Unbiased Estimation of the Standard Deviation for Non-Normal Populations

DAVID E. GILES

Department of Economics University of Victoria, Victoria, B.C. CANADA

Abstract: - The bias of the sample standard deviation as an estimator of the population standard deviation, for a simple random sample of size N from a Normal population, is well documented. Exact and approximate bias corrections appear in the literature for this case. However, there has been less discussion of the downward bias of this estimator for non-Normal populations. The appropriate bias correction depends on the kurtosis of the population distribution. We derive and illustrate an approximation for this bias, to $O(N^{-1})$, for several common distributions.

Keywords: - Standard deviation, unbiased estimation, bias approximation

Received: May 26, 2021. Revised: January 28, 2022. Accepted: February 22, 2022. Published: March 23, 2022.

1 Introduction

Let *X* follow a distribution, *F*, with integer moments that are finite, at least up to fourth order. Denote the population central moments by $\mu_j = E[(X - \mu'_1)^j]$, j = 1, 2, 3,; where $\mu'_1 = E(X)$ and $Var.(X) = \mu_2 = \sigma^2$, say; and the kurtosis coefficient is $\kappa = (\mu_4/\mu_2^2)$.

Based on a simple random sample of size *N*, the sample variance is $s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$, where $\bar{x} = \frac{1}{n} \sum_{i=1}^{N} x_i$. For any *F* with finite first and second moments, $E(s^2) = \sigma^2$ and $E(\bar{x}) = \mu'_1$. In the special case where *F* is Normal, the sampling distributions of both s^2 and *s* itself are well known. For example, for the latter see Holtzman (1950). In particular, the bias of *s* as an estimator of σ , and various approximations to this bias, have been examined in detail in the Normal case – *e.g.*, see Bolch [1], Brugger [2], Cureton [3], D'Agostino [4], Gurland and Tripathi [5], Markowitz [6] and Stuart [7],

However, if *F* is *non-Normal*, then although s^2 is still an unbiased estimator of σ^2 , *s* is a downward-biased estimator of σ in finite samples, by Jensen's inequality. The *magnitude* of this bias is not easily

determined, in general, and we explore this problem here.

2 Main Result

Under standard regularity conditions, both $(\bar{x} - \mu'_1)$ and $(s^2 - \sigma^2)$ are $O_p(N^{-1/2})$; and note that we can write $s = \sigma [1 + (s^2 - \sigma^2)/\sigma^2]^{1/2}$. So, by the generalized binomial theorem (or using the Maclaurin expansion), we have:

$$s = \sigma \left[1 + \frac{1}{2\sigma^2} (s^2 - \sigma^2) - \frac{1}{8\sigma^4} (s^2 - \sigma^2)^2 + \frac{1}{16\sigma^6} (s^2 - \sigma^2)^3 - \frac{5}{128\sigma^8} (s^2 - \sigma^2)^4 + \cdots \right].$$
(1)

Convergence of the infinite series in (1) requires that $|(s^2 - \sigma^2)/\sigma^2| < 1$, and this condition will be satisfied for large *N* as s^2 is a consistent estimator of σ^2 . However, convergence is not required for the approximation that follows.

Retaining terms in the expected value of (1) up to $O(N^{-1})$, we have

$$E(s) = \sigma \left[1 + \frac{1}{2\sigma^2} E(s^2 - \sigma^2) - \frac{1}{8\sigma^4} E[(s^2 - \sigma^2)]^2 \right] + O(N^{-3/2}) .$$
(2)

Now, $E(s^2 - \sigma^2) = 0$, and from eq. (19) of Angelova [8],

$$E[(s^{2} - \sigma^{2})]^{2} = \left[\frac{(\mu_{4} - \mu_{2}^{2})}{N} + \frac{2\mu_{2}^{2}}{N(N-1)}\right].$$
 (3)

