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1 Introduction 
Coronavirus disease 2019 (COVID-19), a 
pneumonia epidemic caused by a new type of 
coronavirus 2 (SARS-CoV-2), has become a global 
pandemic of the highest priority in the world [1, 
2]. It is important to study its origin, its survival 
variation characteristics, the spread and infection 
laws, as well as the preventive vaccine. However, it 
is still of scientific significance for the COVID-19 
to give mathematical modelling and perform 
optimal prevention and control strategies. There are 
quite a lot of mathematical models in describing the 
COVID-19 pandemic according to the spreading 
rules of human-to-human, most of them are based 
on the traditional models of SI, SIR and SEIR, etc. 
[3]. We refer to some recent literatures on 
mathematical modelling of the COVID-19, such as 
the integer-order models [4-6], and the fractional 
spreading models [7-10]. Actually, at the initial 
stage of the epidemic, the new coronavirus could 
survive in a special environment and it can spread 
by the infected goods during a relatively long time. 
If considering such transmission mode, and 
assuming there are only susceptible persons at the 
initial stage, such as the elder over 65 years old, and 
utilizing the fractional derivative to reveal the 
memory effect, a simplified linear SEIR model can 

be obtained following the ordinary SEIR model 
given as follows:  

{
 

 
𝜕𝑡
𝛼𝑆 = −μ S,       

𝜕𝑡
𝛼𝐸 = μS − β𝐸,

𝜕𝑡
𝛼𝐼 = β𝐸 − 𝛾𝐼,

𝜕𝑡
𝛼𝑅 = γ𝐼,         

                             (1) 

where 𝑆 = 𝑆(t) , E= 𝐸(t) , 𝐼 = 𝐼(t)  and 𝑅 = 𝑅(t) 
denote the number of the susceptible, the latent, the 
patient and the recovered people, 𝜕𝑡𝛼𝑓 denotes the 
𝛼-order Caputo fractional derivatrive of 𝑓(𝑡) on 
𝑡 > 0, which defined by [11,12] 

𝜕𝑡
𝛼𝑓 = 1

Γ(1−𝛼)
∫ 𝜕𝑓(𝑥,𝑠)

𝜕𝑠

𝑡

0
𝑑𝑠

(𝑡−𝑠)𝛼
,               (2) 

here 𝛼 ∈ (0, 1) is the fractional order, 𝜇 > 0 is the 
latentive rate, 𝛽 > 0 is the infected rate, 𝛾 > 0 is the 
recovered rate.   
The system (1) is a linear fractional SEIR model. 
The linearity is its advantage  as compared with the 
known SEIR models. The traditional SEIR models, 
including the interger-order and the fractional 
models, are nonlinear differential equations. In 
addition, the researches on the SEIR models are 
almost concentrated on the dynamical analysis with 
the spreading mechanism, and numerical 
simulations using numerical methods. Although the 
known SEIR models are studied under various 
conditions, there are no expressions of the solution 
in general due to the nonlinearity, and it is difficult 
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to give deep researches in mathematics. On the 
contrary, we can get the expression of the solution 
of the simplified  model (1) by the Laplace 
transform metod, and we can give more 
mathematical  analysis on the model.  
On the other hand, the fractional order in a 
fractional model is a key parameter to characterize 
the heavy-tail subdiffusion with memory effect. 
However, it is always unknown for real-life 
problems which leading to inverse fractional order 
problems. The inverse problems of identifying 
parameters including fractional orders have been 
studied during the last decade [13-24]. It is noted 
that in the existing work on inverse fractional order 
problems, most of them were studied by using 
subdomain measurements or one-point 
measurements at 𝑡 ∈ (0, 𝑇), or using subboundary 
data also at 𝑡 ∈ (0, 𝑇) for arbitrary given 𝑇 > 0. An 
interesting problem is whether we can determine the 
fractional orders only using limited discretized data. 
Exactly speaking, there is one order 𝛼 ∈ (0, 1)  in 
model (1) which is unknown, can we determine it 
uniquely only using one measurement? 
It is difficult to give an answer in theory for the 
above question, but the situation could be changed if 
coping with numerical solutions. Here we are 
concerned with the inverse problem of determining 
the fractional order 𝛼 in (1) using one measurement. 
By the Laplace transform method, the solution of 
the forward problem is expressed by the Mittag-
Lellfer function, and the inverse problem is 
transformed to a nonlinear algebraic equation. By 
choosing the measured time, the nonlinear equation 
can be solved uniquely by the monotonicity of the 
Mittag-Lellfer function. The unique solvability of 
the inverse problem is testified by theoretical 
examples. The rest of the paper is organized as 
follows. 
In Section 2, some preliminaries on the Mittag-
Lellfer function, and the forward problem are 
introduced, and its solution is deduced by the 
Laplace transform. In Section 3, the inverse problem 
of identifying the fractional order using one 
measurement is given, which is transformed to 
solving of a nonlinear equation by the additional 
data, and the unique solvability of the inverse 
problem is proved by the monotonicity of the 
Mittag-Lellfer function, and numerical testification 
is presented. Conclusion is given in Section 4. 
 

