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Abstract: - In this paper, we discuss the prediction problem of the lifetimes to failure of units from Rayleigh 
distribution with Type-II censoring for a simple step-stress setup under cumulative exposure model. We consider 
several methods of point prediction, including maximum likelihood predictor, conditional median predictor, and best 
unbiased predictor. In addition, we discuss the prediction intervals for future lifetimes of the censored units using 
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to compare the proposed prediction methods. Further, a real data set is analyzed for illustrative purposes.  
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1 Introduction 
Accelerated life tests (ALTs) are commonly used to 
test components operated at higher than usual levels of 
stress. The failure data obtained from such tests are 
then transformed to estimate the distribution of failures 
under specified conditions, which improves component 
designs and makes better component selections. 
 
In ALT, the model is chosen according to the 
relationship between the parameters of the lifetime 
distribution and the conditions of the accelerated stress. 
If we use a constant stress level and some selected 
stress levels are very low, then we get many non-failed 
units during the testing time, which reduces the 
effectiveness of the test. To overcome this problem, 
step stress accelerated life test (SSALT) can be used. 
For more details on ALTs, one may refer to Nelson 
[20] and Kundu and Ganguly [17].        
In the SSALT, the level of stress in the test will be 
increased in steps at different intermediate stages of the 
experiment. Accordingly, a test unit is subjected to a 
specified level of stress for a prefixed period of time, if 
it does not fail during that period of time, then the stress 
level is changed for future prefixed time. This process 
continues until the test units fail or some termination 
conditions will be used. If there are two levels of stress, 
the SSALT is known as simple SSALT. In order to 
analyze the data under SSALT, there is more than one 
model that connects the lifetime's distribution under 
various stress levels to the failure times under the step 

stress test. The most popular model is known as the 
cumulative exposure model (CEM), which was 
proposed by Nelson [19]. In this model, it is assumed 
that the remaining lifetime of the experiment units is 
dependent only on the cumulative exposure the units 
have experienced, with no memory on how the 
exposure was accumulated. Statistical inferences of 
step-stress test under CEM were discussed by many 
authors. Estimation of the parameters in a simple step-
stress test under CEM for Weibull and exponential 
distributions are addressed by Bai and Kim [4] and 
Xiong [22], respectively. Balakrishnan et al. [5] 
presented a simple step-stress model under Type-I 
censoring and lognormally distributed lifetimes. Mitra 
et al. [18] discussed a simple step-stress model for two-
parameter exponential distribution with Type-II 
censoring. 
  
For Rayleigh distribution, Ebrahem and Al-Masri [11] 
discussed the estimation problem of the parameters for 
a simple step-stress model of Rayleigh distribution with 
log-linear link function. Chandra and Khan [10] 
presented the estimation problem of the parameters for 
simple step-stress model under Rayleigh distribution 
with Type-I and Type-II censoring. Kumar et al [16] 
considered the Bayesian inference for Rayleigh 
distribution under step-stress partially accelerated test 
with progressive Type-II censoring and binomial 
removal. Kotb and El-Din [15] presented a parametric 
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inference for step-stress tests from Rayleigh 
distribution under ordered ranked set sampling. 
It may worth mentioning that no attention has been 
paid to the problem of prediction of new lifetimes of 
Rayleigh distribution under CEM. In fact, the 
prediction problem has not been discussed extensively 
for step-stress model in the literature. Basak [6], and 
Basak and Balakrishnan ([7], [8]) considered the 
problem of predicting failure times of censored units 
for a simple step-stress model from exponential 
distribution with Type-I censoring and Type-II 
censoring, respectively. Recently, Amleh and Raqab 
([2], [3]) discussed the prediction problem for step-
stress plan for Lomax distribution under CEM, and for 
Weibull distribution under Khamis-Higgens model, 
respectively. 
In this paper, the simple SSALT for the Rayleigh 
distribution based on CEM is considered. It is assumed 
that failures occur according to Type-II censoring 
scheme, in which the experiment is terminated as soon 
as the 𝑟𝑡ℎ failure occurs. Specifically, the aim of the 
paper is predicting future order statistics based on 
Type-II censored units under simple step-stress setup 
with Rayleigh CEM using point prediction and 
prediction intervals. 
The rest of the paper is organized as follows. The CEM 
under Rayleigh distribution, basic model assumptions 
and maximum likelihood estimation of the original 
parameters based on the observed data are discussed in 
Section 2. Point predictors including maximum 
likelihood predictor, conditional median predictor, and 
the best unbiased predictor are presented in Section 3.  
In Section 4, we develop different methods for 
obtaining prediction limits of the censored lifetimes. To 
assess the effectiveness of the prediction procedures, 
we perform a simulation study and real data analysis in 
Section 5. Finally, we conclude the paper in Section 6. 
  
2 Model description and maximum 

likelihood estimation 
Rayleigh distribution was introduced in 1880 as part of 
a problem in the field of acoustics. Over the following 
years, significant work has taken place in the 
distribution in different fields of science and 
technology. Rayleigh distribution is related to other 
known distributions such as Weibull, chi-square and 
extreme values distributions. An important feature of 
the Rayleigh distribution is that its hazard rate function 
is an increasing function of time. This means that if the 
failure times have Rayleigh distribution, an intense 
aging item occurs. For more details on Rayleigh 
distribution one may refer to Johnson et al. [13]. The 
probability density function (pdf) of the Rayleigh 
distribution is given by 

𝑓(𝑡, 𝜃) =
𝑡

𝜃2
𝑒
− 
𝑡2

2𝜃2 , 𝑡 > 0 , 𝜃 > 0,        (1) 
 
with cumulative distribution function (cdf) 
 

𝐹(𝑡, 𝜃) = 1 − 𝑒
− 

𝑡2

2𝜃2 , 𝑡 > 0 , 𝜃 > 0,       (2)  
 
where 𝜃 is the scale parameter. The hazard rate 
function of the Rayleigh distribution is increasing in 
𝑡 and given by 

ℎ(𝑡) =
𝑡

𝜃2
 , 

So, Rayleigh distribution may describe the lifetime 
of an increasing failure rate items.  
 
The simple step-stress test under Type-Ⅱ censoring is 
performed as follows. All n units are initially put on the 
lower stress S1 and run until time τ. Then, the stress is 
increased to high level S2, and the test continues until a 
pre-determined number of failures r are observed.  Let 
n1 denotes the random number of failures before τ, and 
n2 = r − n1, denotes the number of failures after τ. If 
n1 = r, then the test is terminated at the first level. 
Otherwise, the stress level is accelerated to the next 
step, and the test continues until the required r failures. 
The following are the basic assumptions that specify 
our model: 
 

1- Units are tested at two levels of stress  𝑆1 <
𝑆2; 

2- The lifetimes of the units for both stress levels 
follow Rayleigh distribution; 

3- The scale parameters for the lifetime  
distribution are 𝜃𝑗, 𝑗 = 1,2, corresponding to 
stress level 𝑆𝑗, 𝑗 = 1,2;  

4- Failures follow the CEM. 
 
