El Gamal Cryptosystem on a Montgomery Curves Over Non Local Ring

¹MOHA BEN TALEB ELHAMAM, ¹ABDELALI GRINI, ²ABDELHAKIM CHILLALI, ¹LHOUSSAIN EL FADIL

Department of Mathematics ¹Sidi Mohamed Ben Abdellah University, Faculty of Science Dhar El Mahraz ²Sidi Mohamed Ben Abdellah University, FP, LSI, Taza Atlas, Fez, postcode 1796, Fez, Morocco MOROCCO

Abstract: Let \mathbb{F}_q be the finite field of q elements, where q is a prime power. In this paper, we study the Montgomery curves over the ring $\frac{\mathbb{F}_q[X]}{\langle X^2 - X \rangle}$, denoted by $M_{A,B}(\frac{\mathbb{F}_q[X]}{\langle X^2 - X \rangle})$; $(A,B) \in (\frac{\mathbb{F}_q[X]}{\langle X^2 - X \rangle})^2$.

Using the Montgomery equation, we define the Montgomery curves $M_{A,B}(\frac{\mathbb{F}_q[X]}{\langle X^2 - X \rangle})$ and we give a bijection between this curve and product of two Montgomery curves defined on \mathbb{F}_q . Furthermore, we study the addition law of Montgomery curves over the ring $\frac{\mathbb{F}_q[X]}{\langle X^2 - X \rangle}$. We close this paper by introducing a public key cryptosystem which is a variant of the ElGamal cryptosystem on a Montgomery curves over the same ring.

Key-Words: Montgomery curves, Finite ring, Cryptography, ElGamal.

Received: May 10, 2021. Revised: January 13, 2022. Accepted: February 8, 2022. Published: March 2, 2022.

1 Introduction

Let \mathbb{F}_q be the finite field of order $q = p^n$ where n is a positive integer and p is a prime number. The ring $\frac{\mathbb{F}_q[X]}{\langle X^2 - X \rangle}$ can be identified to the finite ring $\mathbb{F}_{q}[e], e^{2} = e$. The objective of this article is the search for new groups of points of a Montgomery curve on a finite ring, for use in cryptography. In [10], Montgomery introduced a new elliptic curve model what became known as Montgomery curves and the Montgomery scale as way to speed up Lenstra's elliptic-curve factorization method [8]. Boulbot et al. study the arithmetic of the ring $\mathbb{F}_q[e]$, in particular they show that this ring is not a local [2]. In section 3, we define the Montgomery curves $M_{A,B}(\mathbb{F}_q[e])$ over this ring, we study Montgomery equation which allows us to define two Montgomery curves: $M_{\pi_0(A),\pi_0(B)}(\mathbb{F}_q)$ and $M_{\pi_1(A),\pi_1(B)}(\mathbb{F}_q)$ defined over the finite field \mathbb{F}_q . In the next of this section, we classify the elements of $M_{A,B}(\mathbb{F}_q[e])$ and we give a bijection between the two sets: $M_{A,B}(\mathbb{F}_q[e])$ and $M_{\pi_0(A),\pi_0(B)}(\mathbb{F}_q) \times$ $M_{\pi_1(A),\pi_1(B)}(\mathbb{F}_q)$, where π_0 and π_1 are two surjective morphisms of rings defined by:

$$\pi_0 : \mathbb{F}_q[e] \to \mathbb{F}_q \\ x_0 + x_1 e \mapsto x_0$$

and

$$\begin{array}{rccc} \pi_1 & : & \mathbb{F}_q[e] & \to & \mathbb{F}_q \\ & & x_0 + x_1 e & \mapsto & x_0 + x_1 \end{array}$$

We study the addition law of Montgomery curves over the ring $\mathbb{F}_q[e]$. We finish this paper by introducing a new public key cryptosystem which is a variant of the ElGamal cryptosystem [3] on a Montgomery curves over the ring $\mathbb{F}_q[e]$. For more works in this direction we refer the reader to [1].

2 The ring $\mathbb{F}_q[e], e^2 = e$

An element in $\mathbb{F}_q[e]$ is represented by $x_0 + x_1e$ where $(x_0, x_1) \in \mathbb{F}_q$.

