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1 Introduction
In recent years, several works on domain the-

ory are created so as to equip the semantics domain
with a notion of distance. Especially,the notion of
fixed point theory and contraction mapping was ex-
tended and elaborated with the introduction of con-
traction principle by Banach [5]. Definition of 2-
metric spaces was initiated by Gahler in a series of
papers ([6]-[8]). The 2-metric space have a unique
nonlinear structure, which is different from metric
spaces. More several of the authors studied and gen-
eralize some theorems in 2-metric spaces. Fixed point
theorem is an important tool in the theory of metric
spaces, it guarantees the existence and uniqueness of
fixed point of self maps of metric spaces. Iseki ([9]-
[11]) obtained basic results on fixed point of opera-
tors in 2-metric spaces. After this work for Iseki, sev-
eral authors studied and generalized fixed point the-
orems in 2-metric spaces. The notion of partial met-
ric space was introduced by Matthews ([14],[15]). A
partial metric space is obtained from metric space by
replacing the equality d(x, x) = 0 in the definition of
metric with the inequality d(x, x) ≤ d(x, y) for all
x, y. This notion features a big range of applications
not solely in several branches of mathematics, also
within the field of computer domain and semantics
([1]-[4],[12],[13]). Recently, authors have targeted
on partial metric spaces and its topological proper-
ties, and generalized fixed point theorems from the
category of metric spaces to the class of partial met-
ric spaces ([7]–[10]). In this paper we introduce the
concept of partial 2-metric spaces and study the fixed
point theorem under contraction self mapping on par-
tial 2-metric spaces.

1.1 Preliminaries
Definition 1 [6]. A 2-metric space is a set X with a
non negative real valued function d onX×X×X sat-

isfying the following conditions: For every x, y, z, u
∈ X, we have:

(M1) for two distinct point x, y in X there exist a
point z in X such that d(x, y, z)

̸

= 0,
(M2) d(x, y, z) = 0 when at least two of x, y and

z are equals,
(M3) d(x, y, z) = d(x, z, y) = d(z, y, x),
(M4) d(x, y, z) ≤ d(x, y, u) + d(x, u, z) +

d(u, y, z), and then the function d is called a 2-metric
function on X .

Example 2 [13]. Let a mapping d : R3 → [0,∞) be
defined by

d(x, y, z) = min{|x− y|, |y − z|, |z − x|}.

Then d is a 2-metric on R.

Definition 3 [6]. A sequence {xn} in a 2-metric
space (X, d) is said to be convergent to a point x ∈
X, that is limn→∞ xn = x, if limn→∞ d(xn, x, z) =
0 for all z ∈ X , and the point x is called the limit of
the sequence {xn} in X.

Definition 4 [6]. A sequence {xn} in a 2-metric
space (X, d) is called a Cauchy sequence if
limm,n→∞ d(xn, xm, a) = 0 for all a ∈ X .

Definition 5 [6]. A 2-metric space (X, d) is
said to be complete if every Cauchy sequence in
X is convergent.

Remark 6 [6]. Every convergent sequence in a 2-
metric space is a Cauchy sequence .

Definition 7 [14]. LetX be a nonempty set. Themap-
ping p : X ×X → [0,∞) is said to be a partial met-
ric onX if the following conditions are true. For any
x, y, z ∈ X , we have:

(PM-1) x = y if and only if p(x, x) = p(y, y) =
p(x, y),
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(PM-2) p(x, x) ≤ p(x, y),
(PM-3) p(x, y) = p(y, x),
(PM-4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y), and

then the pair (X, p) is called a partial metric space,
(for short PMS).

2 Partial 2-metric spaces
In this section we have introduce the concept of

partial 2-metric spaces and some properties.