According to the above assumptions, the ordered 
lifetimes that are observed, which are denoted by the 
vector data  𝒕, have the following form 
 
𝑡1:𝑛 < ⋯ < 𝑡𝑛1:𝑛 < 𝜏 ≤ 𝑡𝑛1+1∶𝑛 < ⋯ < 𝑡𝑟:𝑛.       (3)  
 
Here, 𝒕 represents the observed values of the variable 
𝑻 = ( 𝑇1:𝑛, … , 𝑇𝑛1 , 𝑇𝑛1+1:𝑛, … , 𝑇𝑟), which denotes 
the Type-II censored order statistics. The CEM for 
simple step-stress test is given by 
 

𝐹(𝑡) = {
𝐹1(𝑡),                      0 ≤ 𝑡 < 𝜏

𝐹2(𝑡 − 𝜏 + ℎ) , 𝜏 ≤ 𝑡 < ∞,
                  (4)  

 
where the equivalent shifting time, ℎ, is a solution of  
the equation 𝐹1(𝜏) = 𝐹2(ℎ). By solving the above 
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equation for ℎ, we have ℎ = 𝜃2

𝜃1
𝜏. As a result of that, 

the Rayleigh CEM for simple step-stress test is 
distributed as 

𝐹(𝑡) = {
1 − 𝑒

−
𝑡2

2𝜃1
2
,                  0 ≤ 𝑡 < 𝜏

1 − 𝑒−
(
𝑡−𝜏
𝜃2

+
𝜏
𝜃1
)
2

2 , 𝜏 ≤ 𝑡 < ∞,

            (5)  

 
with the corresponding pdf  
 

𝑓(𝑡) =

{
 
 

 
 𝑡

𝜃1
2  𝑒

−
𝑡2

2𝜃1
2
,                        0 ≤ 𝑡 < 𝜏

1

𝜃2
(
𝑡−𝜏

𝜃2
+

𝜏

𝜃1
) 𝑒−

(
𝑡−𝜏
𝜃2

+
𝜏
𝜃1
)
2

2 , 𝜏 ≤ 𝑡 < ∞.

     (6)  

 
The likelihood function of the parameters  𝜃1 and 𝜃2 
based on the observed Type-II censored data  𝒕 is given 
by 
 
𝐿(𝜃1, 𝜃2| 𝒕) = 

{
 
 

 
 
𝑛!

𝑟!
∏ 𝑓1(𝑡𝑖:𝑛) [1 − 𝐹1(𝑡𝑟:𝑛)]

𝑛−𝑟𝑛1
𝑖=1  , 𝑛1 = 𝑟            (7 𝑎)

𝑛!

𝑟!
∏ 𝑓2(𝑡𝑖:𝑛) [1 − 𝐹2(𝑡𝑟:𝑛)]

𝑛−𝑟𝑟
𝑖=1  , 𝑛1 = 0            (7 𝑏)

𝑛!

𝑟!
∏ 𝑓(𝑡𝑖:𝑛) [1 − 𝐹(𝑡𝑟:𝑛)]

𝑛−𝑟𝑟
𝑖=1 , 1 ≤ 𝑛1 ≤ 𝑟 − 1, (7 𝑐)

  

 
Based on the likelihood function given in (7 a), (7 b) 
and (7 c), it is observed that the maximum likelihood 
estimators (MLEs) of the parameters 𝜃1 and 𝜃2 exist 
only if 1 ≤ 𝑛1 ≤ 𝑟 − 1. Therefore, according to the 
step-stress setup, the likelihood function in (2.7 c) is 
given by 

𝐿(𝜃1, 𝜃2| 𝒕) =
𝑛!

𝑛1! (𝑟 − 𝑛1)!
∏𝑓1(𝑡𝑖:𝑛) ∏ 𝑓2(𝑡𝑖:𝑛)

𝑟

𝑖=𝑛1+1

𝑛1

𝑖=1

  

× [1 − 𝐹2(𝑡𝑟:𝑛)]
𝑛−𝑟 .                                        (8)  

 
Using Eq.'s (5) and (6), we have 
 

𝐿(𝜃1, 𝜃2| 𝒕) ∝  ∏{ 
𝑡𝑖:𝑛

𝜃1
2  𝑒

−
𝑡𝑖:𝑛
2

2𝜃1
2
}

𝑛1

𝑖=1

 

× ∏ { 
1

𝜃2
(
𝑡𝑖:𝑛 − 𝜏

𝜃2
+
𝜏

𝜃1
) 𝑒−

(
𝑡𝑖:𝑛−𝜏
𝜃2

+
𝜏
𝜃1
)2

2  } 

𝑟

𝑖=𝑛1+1

 

× [𝑒−
(
𝑡𝑟:𝑛−𝜏
𝜃2

+
𝜏
𝜃1
)2

2 ]

𝑛−𝑟

,                                     (9) 

 
which can be simplified as: 

𝐿(𝜃1, 𝜃2| 𝒕) ∝ 𝜃1
−2𝑛1𝜃2

−𝑛2∏𝑡𝑖:𝑛 ∏ (
𝑡𝑖:𝑛 − 𝜏

𝜃2
+
𝜏

𝜃1
) 

𝑟

𝑖=𝑛1+1

𝑛1

𝑖=1

 

× e
−
1
2
[
1
θ1
2∑ ti:n

2 +∑ (
ti:n−τ
θ2

+
τ
θ1
)
2

+(n−r)(
tr:n−τ
θ2

+
τ
θ1
)
2

r
i=n1+1

n1
i=1 ]

. (10) 

Consequently, the log-likelihood function 𝐿∗ = log(𝐿) 
is given by 

𝐿∗(𝜃1, 𝜃2| 𝒕) ∝ −2𝑛1 log 𝜃1 − 𝑛2 log 𝜃2 

+∑log 𝑡𝑖:𝑛

𝑛1

𝑖=1

+ ∑ log (
𝑡𝑖:𝑛 − 𝜏

𝜃2
+
𝜏

𝜃1
)

𝑟

𝑖=𝑛1+1

 

−
1

2
[
1

𝜃1
2∑𝑡𝑖:𝑛

2 + ∑ (
𝑡𝑖:𝑛 − 𝜏

𝜃2
+
𝜏

𝜃1
)
2

𝑟

𝑖=𝑛1+1

𝑛1

𝑖=1

+ (𝑛 − 𝑟) (
𝑡𝑟:𝑛 − 𝜏

𝜃2
+
𝜏

𝜃1
)
2

].  (11) 

 So, the likelihood equations are given by 
 
𝜕𝐿∗

𝜕𝜃1
=
1

𝜃1
3∑𝑡𝑖:𝑛

2 −
𝜃2
𝜃1
 ∑

𝜏

𝜃1(𝑡𝑖:𝑛 − 𝜏) + 𝜃2𝜏

𝑟

𝑖=𝑛1+1

𝑛1

𝑖=1

  

+
𝜏

𝜃1
2 [ ∑ (

𝑡𝑖:𝑛 − 𝜏

𝜃2
+
𝜏

𝜃1
) + (𝑛 − 𝑟) (

𝑡𝑟:𝑛 − 𝜏

𝜃2
+
𝜏

𝜃1
)

𝑟

𝑖=𝑛1+1

] 

−
2𝑛1
𝜃1

= 0.                                                             (12) 

 
𝜕𝐿∗

𝜕𝜃2
= −

𝑛2
𝜃2
+ (𝑛 − 𝑟) (

𝑡𝑟:𝑛 − 𝜏

𝜃2
+
𝜏

𝜃1
)
(𝑡𝑟:𝑛 − 𝜏)

𝜃2
2 + 

.  

∑ {−
𝜃1
𝜃2
.

(𝑡𝑖:𝑛 − 𝜏)

𝜃1(𝑡𝑖:𝑛 − 𝜏) + 𝜃2𝜏
+ (

𝑡𝑖:𝑛 − 𝜏

𝜃2
+
𝜏

𝜃1
)
(𝑡𝑖:𝑛 − 𝜏)

𝜃2
2 }

𝑟

𝑖=𝑛1+1

= 0.                                                           (13)  
 
The estimation procedure, through equations (12) and 
(13), does not result in closed form. Therefore, Eq.’s 
(12) and (13) can be solved simultaneously using a 
numerical technique as Newton-Raphson method, or 
similar methods, see [1]. The algorithm used for 
generating the data and computing the MLEs of the 
parameters 𝜃1and 𝜃2 is performed according to the 
following algorithm: 
 
Step 1: Generate a random sample of size 𝑛 following 

standard uniform distribution  U(0,1), and 
obtain the order statistics: 

𝑈1:𝑛 < 𝑈2:𝑛 < ⋯ < 𝑈𝑛:𝑛; 

Step 2:  Find the random variable 𝑛1 such that  𝑈𝑛1 <
𝑃(𝑇 ≤ 𝜏) =  𝐹1(𝜏) ≤ 𝑈𝑛1+1:𝑛, where T represents 
the failure time, so we have: 

𝑈𝑛1 < 1 − 𝑒
−
𝜏2

2𝜃1
2
≤ 𝑈𝑛1+1:𝑛. 
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Step 3: Generate the data based on the order statistics 
𝑈𝑖:𝑛 as follows: 
 

𝑡𝑖:𝑛 = {
𝜃1√−2 log(1 − 𝑈𝑖:𝑛)  ,                      𝑖 = 1,2,… , 𝑛1

𝜃2√−2 log(1 − 𝑈𝑖:𝑛) + 𝜏 (1 −
𝜃2

𝜃1
) , 𝑖 = 𝑛1 + 1,… , 𝑟

     (14)                

Step 4: Compute the MLEs of 𝜃1and 𝜃2 using Eq.'s 
(12) and (13) based on the censored data 

  𝑡𝑖:𝑛, 𝑡2:𝑛, … , 𝑡𝑛1:𝑛, 𝑡𝑛1+1:𝑛, … , 𝑡𝑟:𝑛,  

as in (14).   