The arithmetic operations in $\mathbb{F}_q[e]$ can be decomposed into operations in \mathbb{F}_q and they are computed as follows:

$$X + Y = (x_0 + y_0) + (x_1 + y_1)e$$

 $X.Y = (x_0y_0) + (x_0y_1 + x_1y_0 + x_1y_1)e,$

where $X = x_0 + x_1 e$ and $Y = y_0 + y_1 e$. Let us recall the following results [1, 2]:

- $(\mathbb{F}_q[e], +, .)$ is a finite unitary commutative ring.
- $\mathbb{F}_q[e]$ is an \mathbb{F}_q -vector space of dimension 2 with \mathbb{F}_q -basis $\{1, e\}$.
- $X.Y = (x_0y_0) + ((x_0 + x_1)(y_0 + y_1) x_0y_0)e.$
- $X^2 = x_0^2 + ((x_0 + x_1)^2 x_0^2)e$.
- $X^3 = x_0^3 + ((x_0 + x_1)^3 x_0^3)e$.

• Let $X = x_0 + x_1 e \in \mathbb{F}_q[e]$, then $X \in (\mathbb{F}_q[e])^{\times}$ (the multiplicative group of $\mathbb{F}_q[e]$) if and only if $x_0 \neq 0$ and $x_0 + x_1 \neq 0$. The inverse is given by:

$$X^{-1} = x_0^{-1} + ((x_0 + x_1)^{-1} - x_0^{-1})e.$$

- Let $X \in \mathbb{F}_q[e]$, then X is not invertible if and only if X = xe or X = x - xe, such that $x \in \mathbb{F}_q$.
- $\mathbb{F}_q[e]$ is a non local ring.
- π_0 and π_1 are two surjective morphisms of rings.

3 Montgomery curves over the ring $\mathbb{F}_{a}[e], e^{2} = e$

In this section, the elements X, Y, Z, A and B are in the ring $\mathbb{F}_q[e]$ such that $X = x_0 + x_1e$, $Y = y_0 + y_1e$, $Z = z_0 + z_1e$, $A = A_0 + A_1e$ and $B = B_0 + B_1e$ where $x_0, x_1, y_0, y_1, z_0, z_1, A_0, A_1, B_0$ and B_1 are in \mathbb{F}_q . We define a Montgomery curve over the ring $\mathbb{F}_q[e]$, as a curve in the projective space $P^2(\mathbb{F}_q[e])$, which is given by the equation:

$$BY^2Z = X^3 + AX^2Z + XZ^2,$$

where A and B are parameters satisfying the condition that $\Delta = B(A^2 - 4)$ is invertible in $\mathbb{F}_q[e]$. We denote this curves by: $M_{A,B}(\mathbb{F}_q[e])$, and we write:

$$M_{A,B}(\mathbb{F}_{q}[e]) = \{ [X:Y:Z] \in P^{2}(\mathbb{F}_{q}) \mid BY^{2}Z = X^{3} + AX^{2}Z + XZ^{2} \},$$

there is a unique point O = [0:1:0] at infnity in $M_{A,B}$: it is the only point on $M_{A,B}$ where Z = 0.

Proposition 1. Let $\Delta_0 = B_0(A_0^2 - 4)$ and $\Delta_1 = (B_0 + B_1)((A_0 + A_1)^2 - 4)$. Then,

$$\Delta = \Delta_0 + (\Delta_1 - \Delta_0)e.$$

Proof. We have:

$$\Delta = B(A^2 - 4)$$

= $(B_0 + B_1 e)[(A_0 + A_1 e)^2 - 4]$
= $\Delta_0 + (\Delta_1 - \Delta_0)e.$

Corollary 1. Δ is invertible in $\mathbb{F}_q[e]$ if and only if $\Delta_0 \neq 0$ and $\Delta_1 \neq 0$.