2 The forward problem and its 

solution 
2.1 The forward problem and preliminaries 

Assume the epidemic has occurred in a region, and 
the elder are the susceptible and high-risk groups of 
infectious diseases. At the initial stage, there are 
only the susceptible people, and some of them 
become latent persons, some of the latent persons 
become patients with the pandemic spreading. 
Therefor we give the initial condition for the model 
(1) 

𝑆(0) = 𝑆0, 𝐸(0) = 𝐼(0) = 𝑅(0) = 0.        (3) 
As a result the froward problem on the simplified 
SEIR model (1) is composed by the model (1), with 
the initial condition (3). When the parameters in the 
model are known in advance, the analytical solution 
of the above forward problem can be obtained by 
the Laplace transform with the aids of the Mittag-
Lellfer function. Firstly we give some basic facts on 
the Mittag-Leffler function and its properties and 
the Laplace transform [25].  
For real numbers 𝛼, 𝜂 > 0 and complex number 𝑧 ∈
∁ , the two-parametric Mittag-Leffler function is 
defined as: 

𝐸𝛼,𝜂(𝑧) = ∑
𝑧𝑗

Γ(𝛼𝑗+𝜂)
∞
𝑗=0 ,                     (4) 

where Γ(∙) denotes the Gamma function, and there 
is the so-called one-parametric Mittag-Leffler 
function 𝐸𝛼(𝑧):= 𝐸𝛼,1(𝑧) as 𝜂 = 1. On the Mittag-
Leffler function, there holds the estimate in general 

 |𝐸𝛼,𝜂(𝑧)| ≤ 𝑐

1+|𝑧|
 ,  𝛼, 𝜂 > 0,             (5) 

where 𝑐 > 0 is a constant. 
For the real-valued Mittag-Leffler function, there 
holds the complete monotonicity [25]. 
Definition 1. A function 𝑓: (0,∞) → 𝐑  is called 
completely monotonic if it posseses derivatives 
𝑓(𝑛)(𝑡) of any order  𝑛 = 0,1,⋯, and the derivatives 
are alternative in sign, i.e., 

(−1)𝑛𝑓(𝑛)(𝑡) ≥ 0, ∀𝑡 ∈ (0,∞).          (6) 
Lemma 1[25]. (i) The Mittag-Leffler function  
𝐸𝛼(−𝑡) is completely monotonic on 𝑡 ∈ (0,∞) for 
all 0 ≤ 𝛼 ≤ 1. 
(ii) The two-parametric Mittag-Leffler function   
𝐸𝛼,𝜂(−𝑡) is also completely monotonic on 𝑡 > 0 for 
all 0 ≤ 𝛼 ≤ 1, 𝜂 ≥ 𝛼. 
Corollary 1. For 0 ≤ 𝛼 ≤ 1, the function 𝐸𝛼(−𝑡) is  
strictly decreasing on 𝑡 > 0 , and the function 
𝑑

𝑑𝑡
𝐸𝛼(−𝑡) is strictly increasing on 𝑡 > 0. 