 

3 Prediction of future order statistics 

In this section, we discuss the problem of predicting 
new failure times based on some observed Rayleigh 
failure times under the CEM. The problem can be 
described as follows. Let 𝑇1:𝑛 < 𝑇2:𝑛 < ⋯ < 𝑇𝑟:𝑛 
denote the observed ordered lifetime units, which is 
known as informative sample, and let  𝑇𝑠:𝑛 , 𝑠 = 𝑟 +
1,… , 𝑛, be the unobserved future lifetime taken from 
the same sample. The prediction problem concerns on 
how we can predict the future lifetimes 𝑇𝑠:𝑛, given the 
observed ordered statistics 𝑇𝑖:𝑛, 0 < 𝑖 ≤ 𝑟.  

Based on the Markovian property of censored order 
statistics, it is known that the conditional distribution of 
𝑌 = 𝑇𝑠:𝑛 given 𝑻 = 𝒕,  where:  

𝒕 = (𝑡1:𝑛, … , 𝑡𝑛1:𝑛, 𝑡𝑛1+1∶𝑛, … , 𝑡𝑟:𝑛), 
 is equivalent to the distribution of 𝑌 = 𝑇𝑠:𝑛 given 
𝑇𝑟:𝑛 = 𝑡𝑟:𝑛. Therefore, the density of Y given 𝑻 = 𝒕 is 
the same as the density of the (𝑠 − 𝑟)𝑡ℎ order statistic 
out of (𝑛 − 𝑟) units from the population with left 
truncated density 𝜑(𝑦) = 𝑓(𝑦)

1−𝐹(𝑡𝑟:𝑛)
, 𝑦 > 𝑡𝑟:𝑛, where 

𝐹(𝑦) and 𝑓(𝑦)  are given in Section 2 as in Eq. (5) and 
(6), respectively. Therefore, the density of  𝑌 = 𝑇𝑠:𝑛 
given  𝑻 = 𝒕 can be expressed as: 
 
𝑔𝑇𝑠:𝑛|𝑻(𝑦|𝜃1, 𝜃2, 𝑑𝑎𝑡𝑎) =

𝑐

𝜃2
(
𝑦 − 𝜏

𝜃2
+
𝜏

𝜃1
) 

 

× {1 − 𝑒
−
1
2[
(
𝑦−𝜏
𝜃2

+
𝜏
𝜃1
)
2

−(
𝑡𝑟:𝑛−𝜏
𝜃2

+
𝜏
𝜃1
)
2

]
}

𝑠−𝑟−1

 

× 𝑒
−
1
2
(𝑛−𝑠+1)[(

𝑦−𝜏
𝜃2

+
𝜏
𝜃1
)
2

−(
𝑡𝑟:𝑛−𝜏
𝜃2

+
𝜏
𝜃1
)
2

]
, 𝑦 > 𝑡𝑟:𝑛, (15) 

 

where  𝑐 = (𝑛−𝑟)!

(𝑠−𝑟−1)!(𝑛−𝑠)!
.  

 
3.1 Maximum likelihood predictor 

The maximum likelihood prediction method was 
suggested by Kaminsky and Rhodin [12]. This method 
includes the prediction of future order statistics in 
addition to estimating the unknown parameters in the 
proposed model. The predictive likelihood function 
(PLF) of  𝑌 = 𝑇𝑠:𝑛 is given by 

𝑙(𝑦, 𝜃1, 𝜃2|𝒕) = 𝑙 = 𝑔𝑇𝑠:𝑛|𝑻(𝑦|𝒕, 𝜃1, 𝜃2). 𝑔𝑻(𝒕, 𝜃1, 𝜃2)                        

= 𝑔𝑇𝑠:𝑛|𝑇𝑟:𝑛
(𝑦|𝑡𝑟:𝑛, 𝜃1, 𝜃2). 𝑔𝑻(𝒕, 𝜃1, 𝜃2), (16)                            

where   𝑔𝑇𝑠:𝑛|𝑇𝑟:𝑛(𝑦|𝑡𝑟:𝑛 , 𝜃1, 𝜃2) is the conditional 
density of  𝑇𝑠:𝑛 given the observed value of  𝑻 = 𝒕, as 
in Eq. (15),  and 𝑔𝑻(𝒕, 𝜃1, 𝜃2) is the density of 𝑻. In 
fact, the PLF of  𝑌 = 𝑇𝑠:𝑛 can be formed as  

𝑙 ∝∏𝑓1(𝑡𝑖:𝑛)

𝑛1

𝑖=1

∏ 𝑓2(𝑡𝑖:𝑛)  

𝑟

𝑖=𝑛1+1

   

× [𝐹2(𝑦) − 𝐹2(𝑡𝑟:𝑛)]
𝑠−𝑟−1𝑓2(𝑦)[1 − 𝐹2(𝑦)]

𝑛−𝑠 

0 ≤ 𝑛1 ≤ 𝑟, 𝑟 + 1 ≤ 𝑠 ≤ 𝑛.          (17)  

Taking the case when 1 ≤ 𝑛1 < 𝑟 ≤ 𝑛, we obtain 
 

𝑙 ∝ 𝜃1
−2𝑛1𝜃2

−(𝑛2+1) (
𝑦 − 𝜏

𝜃2
+
𝜏

𝜃1
)∏𝑡𝑖:𝑛

𝑛1

𝑖=1

 

× 𝑒
−
1
2[
1

𝜃1
2∑ 𝑡𝑖:𝑛

2 +∑ (
𝑡𝑖:𝑛−𝜏
𝜃2

+
𝜏
𝜃1
)
2

+(𝑛−𝑠+1)(
𝑦−𝜏
𝜃2

+
𝜏
𝜃1
)
2

𝑟
𝑖=𝑛1+1

𝑛1
𝑖=1 ]

 

×  [𝑒
−
1
2
(
𝑡𝑟:𝑛−𝜏
𝜃2

+
𝜏
𝜃1
)
2

− 𝑒
−
1
2
(
𝑦−𝜏
𝜃2

+
𝜏
𝜃1
)
2

]

𝑠−𝑟−1

 

× ∏ (
𝑡𝑖:𝑛 − 𝜏

𝜃2
+
𝜏

𝜃1
).                                   