Using Corollary 1, if Δ is invertible in $\mathbb{F}_q[e]$, then $M_{\pi_0(A),\pi_0(B)}(\mathbb{F}_q)$ and $M_{\pi_1(A),\pi_1(B)}(\mathbb{F}_q)$ are two projective Montgomery curves over the finite field \mathbb{F}_q , and we notice:

$$M_{\pi_0(A),\pi_0(B)}(\mathbb{F}_q) = \{ [x:y:z] \in P^2(\mathbb{F}_q) \mid B_0 y^2 z = x^3 + A_0 x^2 z + x z^2 \}$$
$$M_{\pi_1(A),\pi_1(B)}(\mathbb{F}_q) = \{ [x:y:z] \in P^2(\mathbb{F}_q) \mid (B_0 + B_1) \\ y^2 z = x^3 + (A_0 + A_1) x^2 z + x z^2 \}$$

In [2] Boulbot et al. have showed the following proposition:

Proposition 2. Let X, Y and Z in $\mathbb{F}_q[e]$, then $[X : Y : Z] \in P^2(\mathbb{F}_q[e])$ if and only if $[\pi_i(X) : \pi_i(Y) : \pi_i(Z)] \in P^2(\mathbb{F}_q)$, where $i \in \{0, 1\}$.

Theorem 2. Let X, Y and Z be in $\mathbb{F}_q[e]$, then $[X:Y:Z] \in M_{A,B}(\mathbb{F}_q[e])$ if and only if $[\pi_i(X):\pi_i(Y):$ $\pi_i(Z)] \in M_{\pi_i(A),\pi_i(B)}(\mathbb{F}_q)$, for $i \in \{0,1\}$.

Proof. We have:

$$BY^{2}Z = (B_{0} + B_{1}e)(y_{0} + y_{1}e)^{2}(z_{0} + z_{1}e)$$

$$= B_{0}y_{0}^{2}z_{0} + [(B_{0} + B_{1})(y_{0} + y_{1})^{2}(z_{0} + z_{1}) - B_{0}$$

$$y_{0}^{2}z_{0}]e$$

$$X^{3} = (x_{0} + x_{1}e)^{3}$$

$$= x_{0}^{3} + [(x_{0} + x_{1})^{3} - x_{0}^{3}]e$$

$$AX^{2}Z = (A_{0} + A_{1}e)(x_{0} + x_{1}e)^{2}(z_{0} + z_{1}e)$$

$$= A_{0}x_{0}^{2}z_{0} + [(A_{0} + B_{1})(x_{0} + x_{1})^{2}(z_{0} + z_{1}) - A_{0}$$

$$x_{0}^{2}z_{0}]e$$

$$XZ^{2} = (x_{0} + x_{1}e)(z_{0} + z_{1}e)^{2}$$

$$= x_{0}z_{0}^{2} + [(x_{0} + x_{1})(z_{0} + z_{1})^{2} - x_{0}z_{0}^{2}]e.$$

As $\{1, e\}$ is an \mathbb{F}_q -basis of the vector space $\mathbb{F}_q[e]$,

then:
$$BY^2Z = X^3 + AX^2Z + XZ^2$$
 if and only if

$$\begin{cases}
B_0y_0^2z_0 = x_0^3 + A_0x_0^2z_0 + x_0z_0^2 \\
and \\
(B_0 + B_0)(y_0 + y_1)^2(z_0 + z_1) = (x_0 + x_1)^3 + (A_0 + A_1)(x_0 + x_1)^2(z_0 + z_1) + (x_0 + x_1)(z_0 + z_1)^2,
\end{cases}$$

so the point [X : Y : Z] is a solution of the Montgomery equation in $M_{A,B}(\mathbb{F}_q[e])$ if and only if $[\pi_i(X) : \pi_i(Y) : \pi_i(Z)]$ is a solution of the same equation in $M_{\pi_i(A),\pi_i(B)}(\mathbb{F}_q)$ where $i \in \{0,1\}$. From the Corollary 1 and Proposition 2 we deduce the result.

Corollary 3. The mappings $\tilde{\pi}_0$ and $\tilde{\pi}_1$ are well defined, where $\tilde{\pi}_i$ for $i \in \{0, 1\}$ is given by:

$$\begin{array}{rcl} \tilde{\pi}_i & : & M_{A,B}(\mathbb{F}_q[e]) & \to & M_{\pi_i(A),\pi_i(B)}(\mathbb{F}_q) \\ & & [X:Y:Z] & \mapsto & [\pi_i(X):\pi_i(Y):\pi_i(Z)] \end{array}$$

Proof. From the previous theorem, we have $[\pi_i(X):\pi_i(Y):\pi_i(Z)] \in M_{\pi_i(A),\pi_i(B)}(\mathbb{F}_q)$ If $[X_1:Y_1:Z_1] = [X_2:Y_2:Z_2]$, then there exist $\gamma \in$