 
The function 𝑓̅(𝑝)of complex variable 𝑝 defined by 

𝑓̅(𝑝) = ∫ 𝑒−𝑝𝑡
∞

0
𝑓(𝑡)𝑑𝑡,                   (7) 

is called the Laplace transform of 𝑓(𝑡), where 𝑓(𝑡) 
satisfies the growth condition |𝑓(𝑡)| ≤ 𝑀𝑒𝑐0𝑡as 𝑡 →
∞, and 𝑀, 𝑐0 are positive constants.  
On performing Laplace transform for a fractional 
derivative function, some regularity is needed for 
the performed function, see [26] for detailed 
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analysis. In this work we mainly focus on the 
inverse fractional order problem, and we assume 
that the solution to the forward problem has the 
regularity such that the Laplace transform on the 
Caputo fractional derivative of the solution can be 
performed. For the fractional derivative 𝜕𝑡𝛼𝑓(0 <
𝛼 < 1), there holds: 

𝜕𝑡
𝛼𝑓̅̅ ̅̅ ̅(𝑝) = 𝑝𝛼𝑓(̅𝑝) − 𝑝𝛼−1𝑓(0),            (8) 

where 𝑓̅(𝑝) denotes the Laplace transform of 𝑓(𝑡). 
In addition, the following formula plays a key role 
in solving fractional differential equations by the 
Laplace transform: 

∫ 𝑒−𝑝𝑡
∞

0
𝑡𝜂−1𝐸𝛼,𝜂(−𝑐 𝑡

𝛼)𝑑𝑡 = 𝑝𝛼−𝜂

𝑝𝛼+𝑐
,         (9) 

where  𝛼, 𝜂 ∈ (0, 1), and 𝑐 > 0 be constant. 
 
2.2 The solution of the forward problem 
By performing the Laplace transform on the first 
equation in model (1), we have 

𝑝𝛼𝑆̅(𝑝) − 𝑝𝛼−1𝑆(0) = −𝜇𝑆̅(𝑝). 
Noting 𝑆(0) = 𝑆0, there holds 

𝑆̅(𝑝) = 𝑝𝛼−1

𝑝𝛼+𝜇
𝑆0. 

By utilizing the formula (9), we get the expression 
of 𝑆(𝑡): 

𝑆(𝑡) = 𝑆0𝐸𝛼(−𝜇𝑡
𝛼).                   (10) 

Next, by performing the Laplace transform on the 
second equation in (1), there holds 

𝑝𝛼𝐸̅(𝑝) − 𝑝𝛼−1𝐸(0) = 𝜇𝑆̅(𝑝) − 𝛽𝐸̅(𝑝), 
and thanks to 𝐸(0) = 0, we have 

𝐸̅(𝑝) = 𝑝𝛼−1

(𝑝𝛼+𝜇)((𝑝𝛼+𝛽)
𝜇𝑆0. 

Let 𝜇 ≠ 𝛽. Then by using (9) again we get: 
𝐸(𝑡) = 𝜇𝑆0

𝜇−𝛽
[𝐸𝛼(−𝛽𝑡

𝛼) − 𝐸𝛼(−𝜇𝑡
𝛼)].     (11) 

Similarly, if 𝜇 ≠ 𝛽 ≠ 𝛾 , then by the Laplace 
transform method, we can obtain the expressions of 
𝐼(𝑡) and 𝑅(𝑡) given as follows: 
  𝐼(𝑡) = 𝜇𝛽𝑆0