Definition 8 A mapping ρ : X3 → R+ where X is a
non-empty set, is said to be a partial 2-metric onX if
the following conditions are true. For every x, y, z, u
∈ X , we have:

(P2M-1) ρ(x, x, x) = ρ(y, y, y) = ρ(z, z, z) =
ρ(x, y, z) when at least two of x, y and z are equals,

(P2M-2) ρ(x, x, x) ≤ ρ(x, y, z),
(P2M-3) ρ(x, y, z) = ρ(x, z, y) = ρ(z, y, x),
(P2M-4) ρ(x, y, z) ≤ ρ(x, y, u) + ρ(x, u, z) +

ρ(u, y, z)− ρ(u, u, u). Then the pair (X, ρ) is called
a partial 2-metric space; for short we write P2M -
space.

Example 9 Let X = {0, 1}, and let ρ(x, y, z) ={
2 if x = y = z = 0

1 otherwise
, then (X, ρ) is a P2M -

space.

Theorem 10 Every 2-metric space is a P2M -space.

Proof. Let (X, d) be a 2-metric space, then from
the condition (M2) we obtain,

d(x, x, x) = d(y, y, y) = d(z, z, z) = 0,

when at least two point of any x, y, z are equals, that
is (P2M-1) is satisfied. Since d(x, y, z) ≥ 0, and

d(x, x, x) = 0 ≤ d(x, y, z),

so,
d(x, x, x) ≤ d(x, y, z),

which is the condition (P2M-2). Also from condition
(M2), we have

d(x, y, z) = d(x, z, y) = d(z, y, x),

which is the condition (P2M-3). From the condition
(M3), we have

d(x, y, z) ≤ d(x, y, u) + d(x, u, z)

+ d(u, y, z),

and d(u, u, u) = 0, then we can write

d(x, y, z) ≤ d(x, y, u) + d(x, u, z)

+ d(u, y, z)− d(u, u, u).

So (X, d) is a P2M -space.
From Example 9 shows that the inverse is not true,

then
we have (X, ρ) is a P2M -space but it is not 2-

metric space.

Definition 11 A modified P2M -space indefined by
replacing the condition (P2M-1) in Definition 8 by the
following:

(P2M-1)* x = y = z, if and only if ρ(x, x, x) =
ρ(y, y, y) = ρ(z, z, z) = ρ(x, y, z), then the pair
(X, ρ) is called a modified partial 2-metric space; for
short we write (P2M )*-space.

Example 12 Let ρ : R+ × R+ × R+ → R+ defined
by ρ(x, y, z) = max{x, y, z} for any x, y, z ∈ R+.
Then the pair (R+, ρ) is a (P2M )*-space.

Example 13 Let R+ = (0,∞) and R− = (−∞, 0).
Consider the function ρ : R− ×R− ×R− → R+ de-
fined by ρ(x, y, z) = −min{x, y, z} for any x, y, z ∈
R. Then the pair (R−, ρ) is a (P2M )*-space.

Example 14 Consider I = {[a, b] : a ≤ b; a, b ∈
R} is the set of all closed intervals in R , let
the function ρ : I3 → R+, which in defined by
ρ([a, b], [c, d], f, g]) = max{b, d, g} − min{a, c, f}.
Then the pair (I, ρ) is a (P2M )*-space.

Example 15 Let X = [0, a] and α ≥ a ≥ 3.
Define the mapping ρ : X3 → R+ by ρ(x, y, z) =

x , if x = y = z = 0 ,

4α+x+y+z
3 , if x, y, z ∈ {1, 2, 3} and x ̸= y ̸= z,

α+x+y+z
3 , otherwise.

.

Then the pair (X, ρ) is a (P2M )*-space .

Remark 16 Every P2M -space is (P2M )*-space
and the inverse is not true.

Theorem 17 Let (X, ρ) be a P2M -space, and the
function dρ : X3 → [0,∞), defined by dρ(x, y, z) =
3ρ(x, y, z)− ρ(x, x, x)− ρ(y, y, y)− ρ(z, z, z), then
(X, dρ) is a 2-metric space.