If $[X_1 : T_1 : Z_1] = [X_2 : T_2 : Z_2]$, then there exist $\gamma \in (\mathbb{F}_q)^{\times}$ such that: $X_2 = \gamma X_1, Y_2 = \gamma Y_1$ and $Z_2 = \gamma Z_1$, then:

$$\begin{split} \tilde{\pi}_{i}([X_{2}:Y_{2}:Z_{2}]) &= [\pi_{i}(X_{2}):\pi_{i}(Y_{2}):\pi_{i}(Z_{2})] \\ &= [\pi_{i}(\gamma)\pi_{i}(X_{1}):\pi_{i}(\gamma)\pi_{i}(Y_{1}):\pi_{i}(\gamma) \\ &\pi_{i}(Z_{1})] \\ &= [\pi_{i}(X_{1}):\pi_{i}(Y_{1}):\pi_{i}(Z_{1})] \\ &= \tilde{\pi}_{i}([X_{1}:Y_{1}:Z_{1}]). \end{split}$$

4 The classification of elements in $M_{A,B}(\mathbb{F}_q[e])$

Let $M_{A,B}(\mathbb{F}_q[e])$ be the Montgomery curve $BY^2Z = X^3 + AX^2Z + XZ^2$ over the ring $\mathbb{F}_q[e]$. In this section we will classify the elements of the Montgomery curves, into three types, depending on whether the projective coordinate Z is invertible or not. The result is in the following proposition.

Proposition 3. The set $M_{A,B}(\mathbb{F}_q[e])$ has the following form:

$$\begin{split} M_{A,B}(\mathbb{F}_{q}[e]) &= \{ [X:Y:1] \mid BY^{2} = X^{3} + AX^{2} + X \} \\ &\cup \{ [0:1:0] \} \\ &\cup \{ [xe:1:ze] \mid [x:1:z] \in M_{\pi_{1}(A),\pi_{1}(B)} \\ &(\mathbb{F}_{q}) \} \cup \{ [xe:y-ye:e] \mid [x:0:1] \in \\ M_{\pi_{1}(A),\pi_{1}(B)}(\mathbb{F}_{q}) \} \cup \{ [x-xe:1:z-ze] \mid \\ &[x:1:z] \in M_{\pi_{0}(A),\pi_{0}(B)}(\mathbb{F}_{q}) \} \cup \{ [x-xe:ye:1-e] \mid [x:0:1] \in \\ M_{\pi_{0}(A),\pi_{0}(B)}(\mathbb{F}_{q}) \} \cup \{ [x-xe] \} \end{split}$$

Proof. Let $P = [X : Y : Z] \in M_{A,B}(\mathbb{F}_q[e]))$, where $X = x_0 + x_1e$, $Y = y_0 + y_1e$ and $Z = z_0 + z_1e$.

We have two cases of the projective coordinate Z: 1) First case: Z is invertible, then: $[X : Y : Z] \sim [X : Y : 1]$, where \sim is the equivalence relation of the projective space $P^2(\mathbb{F}_q[e])$ [9, p.6] (see also [1, 4, 6, 5, 7]).

2) Second case: Z is no invertible, in this case we have:

i) Z = ze, where $z \in \mathbb{F}_q$, then: • If z = 0 then [X : Y : Z] = [0 : 1 : 0], else $z \neq 0$: We have: $\pi_0([x_0 + x_1e : y_0 + y_1e : ze]) = [x_0 : y_0 : 0] \in M_{\pi_0(A),\pi_0(B)}$, then $x_0 = 0$ and $y_0 \neq 0$, i.e:

$$[X:Y:Z] = [xe:1+ye:ze]$$

there are two sub-cases of $y \in \mathbb{F}_q$:

a) $y \neq -1$, then 1 + ye is invertible in $\mathbb{F}_q[e]$, so we have: $[X:Y:Z] \sim [xe:1:ze]$, where $[x:1:z] \in$

