factorizing the degree n  of polynomials 

[2] ( )n nf SP p  for the case when the cycle period 

C  of the polynomials [2]
nf  is less than the degree 

of these polynomials, that is, when C n . The 
unknown variables 1x n=  and 2y n= , as in the 

previous two versions, are determined based on the 
solution of the system of equations (17). In this 
case, two alternative options are possible, which we 
will call, increasing the numbers, options 3 and 4, 
respectively. 

 Option 3 assumes that the cycle period C  of 
the polynomial [2]

,3 ( )n nf SP p  is less than the 

degree n  of the polynomial, but more than / 2n , 
that is, the following condition is met / 2n C n  . 

 The factorization of the degree of semisimple 
polynomials belonging to variant 3 is quite simple. 
Let us show that the following is true. 

 Statement 3. The cycle period C  of the 
polynomial [2]

,3 ( )n nf SP p  satisfies the inequality 
/ 2n C n   if and only if factor  of the degree 

1n  in (24) turns out to be equal to 1. 

 Indeed, let us turn to relations (23). Let's put 
1 = . In this case 

1  ;n =    2  n =    ;                  (29) 

and, as a consequence (29), we get 

2n C= ;   1n n C= − .                 (30) 

 Expressions (29) and (30) lead directly to the 
inequality / 2n C n  , which completes the proof 
of Statement 3. 
 Note that, according to (29), for polynomials 

[2]
,3 ( )n nf SP p , the lower degrees 1n  of the 

factors [2]
nf  divide the higher degrees 2n , that is 

1 2n nl , as noted in the right column of Table 6. 

 Example. Let them (2)
8 100011011f f= =  be 

considered as a priori unknown, generating 
[2]

12 1001010011101f = . Let us calculate (Table 9) 
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the −S residues corresponding to the polynomial 
[2]

12f . Since the cycle period 8C =  is less than the 

degree 12n =  of the polynomial being tested [2]
12f , 

let us check the hypothesis about the 
correspondence [2]

12f  to variant 3 of SiM-

polynomials. For this purpose, we define, according 
to solutions (29), the degrees of the factors: 1 4n =  

and 2 8n = . Because 1 2n nl  this means that the 

polynomial [2]
12 12,3 (2)f SP . 

Table 9. The sequence of 
  −S residues generated by [2]

12f  

1

2

3

4

10;

1000;

10000000;

11001110101;

=

=

=

=

S

S

S

S

 

5

5

7

8

101000101000;

100000100000;
1010000010;

.

=

=

=

= 1

S

S

S

S

 

 Since the cycle period 8C =  is less than the 
degree 12n =  of the polynomial being tested [2]

12f , 

let us check the hypothesis about the 
correspondence [2]

12f  to variant 3 of SiM-

polynomials. To this end, we use formulae (29) to 
determine the degrees of the factors 1 4n =  and 

2 8n = . Since 1 2n nl , it means that the polynomial 
[2]

12 12,3 (2)f SP . 

Let's look at it further. 

Option 4, which assumes that the cycle period 
C  of the polynomial [2]

,4 ( )n nf SP p  is equal 
/ 2n , that is / 2С n= , and as a consequence (see 

Table 6) 1 2n n= , and n  is an even number. 

For this option, it is true 

Statement 4. If the cycle period C  of a 
polynomial nf  of an even degree 2n k=  is equal 

k , then this means that the polynomial nf  is a 
product of two different coprime factors of the 
degree k . 

 

Proof. Taking into account the conditions 
formulated and the notation adopted in Statement 2,  
we rewrite the system of equations (18), presenting 
it in the form 

2

2x y k

x y k

+ =


 =
.                        (31) 

System (31) corresponds to the quadratic equation 
2 22 0x k x k−  + = , 

whose discriminant is equal to zero. Substituting 
0D =  in (20), we get 1,2x k= .  

 Let us illustrate option 4 with a numerical 
example. Suppose that the polynomial [2]

12f  is 

formed by the modular product of two different IPs 
(which predetermines their mutual simplicity) of 
the eighth degree over the field, for which we take 

(1)
8 100011011f =  and (2)

8 100011101f = . Thus, 

we have [2]
16 10000011100011111f = , the sequence 

of −S residues of which is presented in Table 10. 

Table 10. The sequence of −S residues  
generated by [2]

12f  

1

2

3

15
4

10;

1000;

10000000;

10 ;

=

=

=

=

S

S

S

S

 

5

6

7

8

11010111100011;

1110000110;

1011011011101110;

.