This yields the approximation,

$$E(s) \simeq \sigma \left[1 - \frac{1}{8} \left[\frac{\kappa - 1}{N} + \frac{2}{N(N-1)} \right] \right] = (\sigma / \mathcal{C}_N^*), \qquad (4)$$

where

$$C_N^* = \frac{[8N(N-1)]}{[8N(N-1) - (N-1)(\kappa - 3) - 2N]}.$$
(5)

So, our main result is that $\hat{\sigma} = C_N^* s$ is an unbiased estimator of σ , to $O(N^{-1})$. For a Normal population, the corresponding scale factor for $\hat{\sigma}$ to be *exactly* unbiased for *s* is known to be

$$C_N = \Gamma[(N-1)/2]\sqrt{(N-1)/2} / \Gamma[N/2].$$
(6)

Using (4), and the fact that $E(s^2) = \sigma^2$, we also see immediately that $var(s) \simeq \sigma^2 (C_N^{*2} - 1) / C_N^{*2}$ and $var(\hat{\sigma}) \simeq \sigma^2 (C_N^{*2} - 1)$, each to $O(N^{-1})$.

3 Discussion

Some early tabulations for C_N by various authors are discussed by Jarrett [9]. Also, see Holtzman [10],

Bolch [1], and Gurland and Tripathi [5]. Table 1 compares the exact value of C_N with two approximations to C_N suggested by Gurland and Tripathi, for the Normal case. Values of C_N^* , for the Normal and three other common population distributions, and various values of N, appear in Table 2. An extended table that provides values of C_N^* , for several other well-known distributions can be downloaded as an Excel spreadsheet from https://github.com/DaveGiles1949/My-Documents.

For a Normal population, the accuracy of C_N^* relative to the exact C_N is apparent in Tables 1 and 2 – even for sample sizes as small as N = 15. This lends credence to the accuracy of the C_N^* values for the other distributions, which show that this bias adjustment factor increases with the degree of kurtosis, but decreases (to 1) rapidly as N increases.

In practice, the form of the population distribution, and hence the value of κ , may be unknown. In this case an estimate of κ – such as the

fourth standardized central sample moment, $b_2 - \text{can}$ be used. Johnson and Lowe [11] show that $b_2 \le N$, so the corresponding estimate of C_N^* satisfies $(\frac{16}{13}) \le \widehat{C_N^*} < (\frac{8}{7})$ for $N \ge 2$. In particular, $\widehat{C_N^*} > 1$, as required, but the order of magnitude of our main unbiasedness result is then only approximate.

David E. Giles

Table 1. C_N Values for Normal Population

Ν		C_N				
	Exact	GT(5)(6)	GT(7)			
2	1.2533	1.2649	1.2500			
3	1.1284	1.1314	1.1250			
4	1.0854	1.0864	1.0833			
5	1.0638	1.0643	1.0625			
6	1.0509	1.0512	1.0500			
7	1.0424	1.0425	1.0417			
8	1.0362	1.0363	1.0357			
9	1.0317	1.0317	1.0313			
10	1.0281	1.0282	1.0278			
11	1.0253	1.0253	1.0250			
12	1.0230	1.0230	1.0227			
13	1.0210	1.0210	1.0208			
14	1.0194	1.0194	1.0192			
15	1.0180	1.0180	1.0179			
16	1.0168	1.0168	1.0167			
17	1.0157	1.1057	1.0156			
18	1.0148	1.0148	1.0147			
19	1.0140	1.0140	1.0139			
20	1.0132	1.0132	1.0132			
21	1.0126	1.0126	1.0125			
22	1.0120	1.0120	1.0119			
23	1.0114	1.0114	1.0114			
24	1.0109	1.0109	1.0109			
25	1.0105	1.0105	1.0104			
26	1.0100	1.0100	1.0100			
27	1.0097	1.0097	1.0096			
28	1.0093	1.0093	1.0093			
29	1.0090	1.0090	1.0093			
30	1.0087	1.0087	1.0086			

Note: $C_N = \Gamma[(N-1)/2]\sqrt{(N-1)/2}/\Gamma[N/2]$. GT(5)(6) and GT(7) refer to values imputed from equations (5) and (6), and equation (7), respectively in Gurland and Tripathi [5].