$$\begin{split} &M_{\pi_1(A),\pi_1(B)}(\mathbb{F}_q).\\ & \text{b}) \ y=1 \ \text{then} \ 1-e \ \text{is not invertible in } \mathbb{F}_q[e], \ \text{so}\\ & \text{we have: } [X:Y:Z]=[xe:1-e:ze], \ \text{where } [x:1:z]\\ &z]\in M_{\pi_1(A),\pi_1(B)}(\mathbb{F}_q) \ \text{then necessary } z\neq 0 \ \text{according}\\ & \text{to Montgomery equation, hence } [X:Y:Z]\sim [xe:y-ye:e], \ \text{where } [x:0:1]\in M_{\pi_1(A),\pi_1(B)}(\mathbb{F}_q)\\ & \text{ii}) \ \ Z=z-ze, \ \text{where } z\in \mathbb{F}_q.\\ &\bullet \ \text{If } z=0 \ \text{then } [X:Y:Z]=[0:1:0], \ \text{else } z\neq 0,\\ & \text{we have } \pi_1([x_0+x_1e:y_0+y_1e:z-ze])=[x_0+x_1:y_0+y_1:0]\in M_{\pi_1(A),\pi_1(B)} \ \text{then: } x_0+x_1=0 \ \text{and } y_0+y_1\neq 0, \ \text{i.e:} \end{split}$$

$$[X:Y:Z] = [x - xe: y_0 + y_1e: z - ze]$$

there are two sub-cases of $y_0 \in \mathbb{F}_q$: a) $y_0 \neq 0$ then $y_0 + y_1 e$ is invertible in $\mathbb{F}_q[e]$, so we have:

$$[X:Y:Z] \sim [x - xe:1:z - ze]$$

b) $y_0 = 0$ then $y_0 + y_1 e$ is not invertible in $\mathbb{F}_q[e]$, so we have: [X : Y : Z] = [x - xe : ye : z - ze], where $[x : 0 : z] \in M_{\pi_0(A),\pi_0(B)}(\mathbb{F}_q)$ then necessary $z \neq 0$ according to Montgomery equation, hence $[X : Y : Z] \sim [x - xe : ye : 1 - e]$, where $[x : 0 : 1] \in$ $M_{\pi_0(A),\pi_0(B)}(\mathbb{F}_q)$

Corollary 4. $\tilde{\pi}_0$ is a surjective mapping.

Proof. Let $[x:y:z] \in M_{\pi_0(A),\pi_0(B)}(\mathbb{F}_q)$, then: • if y = 0 then $z \neq 0$ so $[x:y:z] \sim [x:0:1]$; hence [x - xe:e:1-e] is an antecedent of [x:0:z]• if $y \neq 0$, then $[x:y:z] \sim [x:1:z]$; hence [x - xe:1:z-ze] is an antecedent of [x:1:z]. \Box

Corollary 5. $\tilde{\pi}_1$ is a surjective mapping.

Proof. Let $[x:y:z] \in M_{\pi_1(A),\pi_1(B)}(\mathbb{F}_q)$, then: • if y = 0 then $z \neq 0$ so $[x:y:z] \sim [x:0:1]$; hence [xe:1-e:e] is an antecedent of [x:0:1]• if $y \neq 0$, then $[x:y:z] \sim [x:1:z]$; hence [xe:1:ze] is an antecedent of [x:1:z].

The next proposition gives a bijection between the two sets $M_{A,B}(\mathbb{F}_q[e])$ and $M_{\pi_0(A),\pi_0(B)}(\mathbb{F}_q) \times M_{\pi_1(A),\pi_1(B)}(\mathbb{F}_q)$.

Proposition 4. The $\tilde{\pi}$ mapping defined by:

is a bijection.

Proof. • As $\tilde{\pi_0}$ and $\tilde{\pi_1}$ are well defined, then $\tilde{\pi}$ is well defined.

• Let $([x_0:y_0:z_0], [x_1:y_1:z_1]) \in M_{\pi_0(A), \pi_0(B)}(\mathbb{F}_q) \times$

 $M_{\pi_1(A),\pi_1(B)}(\mathbb{F}_q))$, clearly: $\tilde{\pi}([x_0 + (x_1 - x_0)e : y_0 + (y_1 - y_0)e : z_0 + (z_1 - z_0)e]) =$ $([x_0:y_0:z_0],[x_1:y_1:z_1])$, hence $\tilde{\pi}$ is a surjective mapping.