Proof. It’s clear that for all distinct elements
x, y, z ∈ X , we have

dρ(x, y, z) ̸= 0,

and from the condtion (P2M-1), we get

dρ(x, y, z) = 3ρ(x, y, z)− ρ(x, x, x)

− ρ(y, y, y)− ρ(z, z, z)

= 0,
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when at least two points x, y, z inX are equals. From
the condtion (P2M-3), we obtain

dρ(x, y, z) = dρ(x, z, y) = dρ(z, y, x).

Also from the condtion (P2M-4), we
have

dρ(x, y, z)

= 3ρ(x, y, z)− ρ(x, x, x)− ρ(y, y, y)

− ρ(z, z, z).

≤ 3× [ρ(x, y, u) + ρ(x, u, z)

+ρ(u, y, z)− ρ(u, u, u)]

− ρ(x, x, x)− ρ(y, y, y)− ρ(z, z, z).

= 3ρ(x, y, u)− ρ(u, u, u)− ρ(x, x, x)

− ρ(y, y, y) + 3ρ(x, u, z)− ρ(u, u, u)

− ρ(x, x, x)− ρ(z, z, z) + 3ρ(u, y, z)

− ρ(u, u, u)− ρ(y, y, y)− ρ(z, z, z)

+ ρ(x, x, x) + ρ(y, y, y) + ρ(z, z, z).

This implies,

dρ(x, y, z) ≤ dρ(x, y, u) + dρ(x, u, z) + dρ(u, y, z).

Then dρ is a 2-metric on X , which the proof .

Definition 18 A sequence {xn} in a P2M -
space (X, ρ) converges to a point x in X if
limn→∞ ρ(xn, x, z) = ρ(x, x, x) for all z in
X .

Definition 19 A sequence {xn} in a P2M -space
(X, ρ) is said to be a Cauchy sequence if the
limn,m→∞ ρ(xm, xn, z) exists and finite, for all z in
X .

Definition 20 A P2M -space (X, ρ) is said to be
complete if every Cauchy sequence inX converges to
an element x in X such that limn,m→∞ ρ(xm, xn, z)
= ρ(x, x, x), for all z in X .

Definition 21 Let (X, ρ) be a P2M -space, a func-
tion f : X → X is said to be a contraction if there
exist a constant c ∈ [0, 1), such that ρ(fx, fy, z) ≤
c× ρ(x, y, z) for all x, y, z ∈ X .

Theorem 22 Let (X, ρ) be a complete P2M -space
and f be a self-mapping on X satisfying the condi-
tion ρ(fx, fy, z) ≤ c× ρ(x, y, z) for all x, y, z ∈ X
and c ∈ [0, 1). Then f has a unique fixed point.

Proof. Let x ∈ X and for a fixed z ∈
X , it is clear that from the condtion
(P2M-4) for each n, k ∈ N, we have

ρ(fn+k+1(x), fn(x), z)

≤ ρ(fn+k+1(x), fn(x), fn+k(x))

+ ρ(fn+k+1(x), fn+k(x), z)

+ ρ(fn+k(x), fn(x), z)

− ρ(fn+k(x), fn+k(x), fn+k(x)) .

This implies,

ρ(fn+k+1(x), fn(x), z)

≤ ρ(fn+k+1(x), fn(x), fn+k(x))

+ ρ(fn+k+1(x), fn+k(x), z)

+ ρ(fn+k(x), fn(x), z).

Using the contraction condition it follows that

ρ(fn+k+1(x), fn(x), fn+k(x))

= ρ(f(fn+k(x)), fn+k(x), fn(x))

≤ cn+k × ρ(f(x), x, fn(x));

and

ρ(fn+k+1(x), fn+k(x), z)

= ρ(f(fn+k)(x), fn+k(x), z)

≤ cn+k × ρ(f(x), x, z).

From (2) and (3) into (1), we get

ρ(fn+k+1(x), fn(x), z)

≤ cn+k × ρ(f(x), x, fn(x)) + cn+k × ρ(f(x), x, z)

+ ρ(fn+k(x), fn(x), z).