Table 2. C_N^* Values for Various Populations

Ν	C_N^*					
	Normal	Logistic	Uniform	Expon.		
	$(\kappa = 3.0)$	$(\kappa = 4.2)$	$(\kappa = 1.8)$	$(\kappa = 9.0)$		
2	1.3333	1.4815	1.2121	2.6667		
3	1.1429	1.2121	1.0811	1.6000		
4	1.0909	1.1474	1.0480	1.3714		
5	1.0667	1.1019	1.0336	1.2698		
6	1.0526	1.0811	1.0256	1.2121		
7	1.0435	1.0673	1.0207	1.1748		
8	1.0370	1.0576	1.0173	1.1487		
9	1.0323	1.0503	1.0148	1.1129		
10	1.0286	1.0447	1.0129	1.1146		
11	1.0256	1.0402	1.0115	1.1028		
12	1.0233	1.0365	1.0103	1.0932		
13	1.0213	1.0335	1.0094	1.0842		
14	1.0196	1.0309	1.0086	1.0785		
15	1.0182	1.0287	1.0079	1.0728		
16	1.0169	1.0267	1.0073	1.0679		
17	1.0159	1.0251	1.0068	1.0635		
18	1.0149	1.0236	1.0064	1.0597		
19	1.0141	1.0223	1.0060	1.0564		
20	1.0133	1.0211	1.0057	1.0534		
21	1.0127	1.0200	1.0054	1.0507		
22	1.0120	1.0191	1.0051	1.0482		
23	1.0115	1.0182	1.0049	1.0460		
24	1.0110	1.0174	1.0046	1.0440		
25	1.0105	1.0167	1.0044	1.0421		
26	1.0101	1.0160	1.0042	1.0404		
27	1.0097	1.0154	1.0041	1.0388		
28	1.0093	1.0148	1.0039	1.0374		
29	1.0090	1.0143	1.0038	1.0360		
30	1.0087	1.0138	1.0036	1.0348		

Note: $C_N^* = \frac{[8N(N-1)]}{[8N(N-1)-(N-1)(\kappa-3)-2N]}$.

"Expon." denotes "Exponential". GT(5)(6) and GT(7) refer to values imputed from equations (5) and (6), and equation (7), respectively in Gurland and Tripathi [5].

References:

- [1] Bolch, B.W., More on Unbiased Estimation of the Standard Deviation, *The American Statistician*, 22 (3), 1968, 27.
- [2] Brugger, R.M., A Note on Unbiased Estimation of the Standard Deviation, *The American Statistician*, 23 (4), 1969, 32.
- [3] Cureton, E.E., Unbiased Estimation of the Standard Deviation, *The American Statistician*, 22 (1), 1968, 22.
- [4] D'Agostino, R.B., Linear Estimation of the Normal Distribution Standard Deviation, *The American Statistician*, 24 (3), 1970, 14–15.
- [5] Gurland, J. and Tripathi, R.C., A Simple Approximation for Unbiased Estimation of the Standard Deviation, *The American Statistician*, 25 (4), 1971, 30-32.
- [6] Markowitz, E., Minimum Mean-Square-Error Estimation of the Standard Deviation of the Normal Distribution, *The American Statistician*, 22 (3), 1968, 26.
- [7] Stuart, A., Reduced Mean-Square-Error Estimation of σ^p in Normal Samples, *The American Statistician*, 23 (4), 1969, 27.
- [8] Angelova, J.A., On Moments of Sample Mean and Variance, International Journal of Pure and Applied Mathematics, 79 (1), 2012, 67-85.
- [9] Jarrett, R.F., A Minor Exercise in History," *The American Statistician*, 22 (3), 1968,
 25.
- [10] Holtzman, W.H., The Unbiased Estimate of the Population Variance and Standard Deviation," *American Journal of Psychology*, 63 (4), 1950, 615-617.

[11] Johnson, M.E. and Lowe Jr., V.W., "Bounds on the Sample Skewness and Kurtosis," *Technometrics*, 21 (3), 1979, 377-378.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.e