WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.14

Hewa Selman Faris, Raad Noori Butris

Existence, Uniqueness, and Stability of Solutions of Systems of Complex
Integrodifferential Equations on Complex Planes

HEWA SELMAN FARIS?
Department of Mathematics
Duhok University
Duhok city

IRAQ

RAAD NOORI BUTRIS?
Department of Mathematics
Duhok University
Duhok city

IRAQ

Abstract: - In this paper, we investigate the existence, uniqueness, and stability of solutions for a class of systems

of non-linear complex Integrodifferential

equations on complex planes.

Based on the complex
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illustrated from an example to confirm the veracity and applicability of the main problem whose exact solutions

are available.
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1 Introduction

Complex differential equations (CDEs) are
increasingly prevalent in physics, engineering,
electrics, and other fields that are devoted by many
authors such as A L. Cauch, B. Riemann, and K.
Weierstrass [10]. The concept of system of
complex-differentiability will be introduced exactly
as was that of differentiability on, R [12]. The
complex-valued functions which are complex-
differentiable throughout a domain in C are called
analytic (holomorphic) and function theory is
usually understood to be the study of such functions

[5].

Many works in complex differential equations,
complex integral equations, and complex
Integrodifferential equations have been
demonstrated by authors. The aim of this study is to
investigate and develop complex Integrodifferential
equations. This paper has been organized as: The
first section is intended to provide a presentation of
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basic definitions and properties of complex concepts
suitable for the basis employed in many branches of
mathematics and physics [1], [2] and [7].

In Sections 2, 3, and 4, consequently, the existence,
uniqueness, and stability of solutions of system (1)
have been obtained [4], [6] and [14]. The last
section contains an example for the validity of the
solutions of (CIDF) of the system (1) and we picture
them geometrically, as curves for more clarity in the
complex planes [8] and [9].

Suppose that  the non-linear complex

Integrodifferential equations are defined within a
system as:
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dw(z;wg,wo) _

S = (A + By(2))w(z; wo, wo) )
+(A; + By(2))w(z; Wy, wg)
+£ (2, w(z; wo, wo), w(z; Wy, wy))
%‘ZO'“’O) = (C1 + Dy (z))w(z; W, Wo)
+(C; + D2(2))w(z; wy, wo)

+g(z; w(z; wo, wy), w(zZ; W, (Uo)) J

1)

with, initial conditions, w(0,wy, wy) = w, and
w(0,wy, wg) = wy  consequently,  where, w, €
C", wy € C™, w(z; wy, wg) € Qg and
w(z; wy, wg) € Q. The compact subsets, Q, and
Q, are complex Euclidean spaces C™ and, C™ [3].

Let f(z; w(z; wy, wg), w(z; W, wo)) and
g(z; w(z; Wy, wy), w(z; wy, a)o)) be holomorphic
complex-valued vector functions that defined on
domain

Q=(Zww)eCxC"xC™

2)

Where, ||z — zll < a, [lw(z; wp, wo) —woll <
Bw and [lw(z; wo, wo) — woll < B

We consider the solutions w(z;wy, wy) and,
w(z; wy, w) exactly from problem (1) as:

w(z; W, wg) = woe1? + fOZeAl(Z‘S)((S) ds, (3)

where, {(z) = B1(2)w(z; wy, wg) + (A2 +
Bz(z))w(zi Wy, o) +
f(z;w(z; w, wg), w(z; wo, wg)).

w(z; wo, wg) = woe? + [7 e E(s)ds,  (4)

where, é(2) = (61 + Dl(z))w(z; Wy, Wg) +
Dy (z2)w(z; wy, wg) +
g(z; w(z; Wy, wy), w(z; wy, wo)).