(𝜇−𝛽)(𝜇−𝛾)(𝛽−𝛾)
[(𝛽 − 𝛾)𝐸𝛼(−𝜇𝑡

𝛼) −

        (𝜇 − 𝛾)𝐸𝛼(−𝛽𝑡
𝛼) + (𝜇 − 𝛽)𝐸𝛼(−𝛾𝑡

𝛼)].    (12) 
  𝑅(𝑡) = 𝜇𝛽𝛾𝑆0𝑡

𝛼

(𝜇−𝛽)(𝜇−𝛾)(𝛽−𝛾)
[(𝛽 − 𝛾)𝐸𝛼,1+𝛼(−𝜇𝑡

𝛼) −

       (𝜇 − 𝛾)𝐸𝛼,1+𝛼(−𝛽𝑡
𝛼) + (𝜇 − 𝛽)𝐸𝛼,1+𝛼(−𝛾𝑡

𝛼)]. (13) 
Theorem 1. Assume the parameters 𝜇, 𝛽 and 𝛾 are 
positive constants and satisfy the condition: 𝛾 >
𝜇 > 𝛽  or 𝛽 > 𝜇 > 𝛾 . Then for any given 𝑆0 > 0 , 
the forward problem (1), (3) has a unique, 
nonnegative solution (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡)) 
expressed by (10)-(13), and the solution has the 
asymptotic behaviors 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡) → 0 , 𝑅(𝑡) →
M as 𝑡 → ∞, where 𝑀 > 0 is a constant. 
Proof. Obviously the solution 𝑆(𝑡) is positive, and 
strictly decreasing on 𝑡 > 0 due to the monotonicity 
of the Mittag-Lellfer function given in Corollary 1. 
Next, if 𝜇 ≠ 𝛽 , by the monocinity of the Mittag-
Lellfer function, the solution 𝐸(𝑡)  is positive too, 

whether 𝜇 > 𝛽 or 𝜇 < 𝛽, and there holds 𝐸(𝑡) → 0 
by the estimate of  |𝐸𝛼(−𝑐𝑡𝛼)| ≤ 𝐶0

1+|𝑐𝑡𝛼|
 as 𝑡 → ∞. 

Thirdly we are to prove the nonnegativity and 
monotonicity of 𝐼(𝑡) and 𝑅(𝑡).  Rewrite 𝐼(𝑡) as 
𝐼(𝑡) = 𝜇𝛽𝑆0[

𝐸𝛼(−𝛾𝑡
𝛼)−𝐸𝛼(−𝜇𝑡

𝛼)

(𝜇−𝛾)(𝛽−𝛾)
+

𝐸𝛼(−𝜇𝑡
𝛼)−𝐸𝛼(−𝛽𝑡

𝛼)

(𝜇−𝛽)(𝛽−𝛾)
], (14) 

For given 𝑡 > 0 and 𝛼 ∈ (0,1), define a function 
𝑔(𝑥) = 𝐸𝛼(−𝑥 𝑡

𝛼),  𝑥 > 0.               (15) 
By  Corollary 1 there holds 

𝑔′(𝑥) ≤ 0  and 𝑔′′(𝑥) ≥ 0, 𝑥 > 0.       (16) 
Then by the meanvalue theorem we get 

𝐼(𝑡) = 𝜇𝛽𝑆0𝑡
𝛼𝑔′′(𝜉3)

𝜉2−𝜉1
𝛽−𝛾

,                 (17) 
where 𝜉1 is between 𝜇 and 𝛾, 𝜉2 is between 𝜇 and 𝛽,  
and 𝜉3  is between 𝜉1  and 𝜉2 . According to the 
conditions of the parameters, we deduce that 𝜉2 − 𝜉1 
has the same sign with 𝛽 − 𝛾, and thus there must 
have 𝐼(𝑡) ≥ 0  by (16). Noting the expression of 
𝑅(𝑡) is of a similar form as 𝐼(𝑡), and the Mittag-
Lellfer function 𝐸𝛼,1+𝛼(−𝑥𝑡𝛼)  has the same 
properties as 𝐸𝛼(−𝑥𝑡𝛼), we can get its nonnegative 
as done in the above, as well as its asymptotic 
behavior based on (5). The proof is over.  
Based on the above solutions, the trends of the 
pandemic with the time are plotted in Fig.1, where 
the fractional order is chosen as 𝛼 = 0.75, and other 
model parameters are given as 𝜇 = 0.25,  𝛽 = 0.1, 
𝛾 = 0.5 and 𝑆0 = 1000. From Fig.1 it can be seen 
that, the number of the susceptible is strictly 
decreasing, the number of the latent is going up 
firstly and then decreasing as well as the patient, and 
the number of the recovered is increasing, which 
basically coincide with the spreading trends of the 
pandemic at its initial stage.  