𝑟

𝑖=𝑛1+1

(18) 

 
So, the log PLF can be written as  
 
log 𝑙 ∝ −2𝑛1 log 𝜃1 − (𝑛2 + 1) log 𝜃2 +

∑ log 𝑡𝑖:𝑛
𝑛1
𝑖=1 + ∑ log (

𝑡𝑖:𝑛−𝜏

𝜃2
+

𝜏

𝜃1
)𝑟

𝑖=𝑛1+1
  

+(𝑠 − 𝑟 − 1) log [𝑒
−
1
2
(
𝑡𝑟:𝑛−𝜏
𝜃2

+
𝜏
𝜃1
)
2

− 𝑒
−
1
2
(
𝑦−𝜏
𝜃2

+
𝜏
𝜃1
)
2

] 

−
1

2
[
1

𝜃1
2∑ 𝑡𝑖:𝑛

2 + ∑ (
𝑡𝑖:𝑛−𝜏

𝜃2
+

𝜏

𝜃1
)
2
+𝑟

𝑖=𝑛1+1
𝑛1
𝑖=1

(𝑛 − 𝑠 + 1) (
𝑦−𝜏

𝜃2
+

𝜏

𝜃1
)
2
]+log (

𝑦−𝜏

𝜃2
+

𝜏

𝜃1
) .      (19)  

                                                             
Using (19), the predictive likelihood equations (PLEs) 
for 𝜃1, 𝜃2 and 𝑦 are obtained and presented as follows: 

𝜕 𝑙𝑜𝑔 𝑙

𝜕𝜃1
=
1

𝜃1
3∑(𝑡𝑖:𝑛

2 ) −
2𝑛1

𝜃1
+

𝑛1

𝑖=1

 
𝜏

𝜃1
2 (𝑠 − 𝑟 − 1) ×  
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{
 
 

 
 
[
𝑡𝑟:𝑛 − 𝜏
𝜃2

+
𝜏
𝜃1
] 𝑒

−
1
2
(
𝑡𝑟:𝑛−𝜏
𝜃2

+
𝜏
𝜃1
)
2

− [
𝑦 − 𝜏
𝜃2

+
𝜏
𝜃1
] 𝑒

−
1
2
(
𝑦−𝜏
𝜃2

+
𝜏
𝜃1
)
2

𝑒
−
1
2
(
𝑡𝑟:𝑛−𝜏
𝜃2

+
𝜏
𝜃1
)
2

− 𝑒
−
1
2
(
𝑦−𝜏
𝜃2

+
𝜏
𝜃1
)
2

}
 
 

 
 

 

−
𝜃2

𝜃1
[(

𝜏

𝜏𝜃2 + (𝑦 − 𝜏)𝜃1
) − ∑ (

𝜏

𝜏𝜃2 + (𝑡𝑖:𝑛 − 𝜏)𝜃1
)

𝑟

𝑖=𝑛1+1

] 

𝜏

𝜃1
2 [ ∑ (

𝑡𝑖:𝑛 − 𝜏

𝜃2
+
𝜏

𝜃1
) + (𝑛 − 𝑠 + 1) (

𝑦 − 𝜏

𝜃2
+
𝜏

𝜃1
)

𝑟

𝑖=𝑛1+1

] = 0. 

                                                         (20)    

𝜕 log 𝑙

𝜕𝜃2
= −

𝑛2 + 1

𝜃2
+ (𝑛 − 𝑠 + 1) (

𝑦 − 𝜏

𝜃2
+
𝜏

𝜃1
) (
𝑦 − 𝜏

𝜃2
2 ) 

−
𝜃1
𝜃2
(

𝑦 − 𝜏

𝜏𝜃2 + (𝑦 − 𝜏)𝜃1
) +

(𝑠 − 𝑟 − 1)𝜃2
−2

𝑒
−
1
2
(
𝑡𝑟:𝑛−𝜏
𝜃2

+
𝜏
𝜃1
)
2

− 𝑒
−
1
2
(
𝑦−𝜏
𝜃2

+
𝜏
𝜃1
)
2 × 

 

{(
𝑡𝑟:𝑛 − 𝜏

𝜃2
+
𝜏

𝜃1
) (𝑡𝑟:𝑛 − 𝜏)𝑒

−
1
2
(
𝑡𝑟:𝑛−𝜏
𝜃2

+
𝜏
𝜃1
)
2

− (
𝑦 − 𝜏

𝜃2
+
𝜏

𝜃1
) (𝑦 − 𝜏)𝑒

−
1
2
(
𝑦−𝜏
𝜃2

+
𝜏
𝜃1
)
2

} 

+ ∑ {−
𝜃1
𝜃2
[

𝑡𝑖:𝑛 − 𝜏

𝜏𝜃2 + (𝑡𝑖:𝑛 − 𝜏)𝜃1
]

𝑟

𝑖=𝑛1+1

+ (
𝑡𝑖:𝑛 − 𝜏

𝜃2
+
𝜏

𝜃1
) (
𝑡𝑖:𝑛 − 𝜏

𝜃2
2 )} = 0. 

                                                                 (21)  
𝜕 log 𝑙

𝜕𝑦
=

𝜃1
𝜏𝜃2 + (𝑦 − 𝜏)𝜃1

 

  

+
1

𝜃2
{(𝑠 − 𝑟 − 1)

(
𝑦−𝜏

𝜃2
+
𝜏

𝜃1
)×𝑒

−
1
2
(
𝑦−𝜏
𝜃2

+
𝜏
𝜃1
)
2

𝑒
−
1
2
(
𝑡𝑟:𝑛−𝜏
𝜃2

+
𝜏
𝜃1
)
2

−𝑒
−
1
2
(
𝑦−𝜏
𝜃2

+
𝜏
𝜃1
)
2 −

(𝑛 − 𝑠 + 1) (
𝑦−𝜏

𝜃2
+

𝜏

𝜃1
)} = 0. (22)  

Since Eq.'s (20)-(22) cannot be solved explicitly, 
numerical techniques will be used to solve them 
simultaneously, which leads to find the maximum 
likelihood predictor (MLP) of Y and the predictive 
maximum likelihood estimators (PMLEs) of 𝜃1 and 𝜃2. 
The resulting MLP of  Y is denoted by �̂�𝑀.  
 
3.2 Conditional median predictor 
Raqab and Nagaraja [19] proposed a point predictor 
based on the conditional distribution of 𝑌 given 𝑻 = 𝒕, 
known as conditional median predictor (CMP). A 
predictor �̂� is called the CMP of 𝑌, if it is the median 
of the conditional distribution of 𝑌 given 𝑻 = 𝒕, that is 
𝑃(𝑌 ≤ �̂�|𝑻 = 𝒕) = 𝑃𝜃(𝑌 ≥ �̂�|𝑻 = 𝒕).                 

Using the conditional distribution of 𝑌 given 𝑻 = 𝒕, we 
can obtain 
𝑃(𝑌 ≤ �̂�|𝑻 = 𝒕) = 

𝑃(1 − 𝑒
−
1
2[
(
𝑌−𝜏
𝜃2

+
𝜏
𝜃1
)
2

−(
𝑡𝑟:𝑛−𝜏
𝜃2

+
𝜏
𝜃1
)
2

]

≥ 1 − 𝑒
−
1
2[
(
�̂�−𝜏
𝜃2

+
𝜏
𝜃1
)
2

−(
𝑡𝑟:𝑛−𝜏
𝜃2

+
𝜏
𝜃1
)
2

]|𝑻=𝒕
).          

 It can be shown that, given 𝑻 = 𝒕, the distribution of 

𝑊 = 1 − 𝑒
−
1
2[
(
𝑦−𝜏
𝜃2

+
𝜏
𝜃1
)
2

−(
𝑡𝑟:𝑛−𝜏
𝜃2

+
𝜏
𝜃1
)
2

]
, 

 is a Beta distribution with parameters 𝑠 − 𝑟 and 𝑛 −
𝑠 + 1, denoted by 𝐵𝑒𝑡𝑎 (𝑠 − 𝑟, 𝑛 − 𝑠 + 1). So, if 𝐵 is 
a random 𝐵𝑒𝑡𝑎 (𝑠 − 𝑟, 𝑛 − 𝑠 + 1), and 𝑀𝐵 represents 
the median of 𝐵, the CMP of  𝑌 can be obtained as 
�̂�𝐶𝑀𝑃 = 𝜏 −

𝜃2

𝜃1
𝜏                             

+𝜃2√(
𝑡𝑟:𝑛 − 𝜏

𝜃2
+
𝜏

𝜃1
)
2

− 2 log(1 −𝑀𝐵).     (23) 

The CMP of Y can be computed approximately by 
replacing 𝜃1 and 𝜃2 in Eq. (23) by their corresponding 
MLEs. 
3.3 Best Unbiased Predictor 

A point predictor �̂� of   𝑌 = 𝑇𝑠:𝑛 is called a best 
unbiased predictor (BUP) of  𝑌, if the mean of its 
prediction error, 𝐸(�̂� − 𝑌) is zero and the variance 
of its prediction error, 𝑉𝑎𝑟(�̂� − 𝑌) is less than or 
equal to that of any other unbiased predictor of 𝑌. 
Using the conditional density of 𝑌 given 𝑻 = 𝒕, as in 
Eq. (15), the BUP of  𝑌 is given by 

�̂�𝐵𝑈𝑃 = 𝐸(𝑌|𝑻) = ∫ 𝑦 𝑔𝑇𝑠:𝑛|𝑻(𝑦|𝜃1, 𝜃2 , 𝑑𝑎𝑡𝑎) 𝑑𝑦
∞

𝑡𝑟:𝑛

.  