The holomorphic vector functions,
f(Z; w(z; Wy, wg), w(z; wy, wo)), and
g(z; w(z; Wy, wy), w(z; wy, wo)) require the
following conditions and inequalities:
llwolllle?r” — 11| = Q1 (2)

Cyrz _ (5)
lwolllle®2” — Il = Q2 (2)
<@ < 191(2)} (6)
IE@I < 9,(2)
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|1f (7 w2 (2; wo, @), w2 (2; wo, wy)) —
£ (23 wi (2 Wo, ), w1 (2 Wo, )| <
[y lw, (z wy, wg) — Wy (2; wg, wo) || +

[ llwz (2 wo, wo) — w1 (Z; wo, wp)l (7
||g(Z: w3 (2; Wo, o), w2 (2; Wy, wo)) -
g(Z; w1 (Z; wo, wo), w1(z; WO'(‘)O))” <
21wz (2 wo, wg) — wy (25 wo, wo) || +
2o |lwz(z; wo, wg) — w1 (Z; wo, wo) | (8)

v, solutions w,wy,w, € Qy and, w,wq,w, € Q4,
where Q4, Q,, 91,95, I}, T, ; and X, are positive
constants.

The complex-valued matrices A; = (Ayjk),
Ay, = (Az:j,k)a B, = (Blzj,k)’ B, = (BZ:j,k)'
C; = (Crjk). Cp=(Cajr) D1=(Dyjx) and
D, = (Dy.j) are positive, for all j,k=12,..,n
and [|lw| = max,epo 7| wjl.

From the complex Euclidean spaces C™ and, C™
non-empty sets are defined as

Qf =0o—Bw =Q — (Q1(Z) + ZR1191(Z))} )
Qg =0 =By =0 — (Qz(z) + zR, 0, (Z))

le#=9|| = Rl} (10)
e
We defined the complex sequences

{win (z; Wy, wo) }m=0 and, {wn, (z; wy, wo) }m=o as:

Wint1(25 Wo, wg) = woer” + foZeAl(Z_s)(m(S) ds

...(12)
While, w(0,wy, wy) =w, and, m=0,1,2,..,
where {m(2) = B1(2)wy, (z; Wy, wg) +

(Az + Bz(Z))wm(Zi Wo, Wg) +
f(ZF Win (23 Wy, wo), W (2; Wo:wo))-

Wm+1(2 W, wg) = wee?” + fozeCZ(Z_s)fm(S) ds

...(12)
While, w(0,wy,wy) =w, and, m=20,1,2,..,
Where Em(Z) = (Cl + Dl(Z))Wm(Z, Wy, (1)0) +

Dy (2)wpy (z; Wy, wg) +
g(z; Wi (Z; Wy, W), W (2; W, ﬂ)o))-

Consider the Eigen-value of matrix @(z) does not
exceed one, while
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_[o@ 2@
D3(z) Pyu(2)
Where,  @,(z) = zR,([B1 (D)l + 1), @,(2) =

zR,(|[Az + B2 (2)|| + I,), D3(z) = zR,(||Cy +
D1 (2|l + Z1) and @,(2) = zR,(||D2 (DI + Z3)

®(2) (13)

Thus, the maximum value of @(z) has obtained
from:

P1(2)+24(2)

max(CP(Z)) = >

(01(2)+04(2))" ~4(01(2) D4 (2) - D, (Z)P3(2))
+

. <1(14)

wherever,

01(Z2) = 1Bi(DI + Ty
©2(Z2) = |4z + B (DI + T, }
@3(Z) =[G+ Dy (Dl + 24

94(Z) = |ID2(D)l + X,
Definition 1.1. [11] If w(z) has a derivative at each

point of region Q and is single-valued, it is said to
be analytic in a region Q of the complex plane.

(15)

Definition 1.2. [2] Let the complex vector functions
w(0,wy, wy) and w(0,wy, wy) are defined and
analytic in CxC—- C. Then the following
properties, measures the Euclidean distance and
defined the metric space:

1. |lw|[=0and, |w||[=0ifw =0.

2. lw-oll = lwll - llwll.

3. lw+wll = llwll + llwll.