Also we have,

ρ(fn+k(x), fn(x), z)

≤ ρ(fn+k(x), fn+k−1(x), z)

+ ρ(fn+k(x), fn(x), fn+k−1(x))

+ ρ(fn+k−1(x), fn(x), z)

− ρ(fn+k−1(x), fn+k−1(x), fn+k−1(x)).

So,

ρ(fn+k(x), fn(x), z)

≤ ρ(fn+k(x), fn+k−1(x), z)

+ ρ(fn+k(x), fn(x), fn+k−1(x))

+ ρ(fn+k−1(x), fn(x), z).

≤ cn+k−1 × ρ(f(x), x, fn(x))

+ cn+k−1 × ρ(f(x), x, z)

+ ρ(fn+k−1(x), fn(x), z).
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Thus,

ρ(fn+k+1(x), fn+k(x), z)

≤ cn+k × ρ(f(x), x, z) + cn+k−1 × ρ(f(x), x, z) + ...

+ cn × ρ(f(x), x, z) + cn+k × ρ(f(x), x, fn(x))

+ cn+k−1 × ρ(f(x), x, fn(x)) + ....

+ cn × ρ(f(x), x, fn(x)) + ρ(fn(x), fn(x), z).

Then,

ρ(fn+k+1(x), fn+k(x), z)

≤ [cn+k + cn+k−1 + ....+ cn]

× [ρ(f(x), x, z) + ρ(f(x), x, fn(x))]

+ cn × ρ(f(x), x, z).

≤ [cn+k + cn+k−1 + ....+ cn]

× [ρ(f(x), x, z) + ρ(f(x), x, fn(x))]

+ cn × ρ(f(x), x, z).

Which implies,

ρ(fn+k+1(x), fn+k(x), z)

≤ cn × 1− ck+1

1− c
× [ρ(f(x), x, z) + ρ(f(x), x, fn(x))]

+ cn × ρ(x, x, z).

≤ cn × cn

1− c
× [ρ(f(x), x, z) + ρ(f(x), x, fn(x))]

+ cn × ρ(x, x, z).

Consequently {fn(x)} is a Cauchy sequence in the
P2M -space (X, ρ), and

lim
n,m→∞

ρ(fm(x), fn(x), z) = 0 ∀ z ∈ X .

Since X is Complete P2M -space. Then we can
choose a ∈ X such that fn(x) converges to a, so,

lim
n,m→∞

ρ(fm(x), fn(x), z) = lim
n,m→∞

ρ(fn(x), a, z)

= ρ(a, a, a) = 0 ∀ z ∈ X .

In the following we will show that a ∈ X is a fixed
point for f . We have,

ρ(f(a), a, z)

≤ ρ(f(a), fn+1(x), z) + ρ(f(a), a, fn+1(x))

+ ρ(fn+1(x), a, z).

= ρ(fn+1(x), f(a), z) + ρ(fn+1(x), f(a), a)

+ ρ(fn+1(x), a, z).

≤ c× [ρ(fn(x), a, z) + ρ(fn(x), a, a)]

+ ρ(fn+1(x), a, z).

As n → ∞, we get

ρ(f(a), a, z) = 0, ∀z ∈ X,

so, f(a) = a. For the uniqueness proof, we assume
that there exist another fixed point b ∈ X , so, f(b) =
b. Now,

ρ(b, a, z) = ρ(f(b), f(a), z) ≤ c× ρ(b, a, z).

This means that c ≥ 1, which contradicts that c ∈
[0, 1). So, we must have ρ(b, a, z) = 0, ∀ z ∈ X .
Then a = b, which the proof.

Lemma 23 Assume that xn → x as n → ∞
in a P2M -space such that ρ(x, x, x) = 0 then
limn→∞ ρ(xn, y, z) = ρ(x, y, z) for every x, y and
z in X .