Using the binomial expansion: 

{1 − 𝑒
−
1

2
[(
𝑦−𝜏

𝜃2
+
𝜏

𝜃1
)
2
−(

𝑡𝑟:𝑛−𝜏

𝜃2
+
𝜏

𝜃1
)
2
]
}

𝑠−𝑟−1

=  

∑ (
𝑠 − 𝑟 − 1

𝑘
) (−1)𝑠−𝑟−𝑘−1𝑠−𝑟−1

𝑘=0   

 × 𝑒
−
1

2
(𝑠−𝑟−𝑘−1)[(

𝑦−𝜏

𝜃2
+
𝜏

𝜃1
)
2
−(

𝑡𝑟:𝑛−𝜏

𝜃2
+
𝜏

𝜃1
)
2
]
,  

 
we obtain 

�̂�𝐵𝑈𝑃 =
(s−r)

𝜃2
(
𝑛 − 𝑟
𝑠 − 𝑟

)  
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× ∑ {(
𝑠 − 𝑟 − 1

𝑘
) (−1)𝑠−𝑟−𝑘−1  𝑒

1
2
(𝑛−𝑟−𝑘)(

𝑡𝑟:𝑛−𝜏
𝜃2

+
𝜏
𝜃1
)
2

 

𝑠−𝑟−1

𝑘=0

 

×∫ (
𝑦2 − 𝜏

𝜃2
+
𝜏𝑦

𝜃1
)  𝑒

−
1
2
(𝑛−𝑟−𝑘)(

𝑦−𝜏
𝜃2

+
𝜏
𝜃1
)
2

 𝑑𝑦
∞

𝑡𝑟:𝑛

}.    (24) 

                                                       

The BUP of  Y can be approximated by substituting the 
MLEs of the unknown parameters 𝜃1 and 𝜃2 in Eq. 
(24). 

 
4 Prediction intervals 
Another aspect of prediction problem is to predict the 
future unobserved lifetimes by constructing prediction 
intervals (PIs) for  𝑌 = 𝑇𝑠:𝑛, 𝑠 = 𝑟 + 1,… , 𝑛 based on 
the Type-II censored sample 𝑻 = (𝑇1:𝑛, 𝑇2:𝑛, … , 𝑇𝑟:𝑛 ). 
The pivotal, highest conditional density, and shortest-
length based methods are considered in this section. 
 

4.1 Pivotal-based PIs 
Let us consider the random variable  
 

𝑊 = 1 − 𝑒
−
1
2[
(
𝑌−𝜏
𝜃2

+
𝜏
𝜃1
)
2

−(
𝑡𝑟:𝑛−𝜏
𝜃2

+
𝜏
𝜃1
)
2

]
, 𝑌 > 𝑡𝑟.   (25) 

 
Since the distribution of 𝑊 given 𝑻 = 𝒕, is a Beta 
distribution with parameters 𝑠 − 𝑟 and 𝑛 − 𝑠 + 1, 
then 𝑊 can be considered as a pivotal quantity for 
obtaining the PI of  𝑌. By considering (1 − 𝛼), 0 <
𝛼 < 1, as a prediction coefficient and using Eq. (25), 
we obtain 

𝑃 (𝐵𝛼
2
< 𝑊 < 𝐵

1−
𝛼
2
) = 1 − 𝛼, 

where 𝐵𝛼 is the 100 𝛼𝑡ℎpercentile of the distribution 
𝐵𝑒𝑡𝑎 (𝑠 − 𝑟, 𝑛 − 𝑠 + 1). Therefore, a(1 − 𝛼)100%  
pivotal PI of  𝑌 is (𝐿1(𝑻), 𝑈1(𝑻), where 

𝐿1(𝑻) =  

𝜏 −
𝜃2
𝜃1
𝜏 + 𝜃2√(

𝑡𝑟:𝑛 − 𝜏

𝜃2
+
𝜏

𝜃1
)
2

− 2 log (1 − 𝐵𝛼
2
) 

𝑈1(𝑻) = 

𝜏 −
𝜃2
𝜃1
𝜏 + 𝜃2√(

𝑡𝑟:𝑛 − 𝜏

𝜃2
+
𝜏

𝜃1
)
2

− 2 log(1 − 𝐵
1−
𝛼
2
) . 

                                  

The prediction limits 𝐿1(𝑻) and 𝑈1(𝑻) can be 
evaluated approximately by replacing  𝜃1 and 𝜃2 by 
their corresponding MLEs. 
 

4.2  Highest conditional density PIs  
As described above, the conditional distribution of 
 

𝑊 = 1 − 𝑒
−
1
2[
(
𝑌−𝜏
𝜃2

+
𝜏
𝜃1
)
2

−(
𝑡𝑟:𝑛−𝜏
𝜃2

+
𝜏
𝜃1
)
2

]
 

 
given  𝑻 = 𝒕 is  𝐵𝑒𝑡𝑎 (𝑠 − 𝑟, 𝑛 − 𝑠 + 1). Therefore, 
the conditional pdf of  𝑊 is: 

𝑔(𝑤) =
(𝑛 − 𝑟)!

(𝑠 − 𝑟 − 1)! (𝑛 − 𝑠)!
𝑤𝑠−𝑟−1(1 − 𝑤)𝑛−𝑠,    

0 < 𝑤 < 1.               (26)  

The density in Eq. (26) is unimodal function in  𝑤. An 
interval (𝑑1, 𝑑2) is called highest conditional density 
(HCD) PI of content (1 − 𝛼) if (𝑑1, 𝑑2) =
{𝑑: 𝑑 ∈ [0, 1], 𝑓(𝑑) ≥ 𝑘} ⊆ [0, 1], where  

∫ 𝑔(𝑤) 𝑑𝑤
𝑑2

𝑑1

= 1 − 𝛼, 

for some 𝑘 > 0. Now, if  𝑟 + 1 < 𝑠 < 𝑛, then 𝑔(𝑤) is 
a unimodal function, and it attains its maximum value 
at 𝛿 = 𝑠−𝑟−1

𝑛−𝑟−1
∈ (0, 1). Following Theorem 9.3.2 of 

Casella and Berger [9], the HCD PI can be obtained by 
finding two percentiles 𝑑1 and 𝑑2 such that 𝑃(𝑊 <

𝑑1) = 𝑃(𝑊 > 𝑑2) =
𝛼

2
, with 𝑑1 ≤ 𝛿 ≤ 𝑑2, satisfying 

∫ 𝑔(𝑤) 𝑑𝑤
𝑑2

𝑑1

= 1 − 𝛼,                     (27) 

and, 
𝑔(𝑑1) = 𝑔(𝑑2).                            (28) 

 
Eq.'s (27) and (28) can be simplified as 

𝐵𝑑2(𝑠 − 𝑟, 𝑛 − 𝑠 + 1) − 𝐵𝑑1(𝑠 − 𝑟, 𝑛 − 𝑠 + 1) = 1 − 𝛼,                       

(29) 
and 

 

(
1−𝑑2

1−𝑑1
)
𝑛−𝑠

= (
𝑑1

𝑑2
)
𝑠−𝑟−1

,              (30)                                                  
where 
 

𝐵𝑣(𝑎, 𝑏) =
Γ(𝑎 + 𝑏)