Definition 1.3. [10] Let the complex vector function
w is defined and analytic in C. Then the set B,(c) =
fweC:|lw—c|l <p}, p>0iscalled closed disc
about c.

Definition 1.4. [10] A function f:Q — C is called
holomorphic in the domain Q if f is complex
differentiable at every point of Q. We say f is
holomorphic at ce€Q if there is an open
neighborhood U of ¢ lying in Q such that the
restriction f|U of f to U is holomorphic in U.

Lemma 1.1. [7] Let the complex function w: C = C
be an analytic vector function on a finite interval
[—a, a], then there is some M such that [[w(z)| <
M. Also if we have w: C? — C? is an analytic vector
function on a finite rectangle, [—a, a] X [-8,B],
then there is an M such that ||w(z, w)|| < M.
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Lemma 1.2. Suppose that we define the
holomorphic complex-valued vector functions
f(z; w(z; wy, wg), w(z; Wy, wo)) and

g(z; w(z; Wy, wy), w(z; Wo,wo)) on [0, Z]. Then the
equations number (3) and (4) are solutions under the
complex Integrodifferential equations of system (1).

Proof. Let w(z; wy, wy) = P(z; Wy, wy)e“1? and,
w(z; Wy, wo) = x(z; wy, wy)e®?. Then from the
complex Integrodifferential equation
dw(z; wy, wg)/dz in system (1) we get the form

dy(z; wy, w
IIJ(Z, WO' wO)AleAlz + Wefllz

= (A1 + B1(2))¥(z; wp, wg)e?
+ (Az + BZ (Z))X(z; W, wo)eczz
+ £ (z; w(z; wo, wg), w(z; W, wy)).

Simplify the equality to obtain

dy(z; wy, wg)
dz
= B1(2)¥(z; wy, wo)
+ (A2 + B2(2)) x(z; wo, wg)e2Z e 417
+ e M2 f(z;w(z; wy, wg), w(zZ; wo, wg)).

Take the integral of both sides from 0 to z and put
in, w(z; Wo, wg) = Y(z; Wy, wg)e41?  where
w(z; Wy, wgy) = Wy, to obtain

w(z; Wy, wg) = woet1?

z

+f€A1(Z_S) (Bl(S)W(S,WO:(UO)

0
+ (Az + Bz(s))a)(z; Wy, Wg)
+ f (s, w(s, wo, wp), w(s, wy, a)o))) ds.

Thus, we confirm the validity of equation number
(3), also the equation number (5) by same steps.

Lemma 1.3. Suppose that the complex-valued
vector functions f(z;w(z;wo,a)o),a)(z;wo,a)o))
and g(z; w(z; Wy, wyg), w(z; wy, (uo)) are defined on
[0, Z]. Then they exist and holomorphic over the
vector function
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|E1 (z; wo, (Uo)“] < [ﬁw] (16)

| E2 (25 wg, wo) | B

Whenever, E;(z; wo, wo) = [ e#1#=9)¢(s) ds and,
Ey (2 wo, wo) = [, e©2#9E(s) ds.

Proof. From the assumptions (6) and, (10) where,
1K@ < 91(2), 1@ < 92(2), [le+@ || =R,
and ||e#=9)|| = R,, we have

|1E1(2; wo, wo) || = ||fOZ€A1(Z_S)((S) ds|| <
[7 eMiGE=9l|i¢(2)|| ds < zRy 9, (2) < By, and

1E2 (z; wo, wo)l = || f; e2@9¢(s) ds|| <
Jy '@ NE(2)|| ds < zR,0,(2) < Boy.
Thence, we have achieved the equation (16).

2 Existence of  solutions of

Integrodifferential equations of (1).

The following theorem clarifies the existence of
solutions of system (1).