Proof. First note that limn→∞ ρ(xn, x, z) =

ρ(x, x, x) = 0 ∀ z ∈ X.
From the condition (P2M-4) we find that

ρ(xn, y, z)

≤ ρ(xn, y, x) + ρ(xn, x, z) + ρ(x, y, z)

− ρ(x, x, x),

≤ ρ(xn, y, x) + ρ(xn, x, z) + ρ(x, y, z).

ρ(xn, y, z)− ρ(x, y, z) ≤ ρ(xn, y, x) + ρ(xn, x, z).

Also,

ρ(x, y, z)

≤ ρ(x, y, xn) + ρ(x, xn, z)

+ ρ(xn, y, z)− ρ(xn, xn, xn),

≤ ρ(x, y, xn) + ρ(x, xn, z) + ρ(xn, y, z).

ρ(x, y, z)− ρ(xn, y, z) ≤ ρ(x, y, xn) + ρ(x, xn, z).

Hence,

ρ(xn, y, x) + ρ(xn, x, z)

≤ |ρ(x, y, z)− ρ(xn, y, z)|
≤ ρ(x, y, xn) + ρ(x, xn, z).

Let n → ∞, and from the condition of (P2M-1) we
conclude the claim.

Lemma 24 (1) A sequence {xn} is a Cauchy se-
quence in the a P2M -space (X, ρ) if and only if
{xn} is also a Cauchy sequence in the 2-metric space
(X, dρ).

(2) (X, ρ) is complete if and only if (X, dρ) is also
complete. Moreover

lim
n→∞

ρ(x, xn, z) = lim
n,m→∞

ρ(xn, xm, z) = ρ(x, x, x)

⇔ lim
n→∞

dρ(x, xn, z) = 0.
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Proof. (1) Let {xn} is a Cauchy sequence in the

P2M -space (X, ρ), then there exist α ∈ R such that
ε > 0, there is n(ε) ∈ N, we have

|ρ(xn, xm, z)− α| ≤ ε

3
for all n,m ≥ n(ε) and z ∈ X.

Since,

dρ(xn, xm, z)

= 3ρ(xn, xm, z)− ρ(xn, xn, xn)

− ρ(xm, xm, xm)− ρ(z, z, z)

= [3ρ(xn, xm, z)− 3α]− [ρ(xn, xn, xn)− α]

− [ρ(xm, xm, xm)− α]− [ρ(z, z, z)− α].

From P2M-2, we get ρ(xn, xn, xn) ≤ ρ(xn, xm, z),
then,

|ρ(xn, xn, xn)− α| ≤ ε

3
.

Then,

dρ(xn, xm, z)

≤ 3 |ρ(xn, xm, z)− α|+ |ρ(xn, xn, xn)− α|
+ |ρ(xm, xm, xm)− α|+ |ρ(z, z, z)− α|

dρ(xn, xm, z) ≤ ε ∀ n,m ≥ n(ε).

Then {xn} is a Cauchy sequence in (X, dρ).Now, we
prove that every Cauchy sequence{xn} in (X, dρ) is
a Cauchy sequence in (X, ρ). Since {xn} is a Cauchy
sequence in (X, dρ), then

dρ(xn, xm, z) ≤ ε ∀ n,m ≥ n0(ε).

Take ε = 1
2 then there exist n0(ε) ∈ N such that

dρ(xn, xm, z) ≤ 1

2
∀ n,m ≥ n0(ε).

Since,

dρ(xn, xn0
, z) + ρ(xn, xn, z)

= dρ(xn0
, xn, z) + ρ(xn0

, xn0
, z),

then we have,

|ρ(xn, xn, z)|
= |dρ(xn0

, xn, z)− dρ(xn, xn0
, z) + ρ(xn0

, xn0
, z)|

≤ 2 dρ(xn0
, xn, z) + |ρ(xn0

, xn0
, z)|

< 1 + |ρ(xn0
, xn0

, z)| .