Γ(𝑎)Γ(𝑏)
∫ 𝑢𝑎−1(1 − 𝑢)𝑏−1𝑑𝑢,
𝑣

0

 

 
is the incomplete beta function and Γ(. ) is the gamma 
function. Consequently, a (1 − 𝛼)100% HCD PI of Y 
is given by (𝐿2(𝑻),  𝑈2(𝑻)), with 

𝐿2(𝑻) =  
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𝜏 −
𝜃2
𝜃1
𝜏+𝜃2√(

𝑡𝑟:𝑛 − 𝜏

𝜃2
+
𝜏

𝜃1
)
2

− 2 log(1 − 𝑑1),  

𝑈2(𝑻) = 

𝜏 −
𝜃2
𝜃1
𝜏 + 𝜃2√(

𝑡𝑟:𝑛 − 𝜏

𝜃2
+
𝜏

𝜃1
)
2

− 2 log(1 − 𝑑2) 

For the special case when  𝑠 = 𝑟 + 1 𝑎𝑛𝑑 𝑠 < 𝑛, 
𝑔(𝑤) = (𝑛 − 𝑟)(1 − 𝑤)𝑛−𝑟−1, 0 < 𝑤 < 1, which is 
a decreasing function in 𝑤 with 𝑔(0) = 𝑛 − 𝑟 and 
𝑔(1) = 0. Therefore, the PI for 𝑌 is of the form 
(0, 𝑑2) such that 𝑑2 = 1 − 𝛼1/(𝑛−𝑟). This concludes 
that 

𝐿2(𝑻) = 𝑡𝑟:𝑛,  

𝑈2(𝑻) = 𝜏 −
𝜃2

𝜃1
𝜏 +

𝜃2√(
𝑡𝑟:𝑛−𝜏

𝜃2
+

𝜏

𝜃1
)
2
−

2

𝑛−𝑟
log(𝛼).    

When 𝑠 = 𝑟 + 1 and 𝑠 = 𝑛, 𝑔(𝑤) is uniform 
𝑈(0, 1).  Here 𝑑1 and 𝑑2 are taken such that 𝑑1 =
𝛼/2  and 𝑑2 = 1 − 𝛼/2. So, we have 

𝐿2(𝑻) = 𝜏 −
𝜃2

𝜃1
𝜏 +

𝜃2√(
𝑡𝑟:𝑛−𝜏

𝜃2
+

𝜏

𝜃1
)
2
− 2 log (1 −

𝛼

2
),  

 and 

𝑈2(𝑻) = 𝜏 −
𝜃2

𝜃1
𝜏 + 𝜃2√(

𝑡𝑟:𝑛−𝜏

𝜃2
+

𝜏

𝜃1
)
2
− 2 log (

𝛼

2
).   

 
Finally, when 𝑠 = 𝑛 and 𝑠 > 𝑟 + 1, the density 
𝑔(𝑤) = (𝑛 − 𝑟)𝑤𝑛−𝑟−1, 0 < 𝑤 < 1,  is increasing 
function with 𝑔(0) = 0 and 𝑔(1) = 𝑛 − 𝑟. In this 
case, we select the PI for Y to be of the form (𝑑1, 1) 
such that  ∫ 𝑔(𝑤)𝑑𝑤

1

𝑑1
= 1 − 𝛼, which implies that 

𝑑1 = 𝛼
1

𝑛−𝑟. So, a (1 − 𝛼)100% HCD PI of  𝑌 is given 
by  

𝐿2(𝑻) = 𝜏 −
𝜃2

𝜃1
𝜏 +

𝜃2√(
𝑡𝑟:𝑛−𝜏

𝜃2
+

𝜏

𝜃1
)
2
− 2 log (1 − 𝛼

1

𝑛−𝑟),  
 and  𝑈2(𝑻) = ∞. 

4.3  Shortest-Length based Method 
Based on the fact that the conditional distribution of 

  𝑊 = 1 − 𝑒
−
1

2
[(
𝑌−𝜏

𝜃2
+
𝜏

𝜃1
)
2
−(

𝑡𝑟:𝑛−𝜏

𝜃2
+
𝜏

𝜃1
)
2
] given 𝑻 = 𝒕  is 

a 𝐵𝑒𝑡𝑎 (𝑠 − 𝑟, 𝑛 − 𝑠 + 1), we select the constants c 
and d that satisfy the equation: 
 

𝑃 (𝑐 < 1 − 𝑒
−
1
2
[(
𝑌−𝜏
𝜃2

+
𝜏
𝜃1
)
2
−(
𝑡𝑟:𝑛−𝜏
𝜃2

+
𝜏
𝜃1
)
2
]
< 𝑑) = 1 − 𝛼. 

Here, the constants 𝑐 and 𝑑 are chosen to minimize the 
length of the PI  𝑈3(𝑻) − 𝐿3(𝑻). 
The optimization problem for figuring out the shortest-
length (SL) (1 − 𝛼)100% PI can be expressed as: 
Minimize  Length = 𝑈3(𝑻) − 𝐿3(𝑻) 
Subject to 

𝐵𝑑(𝑠 − 𝑟, 𝑛 − 𝑠 + 1) − 𝐵𝑐(𝑠 − 𝑟, 𝑛 − 𝑠 + 1) = 1 − 𝛼. 

The SL (1 − 𝛼)100% PI can be constructed by 
minimizing the Lagrangian function: 

𝑅(𝑐, 𝑑, 𝜆) = 𝜃2 [√(
𝑡𝑟:𝑛−𝜏

𝜃2
+

𝜏

𝜃1
)
2

− 2 log(1 − 𝑑) −

√(
𝑡𝑟:𝑛−𝜏

𝜃2
+

𝜏

𝜃1
)
2

− 2 log(1 − 𝑐)] − 𝜆[{𝐵𝑑(𝑠 − 𝑟, 𝑛 − 𝑠 +

1) − 𝐵𝑐(𝑠 − 𝑟, 𝑛 − 𝑠 + 1)} − (1 − 𝛼)],    

where 𝜆 is the Lagrange multiplier. By differentiating 
𝑅 with respect to 𝑐, 𝑑 and 𝜆, respectively, we have: 

𝜕𝑅

𝜕𝑐
=

−𝜃2

(1−𝑐)×√(
𝑡𝑟:𝑛−𝜏

𝜃2
+
𝜏

𝜃1
)
2
−2 log(1−𝑐)

  

+𝜆𝑝(𝑐, 𝑠 − 𝑟, 𝑛 − 𝑠 + 1) = 0.         

𝜕𝑅

𝜕𝑑
=

𝜃2

(1−𝑑)×√(
𝑡𝑟:𝑛−𝜏

𝜃2
+
𝜏

𝜃1
)
2
−2 log(1−𝑑)

  

−𝜆𝑝(𝑐, 𝑠 − 𝑟, 𝑛 − 𝑠 + 1) = 0.     

𝜕𝑅

𝜕𝜆
= [{𝐵𝑑(𝑠 − 𝑟, 𝑛 − 𝑠 + 1) − 𝐵𝑐(𝑠 − 𝑟, 𝑛 − 𝑠 + 1)}

− (1 − 𝛼)] = 0, 

where 𝑝(𝑥, 𝑎, 𝑏) represents the density of the 
distribution 𝐵𝑒𝑡𝑎(𝑎, 𝑏). The above equations can be 
formed equivalently as: 

√
(
𝑡𝑟:𝑛−𝜏

𝜃2
+
𝜏

𝜃1
)
2
−2 log(1−𝑑)

(
𝑡𝑟:𝑛−𝜏

𝜃2
+
𝜏

𝜃1
)
2
−2 log(1−𝑐)

=
(1−𝑐)𝑝(𝑑,𝑠−𝑟,𝑛−𝑠+1)

(1−𝑑)𝑝(𝑐,𝑠−𝑟,𝑛−𝑠+1)
,   (31)  

 and, 
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𝐵𝑑(𝑠 − 𝑟, 𝑛 − 𝑠 + 1) − 𝐵𝑐(𝑠 − 𝑟, 𝑛 − 𝑠 + 1) = 1 − 𝛼.   