Theorem 2.1. Suppose the complex-valued vector
functions  f(z; w(z; wo, o), w(z; Wy, wy))  and
9(z;w(z wo, wg), w(z; wy, wy)) are defined on (2)
and satisfy the inequalities (5)-(10) and conditions
(13)-(15). Then there exists, sequences of vector
functions (11) and (12), that converge uniformly to
the limit vector functions w(z;wy, w,) and
w(z; wy, wg) asm — oo,

Proof. Firstly, we define the approximate
sequences, wy, (z; wy, wg) and w,,(z; wy, wy) from
the equations (11) and (12) where, m > 0. Thus by
reiterating and from them we have

S @D 1mo1 ()l ds = 2Ry 9 (2)
S eS| Igm1 ()l ds = zRy8,(2).

and,

Therefore we obtain that the sequences exist and
holomorphic functions in domains Q, and, Q, then
W (z; wg, wo) — woll < By and,
| (z; wo, o) — woll < Bo-

Let we achieved for m < [, then this implies that
wi_1(z; wg,wg) and  w;_q(z; wy, wy) exist and

holomorphic in mention domains and satisfy
w1 (z; wo, wg) — woll < B and,
[|w;—1(z; Wy, wg) — woll < Be- Since from
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approximate sequences (11) and (12) and for all
[ > m, the results ||w;(z; wy, wg) — wyl| < B, and,
[|w;(z; wy, wg) — wgll < B, hold too, because from
the composite functions within ;_;(t) and &,_;(t)
the integral of holomorphic functions are also
holomorphic as follows:

lwi (23 wo, o) = woll < lwollles? — 1 +
I e @ 911621 (91l ds = Q1(2) + zR, 94 (2),

oy (25 wo, o) = woll < llwollle” — 11l +
I e [1E21 ()l ds = Q2(2) + Ry9,(2)z.

Therefore, w;(z; wy, w) and w; (z; wy, wg) are exist
and holomorphic in Q, and, Q;.

Secondly, we have to prove that
{Win(z; wo, w)}m=0 and  {wm(z wo, wo)hm=o
converge uniformly on domain (2). Thus from (11)
and (12) wherem = 0

llw, (z; wo, o) — woll < llwolllle?1Z — 1| +
zR,94(2),

llw1 (2 wo, wo) — woll < llwolllle®2” — 11| +
zR,9,(2).

And so on,

lw (z; wo, wg) — wy(Z; Wo, wo) |l < zR4 |33 (s) —

(0”1

llw, (z; wo, wg) — w1 (Z; Wy, wo) |l < ZR,||€1(s) —

Soll,

whereas, from Lipschitz conditions (7) and (8)

1$1(2) = &oll < (1B (@)l + T lwe (25 wo, wo) —
woll + (lAz + B2 (2| + I2)[|wq (25 wg, wo) — woll,
1§1(2) — &oll <

(1C1 + D1 @ + ZD w1 (z, wy, wg) — Wyl +
(D2 (@)l + 2 |[w1 (2, wo, wg) — wol.

Thus from the conditions (13), (14) and (15) we
obtain that

llwz (z; wo, wg) — wq(z; wg, wo) || <
@1 (2)|lwy(z; wo, wg) — woll +
D, (2)||w1(z; wy, wg) — woll,

w2 (z; wo, wg) — w1 (Z; Wy, wo) || <

D3(2)||lwy (2 wo, wo) — woll +
D,4(2)|lw1 (z; wg, wg) — woll.
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Consequently for all m > 1 and by induction, from
(13) we obtain the vector form as follows:

(IWint1 (25 Wy, wg) — Wi (23 Wo, wo) |
|12 Wo, wo) — Wi (25 Wo, w11 —

P1(2) qu(z)] [me(z; Wo, W) — Wiy —1(Z; Wy, o) ||
P3(z) Pu(2)] Ulwm(z; Wy, o) — Wp—1(2; Wy, we)II

Reiterating the vector inequality for all m with
respect to Z (the maximal value of z) from (13) as:

[”Wm+1(Z' Wo, Wg) — W (Z, Wo:wo)”] <
”wm+1(ZJ Wo, (1)0) - (,()m(Z, Wo, (1)0)” a
Fﬂ)%mrwmmm%%%”(m
D3(Z) Dyu(2) lw1 (Z, wo, wg) — wo |l

Thus for all numbers, k > 1, we have achieved

[”Wm+k(zv Wo, Wg) — Wi (Z, Wo;wo)”] <
lwmik (Z, wo, wg) — W (Z, wo, w) ] —
Kk ||Wm+i(Zv Wo, Wg) — Wm+(i—1)(Z: Wo, wo)”

k. .
' ||wm+i(Z: Wo, Wg) — wm+(i—1)(Z' Wo;wo)”
Therefore, we obtain the form bellow

”Wm+k(Zv Wo,wo) - Wm(Z: Wy, 0)0)”

”wm+k(Z' WO' wOI)( - w]r(n(Z; WOI wO)II -
@@(Mﬂ“M*WMQW%%%H
‘D3(Z) o,(2) llw(Z, Wo;wo) - wo”

Thus (17) holds for all k, and it follows that the
series

[W(Z,Wo,a)o)] _ WO]
w(Z,wy, wg) Wo
Win(Z, o, 0g) — Wiy _1(Z, wo, o)

18
wm (Z, Wy, wg) — Wm—1(Z, Wy, wp) (18)

+Z$$1=1[

Converges uniformly in domain (2) and this implies
that w(Z,wg,wg) and w(Z,wy,wy) are
holomorphic.

Moreover, as a result of condition (14) we received
that, lim,,_,, ®™(z) =0, and from (18) consider
the limits, lim,, 00 Wint1 (2; Wo, wg) =

w(z; Wy, wo) and, lim,y, e Wmeq (23 Wo, o) =
w(z; wy, wg). Also,
limy, e f(Zi Win (23 o, W), W (2; Wofwo)) =
f(z; w(z; wy, wg), w(z; wy, wo)) and,
lim,,, 00 g(z; Wi, (Z; Wy, wg), 0y (Z; Wy, a)o)) =
g(z; w(z; wy, wy), w(z; wy, wo)). Finally  we

investigate that w(z; wy, wy) and w(z; wy, w,) are
solutions of complex Integrodifferential equations
of system (1).
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3 Uniqueness of solutions of

integrodifferential equations of (1).
The complex Integrodifferential equations of (1)
have just one solution.

Theorem 3.1. Under all conditions and assumptions
of theorem (2.1), the equations (3) and (4) are
unique solutions on domain (9).

Proof. Let the complex vector equations
w(z; wy, wg) and &(z; wy, wy) be another solutions
of system (1) which are holomorphic, that is

W(z; wy, wg) = woet1? + f(feAl(Z_S)f(s) ds (19)
D(z; wg, wg) = woe2? + fOZeCZ(Z_S)f(s) ds (20)

Where, {(2) = Bi(2)W(z; wg, wg) + (Az +
B, (z))&)(z; Wy, Wg) +
f(z; w(z; wy, wg), ©(z; wy, wo)).

Wlth, W(O, xO,yo) = Wy. And

é(z) =
(C1 + Dl(Z))W(Z; Wo, Wg) + Dy (2)D(z; wy, wy) +
g(z; w(z; wy, wy), B(z; wo,a)o)).

Wlth @(O,XO,yO) = Wy and, m = 0,1,2,

From the difference of equations (3), (19), (4) and
(20) we obtain the norms

llw(z; wo, wo) — W(z; wo, wp)| <

I Nle:@92|1¢(2) - {(2)| ds, and

llw(z; wo, wg) — @(z; Wy, wo) | <

JZle=C||£(2) - €(2)]) ds.