  

  
Fig1. The spreading trends of the pandemic with time 

 
3 Inverse fractional order problem 
3.1 The inverse problem 
Although we get the solution to the forward problem 
given by (10)-(13), it cannot be put into practice if 
there are unknown parameters in the model. 
Actually, the fractional order in (1) is an important 
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index characterizing the slower spreading with 
memory effect in time, but it is always unknown 
which leads to inverse fractional order problems. 
Noting that the recovered persons in the pandemic 
are known every day, so we can get some additional 
data on 𝑅(𝑡) at given time 𝑡𝑘: 

𝑅(𝑡𝑘),  𝑘 = 1, 2,⋯ , 𝐾,                       (18) 
where 𝐾 ≥ 1. The inverse fractional order problem 
is to identify the order 𝛼 ∈ (0, 1) by using the data 
(18) based on the forward problem, where the 
parameters 𝜇, 𝛽, 𝛾  are known and different each 
other. 
An interesting problem for the above inverse 
problem is: 
Can we determine 𝜶 ∈ (𝟎, 𝟏) uniquely only using 

one measurement of 𝑹(𝒕𝟏) at given 𝒕𝟏 > 𝟎 ? 
Generally speaking, it is very difficult to answer the 
above question in theory. Nevertheless, we can deal 
with such problem in some special cases. Denote 
𝑑 = 𝑅(𝑡1)  at 𝑡1 > 0  as the data. Then noting the 
solution's expression (13), we get a nonlinear 
algebraic equation on 𝛼 ∈ (0, 1): 

𝐹(𝛼): =
𝜇𝛽𝛾𝑆0𝑡1

𝛼

(𝜇−𝛽)(𝜇−𝛾)(𝛽−𝛾)
[(𝛽 − 𝛾)𝐸𝛼,1+𝛼(−𝜇𝑡1

𝛼) − 
(𝜇 − 𝛾)𝐸𝛼,1+𝛼(−𝛽𝑡1

𝛼) + (𝜇 − 𝛽)𝐸𝛼,1+𝛼(−𝛾𝑡1
𝛼)] = 𝑑, (19) 

As a result the inverse fractional order problem is 
transformed to solving of the nonlinear equation 
(19).  
 

3.2 Unique solvability 
As said in the above, it is very difficult to prove the 
uniqueness of a nonlinear algebra equation in theory. 
However, it is possible and feasible to get a unique 
solution of the nonlinear equation (19) under 
suitable conditions. 
Theorem 2. Assume the parameters 𝜇, 𝛽 and 𝛾 are 
positive constants ranged in (0, 1), and satisfy the 
condition of Theorem 1. Then the nonlinear 
equation (19) has a unique solution for suitable 𝑡1 >
1. 
Proof. We are to prove the function 𝐹(𝛼) defined 
by (19) is monotonic increasing on the fractional 
order, i.e., 𝐹′(𝛼) > 0 on 𝛼 ∈ (0, 1). As done in the 
proof of Theorem 1, define three functions on 𝛼 ∈
(0, 1) by 

{

ℎ1(𝛼) = 𝐸𝛼,1+𝛼(−𝛾𝑡1
𝛼),

ℎ2(𝛼) = 𝐸𝛼,1+𝛼(−𝜇𝑡1
𝛼),

ℎ3(𝛼) = 𝐸𝛼,1+𝛼(−𝛽𝑡1
𝛼),

           (20) 

and rewrite 𝐹(𝛼) as 
𝐹(𝛼) = 𝜇𝛽𝛾𝑆0𝑡1

𝛼𝐽(𝛼),            (21) 
where 𝐽(𝛼) = ℎ1(𝛼)−ℎ2(𝛼)

(𝜇−𝛾)(𝛽−𝛾)
+ ℎ2(𝛼)−ℎ3(𝛼)

(𝜇−𝛽)(𝛽−𝛾)
.  