(32) 
The constants 𝑐 and 𝑑 are obtained by solving (31) and 
(32) numerically. Hence, a (1 − 𝛼)100% PI of  𝑌, 
based on this technique, is given by  (𝐿3(𝑻), 𝑈3(𝑻)), 
such that:    
𝐿3(𝑻) = 

   𝜏 − 𝜃2

𝜃1
𝜏+𝜃2√(

𝑡𝑟:𝑛−𝜏

𝜃2
+

𝜏

𝜃1
)
2
− 2 log(1 − 𝑐), 

𝑈3(𝑻) = 𝜏 −
𝜃2

𝜃1
𝜏 +

𝜃2√(
𝑡𝑟:𝑛−𝜏

𝜃2
+

𝜏

𝜃1
)
2
− 2 log(1 − 𝑑).   

 
5 Simulation study and data analysis 

In this section, we conduct a simulation study for 
computations of the prediction methods that are 
presented in the above sections and comparing their 
performance. A real data set is considered to illustrate 
the different techniques suggested in this paper. 
 
5.1 Simulation study  
In this subsection, we perform an intensive Monte 
Carlo simulation study for performance evaluation of 
the suggested predictors; which were presented in 
Section 3. The performances are measured in terms of 
the biases and the mean square prediction errors 
(MSPEs) of the predictors.  The bias and MSPE of a 
predictor �̂� of  𝑌 = 𝑇𝑠:𝑛(𝑠 ≥ 𝑟 + 1), are defined as 

𝑏𝑖𝑎𝑠(�̂�) =
1

𝑀
∑ (�̂�𝑘 −
𝑀
𝑘=1 𝑌),  

and, 

𝑀𝑆𝑃𝐸(�̂�) =
1

𝑀
∑ (�̂�𝑘 − 𝑌)

2𝑀
𝑘=1 ,  

respectively. In addition, we compare the PIs, that are 
discussed in Section 4, in terms of their estimated 
average lengths (ALs) and coverage probabilities 
(CPs). 
Consequently, a Monte Carlo simulation is conducted 
based on different censoring schemes and sample sizes 
from the Rayleigh distribution under CEM. For 
particular values of 𝑛, 𝑟 and 𝑠, we generate Type-II 
censored samples as described in Section 2 based on 
the following schemes: 
Scheme 1: θ1 = 0.3, 𝜃2 = 0.8, and 𝜏 = 0.25. 
Scheme 2: 𝜃1 = 1, 𝜃2 = 1.5, and  𝜏 = 0.9. 
In both cases, we find the value of the point 
predictors; MLP, CMP and BUP. Moreover, we 

compute 95% PIs based on pivotal quantity, HCD 
and SL methods. Type-II censored samples from 
Rayleigh distribution were randomly generated 
under these two different schemes with 2000 
replications of the simulation process. Using these 
random samples, prediction biases and MSPEs of 
the predictors are computed. The so obtained results 
are presented in Table 1. In Table 2, we have 
presented the ALs and CPs of the PIs. 
Based on these tables, we observe the following 
remarks  
 
1. For fixed values of 𝑛 and 𝑟, biases and the MSPEs 
of the point predictors increase as 𝑠 increases, which is 
due to the variation of the lifetime to be predicted as 
𝑠 gets large. 
 
2. The prediction biases of the BUP are smaller than 
those of the CMP and the MLP for all the 
considered cases. However, the biases resulted from 
the CMP are close to the biases of the BUP and 
smaller than the biases of the MLP. By considering 
the MSPE as an optimality criterion, it is observed 
that, the CMP outperforms both the BUP and the MLP. 
Further, it is noticed that the MSPEs of the three 
predictors are close to each other's, especially when 𝑠 is 
close to 𝑟, which can be explained by observing the 
closeness of  the MLEs of the parameters and the 
corresponding PMLEs in most of the considered cases.  
 
3.  The PIs obtained using the SL method is more 
efficient than other methods based on the AL 
criterion. Its performance tends to be higher when s 
gets large. On the other hand, it is observed that the 
HCD PIs outperforms the pivot PIs in the sense of 
ALs when s tends to be close to 𝑟. As s 
approaches 𝑛, the pivot PIs are competeive. Based 
on the CP criterion, the HCD PIs are superior to the 
PIs obtained by SL and pivot methods. The CPs of 
SL and pivot PIs are very close. It is evident that the 
CPs of all obtained PIs increase when  s increases. 
In this sense, the worse CP occurs when the lifetime 
to be predicted is immediately after the last 
observed lifetime. 
 
As a summary, for point prediction aspect, the CMP is 
the best predictor as it is computationally attractive and 
has good performances in terms of the biases and 
MSPE criteria. For prediction interval part, the SL 
method produces efficient PIs over other methods 
based on the AL and CP criteria. 
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Table 1: Biases and MSPEs of the point predictors for the censored lifetimes 
Scheme 1: 𝜃1 = 0.3, 𝜃2 = 0.8, and  𝜏 = 0.25. 

(n, r) 

s 

MLP CMP BUP 

(30, 20) 

Bias MSPE Bias MSPE Bias MSPE 

22 -0.0615 0.0245 -0.0218 0.0233 -0.0071 0.0237 

24 -0.0673 0.0326 -0.0175 0.0315 -0.0033 0.0323 

26 -0.1041 0.0509 -0.0420 0.0473 -0.0279 0.0478 

28 -0.1177 0.0682 -0.0344 0.0640 -0.0174 0.0651 

30 -0.2057 0.1478 -0.0501 0.1360 -0.0106 0.1411 

(40, 25) 

27 -0.0433 0.0167 -0.0157 0.0161 -0.0050 0.0164 

30 -0.0560 0.0242 -0.0201 0.0233 -0.0101 0.0236 

35 -0.0825 0.0469 -0.0275 0.0456 -0.0174 0.0461 

38 -0.1187 0.0829 -0.0381 0.0808 -0.0237 0.0820 

40 -0.1924 0.1502 -0.0416 0.1465 -0.0038 0.1523 

 

(50, 30) 

32 -0.0294 0.0123 -0.0080 0.0121 0.0005 0.0124 

35 -0.0413 0.0153 -0.0151 0.0148 -0.0073 0.0150 

40 -0.0568 0.0248 -0.0189 0.0238 -0.0115 0.0240 

45 -0.0819 0.0472 -0.0270 0.0459 -0.0184 0.0463 

50 -0.1971 0.1443 -0.0574 0.1332 -0.0211 0.1365 

Scheme 2: 𝜃1 = 1, 𝜃2 = 1.5, and  𝜏 = 0.9. 

(n, r) 

s 

MLP CMP BUP 

 

(30, 20) 

 
 

Bias MSPE Bias MSPE Bias MSPE 

22 -0.1077 0.0878 -0.0320 0.0843 -0.0044 0.0866 

24 -0.1203 0.1143 -0.0244 0.1135 0.0018 0.1173 

26 -0.1927 0.1760 -0.0702 0.1646 -0.0439 0.1671 

28 -0.2593 0.2920 -0.0919 0.2761 -0.0605 0.2803 

30 -0.4489 0.6233 -0.1366 0.5729 -0.0635 0.5903 

 

(40, 25) 

27 -0.0930 0.0635 -0.0408 0.0607 -0.0210 0.0613 

30 -0.0959 0.0871 -0.0249 0.0856 -0.0062 0.0874 

35 -0.1524 0.1682 -0.0394 0.1675 -0.0204 0.1703 

38 -0.2459 0.3144 -0.0790 0.3043 -0.0522 0.3086 

40 -0.4218 0.6127 -0.1264 0.5870 -0.0571 0.6042 

 

(50, 30) 

32 -0.0634 0.0463 -0.0232 0.0453 -0.0074 0.0459 

35 -0.0807 0.0587 -0.0282 0.0563 -0.0134 0.0571 

40 -0.1070 0.0986 -0.0289 0.0958 -0.0150 0.0971 

45 -0.1756 0.1728 -0.0613 0.1659 -0.0455 0.1673 

50 -0.4225 0.5844 -0.1366 0.5251 -0.0686 0.5354 
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Table 2: ALs and CPs of  95%  PIs of the censored lifetimes 
Scheme 1: 𝜃1 = 0.3, 𝜃2 = 0.8, and  𝜏 = 0.25. 