Consequentely, the sequence {ρ(xn, xn, z)}n is
bounded in R, and so there exist a ∈ R, such that
a subsequence {ρ(xnk

, xnk
, z)}k is convergent to a,

i.e limk→∞ ρ(xnk
, xnk

, z) = a. It remins to prove
that {ρ(xn, xn, z)}n is a Cauchy sequence inR. Since

{xn} is Cauchy sequence (X, dρ) given ε > 0 ∃
n(ε) ∈ N such that dρ(xn, xm, z) < 3 ε

2 ∀ n,m ≥
n(ε). Thus,

|ρ(xn, xn, z)− ρ(xm, xm, z)|

=
1

3
|dρ(xm, xn, z)− dρ(xn, xm, z)|

≤ 2

3
dρ(xm, xn, z) = ε.

Therefore,

lim
n→∞

ρ(xn, xn, z) = a, and we get

|ρ(xn, xm, z)− α|
= |ρ(xn, xm, z)− ρ(xn, xn, z) + ρ(xn, xn, z)− α|
≤ |ρ(xn, xm, z)− ρ(xn, xn, z)|
+ |ρ(xn, xn, z)− α|
< dρ(xn, xm, z) + |ρ(xn, xn, z)− α|
< ε, ∀n,m ≥ n(ε).

Then {xn} is a Cauchy sequence in (X, ρ).
(2) Now, we prove completeness of (X, dρ) im-

plies completeness of (X, ρ). If {xn} is a Cauchy se-
quence in (X, ρ) then it is also a Cauchy sequence in
(X, dρ). Since (X, dρ) is a complete 2-metric space,
then there exist y ∈ X such that

lim
n→∞

dρ(y, xn, z) = lim
n→∞

3ρ(y, xn, z)− ρ(y, y, y)

− ρ(xn, xn, xn)− ρ(z, z, z).

Since {xn} is a Cauchy sequence in (X, ρ), let ε > 0
then ∃ n0 ∈ N, such that dρ(xm, xn, z) ≤ 3ε

2 . Then,

|ρ(xn, xn, z)− ρ(xm, xm, z)|

=
1

3
|dρ(xm, xn, z)− dρ(xn, xm, z)|

≤ 2

3
dρ(xm, xn, z) = ε ∀ n,m > n0.

This shows that (X, ρ) is complete.
Conversely, we prove (X, dρ) is complete. Let

{xn} is a Cauchy sequence in (X, dρ). Then {xn} is
a Cauchy sequence in (X, ρ) and it is convergent to
y ∈ X with

lim
n,m→∞

ρ(xn, xm, z) = lim
n→∞

ρ(y, xn, z) = ρ(y, y, y).

Then,

ρ(y, xn, z)− ρ(y, y, y) < ε;n ≥ n(ε).
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Since,

dρ(y, xn, z)

= 3ρ(y, xn, z)− ρ(y, y, y)

− ρ(xn, xn, xn)− ρ(z, z, z)

< |ρ(y, xn, z)− ρ(y, y, y)|
+ |ρ(y, xn, z)− ρ(xn, xn, xn)|
+ |ρ(y, xn, z)− ρ(z, z, z)|
= 3ε < ε.

Then dρ(y, xn, z) < ε ∀ n ≥ n(ε). Then (X, dρ) is
complete. Finally, it’s a simple to check that limn→∞
dρ(x, xn, z) = 0 if and only if

lim
n→∞

ρ(x, xn, z) = lim
n,m→∞

ρ(xn, xm, z) = ρ(x, x, x).

Theorem 25 Let (X, ρ) be a P2M -space, let T :
X → X be a map for which the inequality

aρ(Tx, Ty, z) + b[ρ(x, Tx, z) + ρ(y, Ty, z)

+ c[ρ(x, Ty, z) + ρ(y, Ty, z) (1)
≤ sρ(x, y, z) + rρ(x, T 2x, z), (4)

holds for all x, y in X where the constants a, b, c, r
and s satsisfy

0 ≤ s− b

a+ b
< 1,

a+ b ̸= 0, a+ b+ c > 0, c− r > 0, c > 0.