Then we have 
𝐹′(𝛼) = 𝜇𝛽𝛾𝑆0𝑡1

𝛼[ln(𝑡1) 𝐽(𝛼) + 𝐽
′(𝛼)].  (22) 

With a simlar method as usd in the proof of 
Theorem 1, we can deduce that  𝐽(𝛼) > 0 in the 
case of 𝛾 > 𝜇 > 𝛽 or 𝛽 > 𝜇 > 𝛾, as well as 𝐽′(𝛼) >
0. So by suitably choosing the measured time 𝑡1 >
1, there holds  

𝐹′(𝛼) > 0, 
which  implies that the equation (19) has a unique 
solution. The proof is completed. 
 

3.2.1 Example 1 

Let the exact fractional order in model (1) be 𝛼 =
0.8, and other parameters be 𝜇 = 0.25, 𝛽 = 0.1 and 
𝛾 = 0.5, 𝑆0 = 1000, and the measured time be 𝑡1 =
50. By (13) we get the additional data 𝑑 = 𝑅(𝑡1) ≈
724 . By solving the nonlinear equation (13), the 
fractional order can be reconstructed. In order to see 
the unique solvability of the equation, we plot the 
functions 𝑦 = 𝐹(𝛼) , and  𝑦 = 𝑑  on 𝛼 ∈ (0, 1)  in 
Fig.2.  
It can be seen clearly that the function 𝐹(𝛼)  is 
strictly monotonic on 𝛼 ∈ (0, 1) , and there exists 
unique solution to the equation 𝐹(𝛼) = 𝑑 , which 
demonstrates the uniqueness of the inverse problem. 

 
Fig.2 The pictures of 𝑦 = 𝐹(𝛼) and 𝑦 = 𝑑 in Ex.1 

 

3.2.2 Example 2 

Let the exact fractional order be 𝛼 = 0.5  in this 
example, and other parameters be 𝜇 = 0.2, 𝛽 = 0.5 
and 𝛾 = 0.1, 𝑆0 = 1000, and the measured time be 
𝑡1 = 10. Also by (13) the additional data is given as 
𝑑 ≈ 62. As done in Example 1, the functions 𝑦 =
𝐹(𝛼) and 𝑦 = 𝑑 on 𝛼 ∈ (0, 1) are plotted in Fig.3.  
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Fig.3 The pictures of 𝑦 = 𝐹(𝛼) and 𝑦 = 𝑑 in Ex.2 

From Fig.3 it can be seen again that the function 
𝐹(𝛼) is also strictly monotonic on 𝛼 ∈ (0, 1), and 
the inverse problem is of uniqueness too. 
 

4 Conclusion 
A linear time-fractional SEIR epidemic model and 
the inverse fractional order problem using one 
measurement are investigated in mathematics. 
Based on the expression of the solution to the 
forward problem, the inverse problem is reduced to 
a nonlinear algebraic equation on the fractional 
order, and the unique solvability can be obtained by 
the complete monotonicity of the Mittag-Lellfer 
function of real variable under suitable order 
conditions for the parameters. Theoretical examples 
are presented to illustrate the uniqueness of the 
inverse problem. It is noted that the derivative of the 
function 𝐹(𝛼)  on 𝛼 ∈ (0, 1)  can be computed by 
(22), and some gradient-type iterative algorithms 
can be applied to solve the nonlinear equation for 
which we will give details in the near future. 
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