(n, r) s Pivotal Method HCD Method SL Method 

 

 

(30, 20) 

AL CP AL CP AL CP 
22 0.3579 0.654 0.3289 0.653 0.3288 0.656 

24 0.5233 0.831 0.5079 0.831 0.5034 0.832 

26 0.7059 0.883 0.7142 0.885 0.6899 0.881 

28 0.9489 0.918 1.0519 0.933 0.9323 0.907 

30 1.7211 0.951 ∞ 0.966 1.6782 0.942 

 

 

(40, 25) 

27 0.2517 0.593 0.2306 0.574 0.2305 0.575 

30 0.4062 0.806 0.3954 0.805 0.3937 0.809 

35 0.6763 0.892 0.6918 0.886 0.6678 0.891 

38 0.9532 0.914 1.0842 0.935 0.9416 0.901 

40 1.6706 0.955 ∞ 0.960 1.6323 0.945 

 

 

(50, 30) 

32 0.2046 0.594 0.1871 0.569 0.1871 0.569 

35 0.3209 0.761 0.3111 0.760 0.3105 0.763 

40 0.4776 0.848 0.4764 0.847 0.4715 0.850 

45 0.6874 0.884 0.7123 0.887 0.6816 0.883 

50 1.6841  0.954 ∞ 0.984  1.6464  0.952 

Scheme 2: 𝜃1 = 1, 𝜃2 = 1.5, and  𝜏 = 0.9. 

(n, r) s Pivotal Method HCD Method SL Method 

 

 

(30, 20) 

AL CP AL CP AL CP 
22 0.6719 0.661 0.6175 0.640 0.6173 0.640 

24 0.9939 0.802 0.9646 0.799 0.9560 0.797 

26 1.3014 0.860 1.3167 0.866 1.2719 0.852 

28 1.8087 0.914 2.0051 0.928 1.777 0.907 

30 3.2288 0.952 ∞ 0.962 3.1485 0.945 

 

 

(40, 25) 

27 0.4768 0.607 0.4368 0.578 0.4367 0.579 

30 0.7790 0.777 0.7583 0.780 0.7551 0.786 

35 1.2733 0.876 1.3026 0.886 1.2574 0.867 

38 1.7843 0.879 2.0295 0.916 1.7626 0.870 

40 3.1547 0.937 ∞ 0.953 3.0825 0.931 

 

 

(50, 30) 

32 0.3734 0.600 0.3414 0.563 0.3414 0.564 

35 0.6075 0.756 0.5888 0.760 0.5878 0.762 

40 0.9015 0.828 0.8993 0.827 0.8900 0.831 

45 1.2881 0.850 1.3349 0.863 1.2773 0.851 

50 3.1285 0.948 ∞ 0.952 3.0586 0.945 
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5.2 Data analysis 
To clarify the prediction methods proposed in this 
paper, we perform a real data analysis. The dataset is 
taken from Han and Kundu [12], it represents a total of 
31 failure times (in hundred hours) from a sample of 
35 prototypes of a solar lighting device with two 
dominant failure modes, controller failure and 
capacitor failure. Here, temperature is the stress factor 
whose level was changed during the test in the range 
of 293K to 353K with the normal operating 
temperature at 293K, and stress change time at 500 
hours. These data have been used previously by Kotb 
and El-Din [13]. The data are recorded in Table 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
To visualize the accuracy of our model, i.e., Rayleigh 
CEM, the true cdf of the lifetimes is plotted in Fig. 1, 
along with the corresponding cdf based on the 
maximum likelihood estimate. However, it was shown 
by Kotb and El-Din [15] that Rayleigh distribution is 
appropriate for analyzing this data set.                                                                                  
Suppose the life test is terminated when the 26𝑡ℎ 
lifetime is observed, i.e., we observe a Type-II 
censored sample with 𝑛 = 35, 𝑟 = 26. Our purpose 
is to obtain point predictors of the unobserved 
lifetimes  𝑌 = 𝑇𝑠:𝑛, 𝑠 =  28, 30, 31, 33, 35, and the 
associated PIs.  
First we compute the MLEs of  𝜃1 and 𝜃2 by solving 
Eq.'s (12) and (13) simultaneously, it is found 
that 𝜃1 = 4.360 and 𝜃2 = 0.653. For predicting the 
future censored lifetimes, point predictors and PIs are 
reported in Table 4.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It can be observed that the point predictors are close to 
the true values, with advantage to the CMP. Moreover, 
the point predictors obtained are lying within all 
considered PIs. It can be observed that all PIs obtained 
contain the true values of the future order statistics. It 
is also noticed that the PIs become wider when 𝑠 gets 
large, the reason is that the fluctuation of 𝑌 = 𝑇𝑠:𝑛 
tends to be high as 𝑌 moves away from the observed 
failures times. Although all PIs are close in the sense 
of AL criterion, the PIs constructed by SL method 
have shortest lengths. 

Table 4: Point predictors and PIs for future lifetimes 
of  𝑌 = 𝑇𝑠:𝑛. 

Point predictors of  𝑌 = 𝑇𝑠:𝑛 
s True value MLP CMP BUP 

28 5.408 5.379 5.412 5.425 
30 5.483 5.475 5.518 5.531 
31 5.717 5.533 5.582 5.594 
33 ----- 5.682 5.750 5.765 
35 ----- 5.967 6.095 6.128 

95% PIs of  𝑌 = 𝑇𝑠:𝑛 
s True 

value 
Pivotal PI HCD PI SL PI  

28 5.408 (5.348, 
5.571) 

(5.340, 
5.541) 

(5.339, 
5.540) 

30 5.483 (5.393, 
5.737) 

(5.388, 
5.723) 

(5.377, 
5.707) 

31 5.717 (5.426, 
5.833) 

(5.427, 
5.832) 

(5.409, 
5.803) 

33 ----- (5.522, 
6.093) 

(5.540, 
6.166) 

(5.500, 
6.057) 

35 ----- (5.703, 
6.740) 

(5.753, 
∞) 

(5.657, 
6.663) 

 

Fig. 1: The empirical cdf (dots); and the estimated cdf of 

Rayleigh CEM model based on MLE (solid line). 

 

Table 3: Lifetimes of prototypes of a solar lighting 
device on a simple step-stress test 

Temperature 
Level 

Recorded data 

 
𝑆1: 293K   

0.140      0.783      1.324      
1.582     1.716     1.794     
1.883     2.293     2.660      
2.674      2.725     3.085     
3.924     4.396     4.612     
4.892 

      
        

𝑆2: 353K   

5.002     5.022     5.082     
5.112      5.147     5.238     
5.244     5.247     5.305       
5.337      5.407     5.408     
5.445          5.483        5.717 
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6 Conclusions 

In this paper, we have addressed the prediction of 
future lifetimes of a simple step stress test of Rayleigh 
distribution under CEM when the data are Type-II 
censored. Several point predictors are proposed 
including, maximum likelihood, conditional median, 
and best unbiased predictors. We have also discussed 
another aspect of prediction, which is constructing 
prediction intervals for the future lifetimes. We have 
compared the performance of the predictors obtained 
by extensive Monte Carlo simulation study by 
considering the biases and MSPEs of the suggested 
predictors. Prediction intervals were also assessed in 
terms of the average lengths and coverage 
probabilities. It is observed that the CMP has the best 
performance among all point predictors. In the context 
of interval prediction, it is observed that the SL based 
method is the most suitable method for obtaining PIs 
of future lifetimes. 
It is worth mentioning that the results of this paper 
were mainly obtained for Type-II censored scheme, 
but our techniques can be performed for other 
censoring schemes, as Type-I, hybrid or progressive 
censoring. 
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