Thus from the Lipschitz conditions (7) and (8) we
verify that |22 = @) < UBLIl +
I)w(z; wo, wg) — W(z; wy, wo) | + (|4, +
By (2)|| + )| w(z; wo, wo) — @(z; wo, wo)l
€@ —¢é@)|| <

(1€, + DO + ZDlw(z; wo, wp) —

W(z; wo, wo) || + (D2(t) + Z,)|[w(z; wy, wg) —
@ (z; wo, wo)||

and

Therefore from (13) and (14) we gathering the
results in a vector form as:
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[”W(Z: Wo, Wg) — W(zZ; wo, wo) |

lw(z; wo, wg) — @(z; wo, we)ll 1 —

[¢1(Z) D, (Z)] [”W(Zi Wo, Wg) — W(z; wo, wo) | ]

D3(z) DD Lllw(z;wo, wo) — &(z; wo, wo) I )
And hence from condition (14), the greatest Eigen
value of matrix, @(Z) is less than one. So we
deduce that, w(z; wy, wy) = Ww(z; wy, wy) and,
w(z; Wy, wg) = ©(z; wy, wg). This implies that the
complex integrodifferential equations of system (1)
have unique solutions.

4  Stability of  solutions  of

Integrodifferential equations of (1).
The following theorem investigates the stability of
solution of system (1).

Theorem 4.1. Suppose that the holomorphic vector
functions f(z; wy, wg) and g(z; wy, w,) satisfy the
inequalities and conditions in theorem (2.1). Also
w(z; wg,wy) and @(z; wy, w,) be additional
solutions of the (1), then w(z;wy, wy) and
w(z; wy, wg) are stable solutions.

Proof. Let the vector solutions w(z; wy, wy) and
o (z; wy, wg) of the system (1) be specified, then we
receive that

llw(z; wg, wg) — W(z; Wo,wp)” < |lwo —
Wolllle®?|| + Ryz||¢(s) = ()|

< [lwo — Wolllle®+%]| + Ryz(||B1 (2] +
DIw(z; wy, wg) — W(zZ; wy, wo) |l + Ryz([|4; +
B, (2|l + )| (z; wo, wg) — @(z; wy, wo)l

< [lwo — Wolllle®?]| + Ryzep1 (2)lw(z; wy, wp) —
W(z; wo, W)l + R1zp, (2)l|w(z; wy, wg) —
@ (z; wo, wo) | (21)

To achieve the norm (22), same procedures are
followed. Thus with same duplications we have

llw(z; wo, wg) — @(z; Wy, we) || < |lwe —
@olllle“?%|| + Ryz3(2) lw(z; wy, wg) —

W(z; wo, wo) | + Raz4(2)||w(z; wy, wg) —

@ (z; wo, wo) | (22)

Collect above inequalities (21) and (22) in a vector
form as follows:-

E-ISSN: 2224-2880
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llw(z; wo, wg) — W(z; wo, wo) |
llw(z; wo, wg) — @(z; wo, wp)l
llwo — sz0||||eA12||]
= Lllwo — @olllle7|
[%(Z) §02(Z)] [IIW(Z: W, wg) — W(z; wo, wo) |
93(2) a2 lllw(z; Wy, wo) — B(z; Wy, wo) [

Thus

llw(z; wg, wo) — W(z; wo, wo) |
llw(z; wo, wg) — &(z; wo, we) ] —
llwo — sz0||||eA12||]
llwo — @ollle ||
P (2) [”W(Z; Wo, Wg) — V:‘E'(Z; wo, wo)|| _
llw(z; wo, wo) — &(z; Wy, wo) |

From the definition of stability we have,
(”Wo - V/‘:’o”) < (51) then
lwo — @oll 6,
[IIW(Z: Wo, Wg) — W(zZ; wo, wo) |
llw(z; wo, wg) — @(z; wo, wo) |

<[l o
Lo peclls

lw(z; wy, wg) — W(z; Wo,wo)”]
m
Toy'(@) [uw(z; wo, o) — @(z; wo, o)l

lw(z; wo, wo) — W(z; Wo:wo)“] &
<
Then. [Ilw(z; W"’f{)(’) —&(z; wo, w)Il = [sz]’
8 &1/lle”+7|]
where[ 1] = [ 1 ]
621 Ley/lle||

Thus we conclude that, w(z;wy,w,) and
w(z; wy, wg) are stable solutions of system (1).