Then T has at least one fixed point.

Proof. Take an arbitrary point x0 ∈ X , define the

sequence xn+1 = Txn, n = 0, 1, 2, 3... . Sustituting
x = xn, y = xn+1 into equation (4), we have

aρ(Txn, Txn+1, z) + b[ρ(xn, Txn, z)

+ ρ(xn+1, Txn+1, z)] + c[ρ(xn, Txn+1, z)

+ ρ(xn+1, Txn+1, z)]

≤ sρ(xn, xn+1, z) + rρ(xn, T
2xn, z),

which implies

aρ(xn+1, xn+2, z) + b[ρ(xn, xn+1, z)

+ ρ(xn+1, xn+2, z)] + c[ρ(xn, xn+2, z)

+ ρ(xn+1, xn+1, z)]

≤ sρ(xn, xn+1, z) + rρ(xn, xn+2, z).

Rewriting this inequality as

(a+ b)ρ(xn+1, xn+2, z) + (c− r)ρ(xn, xn+2, z)

+ cρ(xn+1, xn+1, z)

≤ (s− b)ρ(xn, xn+1, z),

and using the fact

(c− r)ρ(xn, xn+2, z) + cρ(xn+1, xn+1, z) ≥ 0

where c− r > 0, c > 0. Then we obtain

ρ(xn+1, xn+2, z) ≤ αρ(xn, xn+1, z)

α = (s−b)
(a+b) , (a+ b) ̸= 0, 0 ≤ α ≤ 1. Thus,

ρ(xn+1, xn+2, z) ≤ αρ(xn, xn+1, z)

≤ α2ρ(xn−1, xn, z)

≤ α3ρ(xn−2, xn−1, z)

≤ ... ≤ αn+1ρ(x0, x1, z).

We will show {xn} is a cauchy sequence. Since

ρ(xn, xn+1, z) ≤ αn+1ρ(x0, x1, z).

Taking n → ∞, 0 ≤ α ≤ 1,

then lim
n→∞

ρ(xn, xm, z) → 0 (exist and finite).

Then {xn} is a Cauchy sequence in (X, ρ). By
Lemma 24, {xn} is also a Cauchy sequence in
(X, dρ). Since (X, ρ) is complete then (X, dρ) is also
complete. Thus there exists x ∈ X such that xn → x
in (X, dρ); moreover, by Lemma 24,

lim
n→∞

ρ(x, xn, z)

= lim
n,m→∞

ρ(xn, xm, z)

= ρ(x, x, x) = 0 ⇔ lim
n→∞

dρ(x, xn, z) = 0.

Now, we will show that x be a fixed point of T . Sub-
stituting x = xn and y = x into (4), we obtain

aρ(Txn, Tx, z) + b[ρ(xn, Txn, z)

+ ρ(x, Tx, z)]

+ c[ρ(xn, Tx, z) + ρ(x, Txn, z)]

≤ sρ(xn, x, z) + rρ(x, T 2xn, z),

which implies

aρ(xn+1, Tx, z) + b[ρ(xn, xn+1, z)

+ ρ(x, Tx, z)] + c[ρ(xn, Tx, z)

+ ρ(xn, Txn, z)]

≤ sρ(xn, x, z) + rρ(x, xn+2, z).

Taking the limit as n → ∞ and using Lemma 23, we
get

(a+ b+ c)ρ(x, Tx, z) ≤ 0.
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Since (a+ b+ c) > 0,

then we have 0 ≤ (a+ b+ c)ρ(x, Tx, z) ≤ 0,

this means that ρ(x, Tx, z) = 0. From theorem 17,
we get

0 ≤ dρ(x, Tx, z) = 3 ρ(x, Tx, z)

− ρ(x, x, x)− ρ(Tx, Tx, Tx)− ρ(z, z, z)

= −ρ(Tx, Tx, Tx)− ρ(z, z, z) ≤ 0,

hence dρ(x, Tx, z) = 0, that is x = Tx, which the
proof.
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