• Let [X:Y:Z] and [X':Y':Z'] are elements of $M_{A,B}(\mathbb{F}_{q}[e])$, where $X = x_0 + x_1e$, $Y = y_0 + y_1e$, $Z = z_0 + z_1e$, $X' = x'_0 + x'_1e$, $Y' = y'_0 + y'_1e$ and $Z' = z'_0 + z'_1e$ $z_1'e$, such that: $\tilde{\pi}([X:Y:Z]) = \tilde{\pi}([X':Y':Z']),$

then:

$$[x_0: y_0: z_0] = [x'_0: y'_0: z'_0]$$

and

$$[x_0 + x_1 : y_0 + y_1 : z_0 + z_1] = [x'_0 + x'_1 : y'_0 + y'_1 : z'_0 + z'_1],$$

then there exist $(k, l) \in (\mathbb{F}_q^*)^2$ such that: $\begin{cases} x'_0 = kx_0 \\ y'_0 = ky_0 \\ z'_0 = kz_0 \end{cases} \begin{cases} x'_0 + x'_1 = l(x_0 + x_1) \\ y'_0 + y'_1 = l(y_0 + y_1) \\ z'_0 + z'_1 = l(z_0 + z_1) \end{cases}$ So $\begin{cases} x'_1 = (l - k)x_0 + x_1 \\ y'_1 = (l - k)y_0 + y_1 \\ z'_1 = (l - k)z_0 + z_1 \end{cases}$ Then: Then: $\begin{cases}
X' = kx_0 + ((l-k)x_0 + x_1)e = (k + (l-k)e)X \\
Y' = ky_0 + ((l-k)y_0 + y_1)e = (k + (l-k)e)Y \\
Z' = kz_0 + ((l-k)z_0 + z_1)e = (k + (l-k)e)Z
\end{cases}$

As k + (l - k)e is invertible in $\mathbb{F}_q[e]$, so [X':Y':Z'] = [X:Y:Z], hence $\tilde{\pi}$ is an injective mapping.

We can easily show that the mapping $\tilde{\pi}^{-1}$ defined by:

$$\tilde{\pi}^{-1}([x_0:y_0:z_0], [x_1:y_1:z_1]) = [x_0 + (x_1 - x_0)e:y_0 + (y_1 - y_0)e:z_0 + (z_1 - z_0)e]$$

is the inverse of $\tilde{\pi}$.

is the inverse of $\tilde{\pi}$.

Corollary 6. The cardinal of $M_{A,B}(\mathbb{F}_q[e])$ is equal to the cardinal of $M_{\pi_0(A),\pi_0(B)}(\mathbb{F}_q) \times M_{\pi_1(A),\pi_1(B)}(\mathbb{F}_q)$.

The group law 5

Let $P = (X_1 : Y_1 : Z_1)$ be a point on $M_{A,B}(\mathbb{F}_q[e])$ and $[n]P = (X_n : Y_n : Z_n)$. By [10], the sum [n + $m]P = [n]P \oplus [m]P$ is given by the following formulas where Y_n never appears. Addition: $n \neq m$

$$\begin{array}{rcl} X_{m+n} & = & Z_{m-n}((X_m-Z_m)(X_n+Z_n)+(X_m+Z_m) \\ & & (X_n-Z_n))^2, \\ Z_{m+n} & = & X_{m-n}((X_m-Z_m)(X_n+Z_n)-(X_m+Z_m) \\ & & (X_n-Z_n))^2. \end{array}$$

Doubling: n = m

$$\begin{split} 4X_n Z_n &= (X_n + Z_n)^2 - (X_n - Z_n)^2, \\ X_{2n} &= (X_n + Z_n)^2 (X_n - Z_n)^2, \\ Z_{2n} &= 4X_n Z_n ((X_n - Z_n)^2 + ((A+2)/4)(4X_n Z_n)). \end{split}$$

Cryptography applications 6

6.1 Cryptography results

From the proposition 4, we have:

• If $card(M_{A;B}(\mathbb{F}_q[e])) := n$ is an odd number, then $n = s \times t$ is the factorization of n, where $s:= card(M_{\pi_0(A);\pi_0(B)}(\mathbb{F}_q))$ and t:= $card(M_{\pi_1(A);\pi_1(B)}(\mathbb{F}_q)),$ hence the cardinal of