5 Numerical results

In this section, we presented an example to
demonstrate and illustrate the validity and certainty
of existence and uniqueness of solutions of complex
Integrodifferential system (1) as follows [13]:

Example. Let us consider the non-linear system of
complex Integrodifferential equations (P) as:
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‘Z_‘;’ =2+ 3i)z cos(w(z)) +iz w(z))
+ fOZ el@=)y(s) ds
» N (P)
Z=z w2+ (1 -i)z sm(w(z))

+ foz e~ iZ=)yw(s) ds

with initial conditions, wy = i and, w, = 0.5 + 1.5i
consequently.

Solution.

parts.

Table 1. Numerical data of approximate solutions of w(z) and w(z):

Firstly,

if w(iz)=u(z)+iv(z) and
w(z) = a(z) +if(z) be complex functions, then
from table below we represent the complex-valued
functions w(z) and w(z) in real and imaginary

Time z w(z) w(z)
®
0 0.0000 + 0.0000 + 1.0000i | 0.5000 + 1.5000i
0.0000i
0.3142 0.3142 + 0.1289 +1.3602i | 0.6716 + 1.6361i
0.3142i
0.6283 0.6283 + 1.5574 +2.1061i | 1.4467 +1.9242i
0.6283i
0.9425 0.9425 + 2.2088 +1.2218i | 2.5697 + 1.6499i
0.9425i
1.2566 1.2566 + 2.2402 +1.0882i | 3.3387 +1.4841i
1.2566i
1.5708 1.5708 + 2.2533 +1.1712i | 3.7876 + 1.7657i
1.5708i
1.8850 1.8850 + 2.2265 +1.2095i | 3.6191 + 1.9235i
1.8850i
2.1991 2.1991 + 2.2350 +1.2308i | 3.7542 + 1.7323i
2.1991i
2.5133 25133 + 2.2103 +1.2589i | 3.7958 + 1.7618i
2.5133i
2.8274 2.8274 + 2.1951 +1.2649i | 3.8563 + 1.6197i
2.8274i
3.1416 3.1416 + 2.1676 + 1.2647i | 3.8676 + 1.5686i
3.1416i
3.4557 3.4558 + 2.1479 + 1.2477i | 3.9100 + 1.4315i
3.4558i
3.7699 3.7699 + 2.1236 +1.2208i | 3.8792 + 1.3376i
3.7699i
4.0841 4.0841 + 2.1053 +1.1803i | 3.8745 +1.2121i
4.0841i
4.3982 4.3982 + 2.0866 +1.1305i | 3.8050 + 1.1201i
4.3982i
9.1106 9.1106 + 2.1114 + 0.9745i | 3.6183 + 1.3482i
9.1106i
9.4248 9.4248 + 2.1037 +0.9848i | 3.6334 + 1.3175i
9.4248i

Numerically through data of table 1 we figure the
problem geometrically as:
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System of complex integrodifferential equations (P)

Range of real and imaginary parts of w(z) & w(z)

0.5 F ‘

Real(w(z))

Imaginary(w(z))
I N

Real(w(2))
Imaginary(w(z))

L L L 1 !
0 1 2 3 4 5 6 7 8 9 10
z

Fig.1. Curves of real and imaginary parts of w(z) and, w(z).

6 Conclusion

System of complex Integrodifferential equations is
usually difficult to solve exactly, then it is
demanded to obtain the approximate solutions. In
this work we have to prove the existence,
uniqueness and stability of solutions under the
necessary and sufficient assumptions on complex
Euclidean n spaces (C™) and through an example
verifies the validity of them. In addition, through
Matlab code we have to solve the system of linear
and nonlinear Integrodifferential equations in
complex and real analysis, in which some
modifications are required in code.
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