=

=

=

= 1

S

S

S

S

 

 The considered options for solving the system 
of equations (15) are reduced to an algorithm, a 
simplified structural and logical diagram of which 
is shown in Fig. 2. 
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               Fig. 2. Block diagram of the computational algorithm 

 
 And at the end of the section, let us turn to the 
analysis of the last version of the relationship 
between the degree n  of the composite polynomial 

nf  and the cycle period C  of the polynomial noted 
in Table. 6 as option 5*. Let us show the 
consequences of the case when not only the degrees 
but also the factors of the polynomial nf  are the 
same, the number k  of which may exceed two. Let 
us denote /( )k

n n kf f= . Let us choose, for 

example, an irreducible sixth-degree polynomial 
6 1213423f =  over (5)GF . Let 3k = . We have 

18 1104344001442323442f = , which corresponds 

to 

Table 11. The sequence of −S residues  
generated by 18f  

1

2

3

4

5

6

7

10000;

321311413243311004;

43314440231014043;

32143422342430214;

201231134140402114;

123040101343120034;

=

=

=

=

=

=

= 10000

S

S

S

S

S

S

S .

 

Summarizing the data table. 11, we come to the 
following conclusion. First, the cycle period C  of 
the polynomials nf , as in option 4, turns out to be 

equal to the degree of the factors. And secondly, 
the cycle of −S residues generated does not end 
with one. The fact that the residue S  that 
completes the cycle generated by the polynomial 

nf  is not terminated by 1 is a clear indication of 

that ( )n nf SP p . 

4  Direction for Further Research
 
One can point at least to such an obvious direction 
for further research. Its essence is to expand the 
number of factors of the so-called hyper-simple 
polynomials. 

Definition 6. By hypersimple polynomials, we 
mean composite polynomials [ ]k

nf  over ( )GF p  

formed by products of at least three coprime 
irreducible polynomials , 1,

inf i k= , 3k  , that is  

[ ]

1 i

k
k

n n
i

f f
=

=  . 

 The above definition of hypersimple 
polynomials excludes the possibility of two or more 
identical irreducible polynomials appearing in their 
composition as factors. 
 The problems associated with the analysis of 
hypersimple polynomials will be briefly denoted by 
the example of the so-called sphenic polynomials 
(Sp-polynomial) [3]

nf  containing three coprime IPs 

as factors, that is  

1 2 3

[3]
p p

n n n nf f f f=   . 

The solution to the problem of factorizing the 
degree of sphenic polynomials can be reduced to 
the sequential execution of such operations. At 
first, you need to compose a system of three 
equations for the unknown degrees 1x n= , 2y n=  

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.23 Anatoly Beletsky

E-ISSN: 2224-2880 169 Volume 21, 2022



and 3z n= , and the factors of the polynomial [3]
nf . 

We arrive at the first two of them, generalizing 
system (17) for three variables 

LCM( , , )
x y z n

x y z C

+ + =

=
,                    (32) 

and represent the third equation in the form of a 
functional 

( , , )F x y z G= . 

The classical solution of the system of equations 
(32) is hindered by a seemingly unsolvable 
uncertainty to the functional ( )F  . But not 
everything is as hopeless as it may seem at first 
sight. Under certain conditions, solutions of the 
system (32) are achievable even in the case when 
there is no information about the functional ( )F   
and its right part G . 

The simplest (but far from effective) way 
to get rid of the third extra unknown in the system 
of two equations (32) is to sequentially replace one 
of the variables, for example, with the values of the 
natural series 1, 2, ... . Thus (32) transforms into a 
system of two equations concerning two unknowns 
where C  is a parameter that is specified later. 

LCM ( , )
x y n z

x y C 

+ = −

=
.                   (33) 

 If the current value z t=  does not satisfy the 
system (33), we pass to the next value 1z t= +  of 
the variable. This procedure of sequential search is 
interrupted at some k − th step, k n , at which the 
system (33) becomes solvable. An alternative (and 
more efficient) solution of the system of equations 
(32) is based on a decomposition of the cycle 
period C  of the Sp-polynomial [3]

nf  into simple 

multipliers. Let us illustrate the alternative way to 
get rid of the "third extra" in (32) by numerical 
examples. 
 Let us turn to the analysis of the partial relations 
between n  and C  for the Sp-polynomials [3]

nf , 
which are either similar to, or somewhat broader 
than, the variants listed in Table 6. Let us keep the 
numbering of the solution variants for polynomials 

[3]
nf  the same as that chosen in Table 6 for 

polynomials [2]
nf , adding the number 3 to the right. 

If necessary, we will supply the variant number 
with an additional alphabetic symbol. 