 $M_{A;B}(\mathbb{F}_{q}[e])$ is not a prime number. • The discrete logarithm problem in $M_{A,B}(\mathbb{F}_{q}[e])$ is equivalent to the discrete logarithm problem in $M_{\pi_0(A);\pi_0(B)}(\mathbb{F}_q) \times M_{\pi_1(A);\pi_1(B)}(\mathbb{F}_q).$

6.2 ElGamal cryptosystem on a

Montgomery curves over this ring

ElGamal cryptosystem for $M_{A,B}(\mathbb{F}_q[e])$ consists essentially in mapping the operations customarily carried out in the multiplicative group \mathbb{Z}_p to the set of points of a Montgomery curve $M_{A,B}(\mathbb{F}_q[e])$, endowed with an additive group operation. An entity chooses and publishes a prime number p (large), a Montgomery curve $M_{A,B}(\mathbb{F}_q[e])$ and a point P in $M_{A,B}(\mathbb{F}_q[e])$.

6.2.1 Key creation:

- Choose a secret integer s_A .
- Compute $Q_A = s_A P$ in $M_{A,B}(\mathbb{F}_q[e])$.
- Publish the public key Q_A .

6.2.2Encryption:

- Choose the plain text P_m in $M_{A,B}(\mathbb{F}_q[e])$.
- Choose an ephemeral key k.
- Use Alice's public key Q_A to calculate u = kPin $M_{A,B}(\mathbb{F}_q[e])$ and $v = P_m + kQ_A$ in $M_{A,B}(\mathbb{F}_q[e])$.
- Send the cipher text (u, v)

6.2.3 Decryption:

Calculate $v - s_A u$ in $M_{A,B}(\mathbb{F}_q[e])$. This value is equal to P_m .

ElGamal cryptosystem is directly based on the difficulty of solving the discrete logarithm problem over (E, +) of base P. This problem requires to find *n* where Q = nP and points *P*, *Q* belong to a set of points E of a Montgomery curve $M_{A,B}(\mathbb{F}_q[e])$. It is known to be computationally difficult and thus can be utilized to accomplish a more elevated level of security in cryptosystem.

References:

- [1] Ben Taleb, E.M., Chillali, A., El Fadil, L., Twisted Hessian curves over the Ring $\mathbb{F}_q[e], e^2 = e$, Bol. Soc. Paran, (3s.) v.(40), doi:10.52699/bspm.15867, (2022).
- [2] Boulbot, A., Chillali, A., Mouhib, A., "Elliptic Curves Over the Ring R", Bol. Soc. Paran., Vol.38, No.3, 2020, 193-201.
- [3] ElGamal, T., A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms, In Proceedings of CRYPTO 84 on Advances in cryptology. Springer-Verlag New York, Inc, 1985, pp. 10-18.
- [4] Grini, A., Chillali, A., Mouanis, H., The Binary Operations Calculus in $H^2_{a,d}$. Bol. Soc. Paran, Vol.40, 2020, 1-6.
- [5] Grini, A., Chillali, A., Mouanis, H., Cryptography over twisted Hessian curves of the ring $F_q[\varepsilon]$, $\varepsilon^2 = 0$. Adv. Math.: Sci. J., vol.10, no.1, 2021, 235-243.
- [6] Grini, A., Chillali, A. & Mouanis, H. A new cryptosystem based on a twisted Hessian curve $H^4_{a,d}$. J. Appl. Math. Comput., 2021.
- [7] Grini A., Chillali A., Mouanis H. Cryptography Over the Twisted Hessian Curve H^3_{ad} . In:

Ben Ahmed M., Teodorescu HN.L., Mazri T., Subashini P., Boudhir A.A. (eds) Networking, Intelligent Systems and Security. Smart Innovation, Systems and Technologies, vol. 237. Springer, Singapore, 2022.

- [8] Hendrik, W., Lenstra Jr., Factoring integers with elliptic curves. Annals of mathe-matics, 1987, pp. 649-673.
- [9] Lenstra, H. W., Eliptic Curves and Number-Theoretic Algorithms. Processing Int. Congress Math., USA, 1986.
- [10] Peter L., Montgomery, Speeding the Pollard and Elliptic Curve Methods of Facorization, Mathematics of Computation., vol. 48, 1987, 243-264.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0

 $\label{eq:licenses} https://creativecommons.org/licenses/by/4.0/deed.en_US$