 Option 13 assumes that the cycle period C  of 
the Sp-polynomial [3]

nf  exceeds its degree n , that 

is C n , with GCD( , ) 1C n = . 

 Note that, first, the required conditions (C n  
and GCD( , ) 1C n = ) are not reached at any values 
of n , as in variant 1 of Table 6, but only when n  it 
is a prime number. There are two special cases for 
variant 13, the first of which we denote as variant 
13-A. This case assumes that the group of three 
unknown degrees x , y  and z  the quotients of the 

Sp-polynomial [3]
nf  contain a pair of even or odd 

numbers (let them be y  and z ) such that z yl . 
Note that firstly, a degree n  can be simple if x  it is 
only mutually simple with y  and z . And secondly, 
if y  and z are even numbers, x  it must be an odd 
number, and vice versa. Thus, the equality of 

LCM( , , ) LCM( , )x y z x y x y С= =  = .   (34) 

 Taking into account the conditions from 
relations (33) and (34) we come to the following 
mathematical model for option 13-A 

x y n z

x y C

+ = −

 =
.                        (35) 

 Let us consider an example. Suppose that [3]
nf  it 

is formed by the product of the polynomials 
(1)

5 100101f = , (2)
4 10011f =  and (3)

2 111f = . We 

obtain the Sp-polynomial [3]
11 111010111101f = , 

whose sequence of −S residues is summarized in 
Table 12. 

Assuming the cycle period C  of the Sp-
polynomial [3]

nf  to be a posteriori calculated (i.e., 

deriving it from Table 12), we present 20C =  it as 
a decomposition 

2 2 5C =   .                         (36)      

 According to (36) possible values of the 
parameter can be the numbers 2, 4, or 5. The lowest 
variable 3 2n z= =  Model (35) is reduced to the 

system 
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9
20

x y

x y

+ =

 =
, 

whose solution predetermines the remaining two 
degrees 1 5n =  and 2 4n =  factors of the 

polynomial [3]
11f . 

Table 12. The sequence of −S residues  
generated by the polynomial [3]

nf  

1

2

3

4

5

6

7

8

9

10

10;

1000;

10000000;

1101000010;

10001011010;

10010100010;

10001010011;

10000100000;

11100011001;

11111010;

=

=

=

=

=

=

=

=

=

=

S

S

S

S

S

S

S

S

S

S

 

11

12

13

14

15

16

17

18

19

20

11111001;

11110011;

1111011;

1110111001;

10010100001;

10001011001;

10010101000;

10011011011;

11111100010;

;

=

=

=

=

=

=

=

=

=

= 1

S

S

S

S

S

S

S

S

S

S

 

 One can also get rid of an extra variable (e.g., z) 
in the system of equations (32) when the cycle 
period C  of the polynomial [3]

nf  is decomposed 

into the product of three prime numbers, and their 
sum must be a prime number. This variant (let us 
call it variant 13-B) corresponds to the 
mathematical model 

x y n z

x y C / z

+ = −

 =
.                          (37) 

 The numerical prototype of variant 13-B can be, 
for example, the degrees of 1 3n = , 2 5n =  and 

3 11n = , and the factors of [3]
19f . Variants 13-A and 

13-B constitute a complete group in the set of 
variants of 13 Sp-polynomials. Relying on models 
(35) and (37), it seems possible to construct 
mathematical models for all the remaining variants 
of the system of equations (32) and thereby to solve 
the problem of factorization of degrees of sphenic 
polynomials. 

 

5   Conclusions 
The main result of the research is the development 
of an effective algorithm for factorizing the degree 
of semisimple polynomials formed by the product 
of two coprime polynomials over a Galois field of 
arbitrary characteristic. The proposed algorithm is 
reduced to solving a system of two equations for 
the unknown degrees of the factors of a semisimple 
polynomial. The right-hand sides of the equations 
are the a priori known degree n  of a semisimple 
polynomial and the cycle period C  of the 
polynomial, calculated using the so-called 
reference ladder. At each rung of the ladder, the 
simplest recurrent modular computations are 
carried out, after which the cycle period C  of the 
semisimple polynomial is determined, which is 
equal to the least common multiple of the degrees 
of the factors of the polynomial. Various options 
for solving the system of equations are considered 
depending on the ratios of the parameters n  and .C

Reducing the number of calculations is achieved by 
switching from a linear scale when determining the 
cycle period C  of a semisimple polynomial to a 
logarithmic one. The proposed factorization 
algorithms turn out to be invariant to the 
characteristic of the field generated by irreducible 
polynomials. Directions for further research are 
outlined. 
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