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Abstract: Let Fq be the finite field of q elements, where q is a prime power. In this paper, we study the
Montgomery curves over the ring Fq[X ]

〈X2−X〉 , denoted by MA,B(
Fq[X ]

〈X2−X〉); (A,B) ∈ (
Fq[X ]

〈X2−X〉)
2.

Using the Montgomery equation, we define the Montgomery curves MA,B(
Fq[X ]

〈X2−X〉) and we give a bijection
between this curve and product of two Montgomery curves defined on Fq. Furthermore, we study the
addition law of Montgomery curves over the ring Fq[X ]

〈X2−X〉 . We close this paper by introducing a public key
cryptosystem which is a variant of the ElGamal cryptosystem on a Montgomery curves over the same ring.

Key-Words: Montgomery curves, Finite ring, Cryptography, ElGamal.

1 Introduction
Let Fq be the finite field of order q = pn where
n is a positive integer and p is a prime number.
The ring Fq[X ]

〈X2−X〉 can be identified to the finite ring
Fq[e], e2 = e. The objective of this article is the
search for new groups of points of a Montgomery
curve on a finite ring, for use in cryptography. In
[10], Montgomery introduced a new elliptic curve
model what became known as Montgomery curves
and the Montgomery scale as way to speed up
Lenstra’s elliptic-curve factorization method [8].
Boulbot et al. study the arithmetic of the ring
Fq[e], in particular they show that this ring is
not a local [2]. In section 3, we define the
Montgomery curves MA,B(Fq[e]) over this ring, we
study Montgomery equation which allows us to de-
fine two Montgomery curves: Mπ0(A),π0(B)(Fq) and
Mπ1(A),π1(B)(Fq) defined over the finite field Fq. In
the next of this section, we classify the elements
of MA,B(Fq[e]) and we give a bijection between
the two sets: MA,B(Fq[e]) and Mπ0(A),π0(B)(Fq)×
Mπ1(A),π1(B)(Fq), where π0 and π1 are two surjec-
tive morphisms of rings defined by:

π0 : Fq[e] → Fq
x0 + x1e 7→ x0

and
π1 : Fq[e] → Fq

x0 + x1e 7→ x0 + x1.

We study the addition law of Montgomery curves
over the ring Fq[e]. We finish this paper by in-
troducing a new public key cryptosystem which is
a variant of the ElGamal cryptosystem [3] on a
Montgomery curves over the ring Fq[e]. For more
works in this direction we refer the reader to [1].

2 The ring Fq[e], e2 = e
An element in Fq[e] is represented by x0 + x1e
where (x0,x1) ∈ Fq.
The arithmetic operations in Fq[e] can be decom-
posed into operations in Fq and they are computed
as follows:

X +Y = (x0 + y0)+(x1 + y1)e

X .Y = (x0y0)+(x0y1 + x1y0 + x1y1)e,

where X = x0+x1e and Y = y0+y1e. Let us recall
the following results [1, 2]:

• (Fq[e],+, .) is a finite unitary commutative
ring.

• Fq[e] is an Fq-vector space of dimension 2 with
Fq-basis {1,e}.

• X .Y = (x0y0)+((x0 + x1)(y0 + y1)− x0y0)e.

• X2 = x2
0 +((x0 + x1)

2 − x2
0)e.

• X3 = x3
0 +((x0 + x1)

3 − x3
0)e.
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• Let X = x0+x1e∈Fq[e], then X ∈ (Fq[e])× (the
multiplicative group of Fq[e] ) if and only if
x0 6= 0 and x0 + x1 6= 0. The inverse is given
by:

X−1 = x−1
0 +((x0 + x1)

−1 − x−1
0 )e.

• Let X ∈ Fq[e], then X is not invertible if and
only if X = xe or X = x−xe, such that x ∈ Fq .

• Fq[e] is a non local ring.

• π0 and π1 are two surjective morphisms of
rings.

3 Montgomery curves over the ring
Fq[e],e2 = e

In this section, the elements X ,Y,Z, A and B are in
the ring Fq[e] such that X = x0+x1e, Y = y0+y1e,
Z = z0 + z1e, A = A0 +A1e and B = B0 +B1e where
x0,x1,y0,y1,z0,z1,A0,A1,B0 and B1 are in Fq. We
define a Montgomery curve over the ring Fq[e], as
a curve in the projective space P2(Fq[e]), which is
given by the equation:

BY 2Z = X3 +AX2Z +XZ2,

where A and B are parameters satisfying the con-
dition that ∆ = B(A2 −4) is invertible in Fq[e].
We denote this curves by: MA,B(Fq[e]), and we
write:

MA,B(Fq[e]) = {[X : Y : Z] ∈ P2(Fq) | BY 2Z = X3+

AX2Z +XZ2},

there is a unique point O = [0 : 1 : 0] at infnity in
MA,B: it is the only point on MA,B where Z = 0.

Proposition 1. Let ∆0 = B0(A2
0−4) and ∆1 = (B0+

B1)((A0 +A1)
2 −4). Then,

∆ = ∆0 +(∆1 −∆0)e.

Proof. We have:

∆ = B(A2 −4)

= (B0 +B1e)[(A0 +A1e)2 −4]
= ∆0 +(∆1 −∆0)e.

Corollary 1. ∆ is invertible in Fq[e] if and only if
∆0 6= 0 and ∆1 6= 0.

Using Corollary 1, if ∆ is invertible in Fq[e],
then Mπ0(A),π0(B)(Fq) and Mπ1(A),π1(B)(Fq) are two
projective Montgomery curves over the finite field
Fq, and we notice:

Mπ0(A),π0(B)(Fq) = {[x : y : z] ∈ P2(Fq) | B0y2z = x3

+A0x2z+ xz2}
Mπ1(A),π1(B)(Fq) = {[x : y : z] ∈ P2(Fq) | (B0 +B1)

y2z = x3 +(A0 +A1)x2z+ xz2}

In [2] Boulbot et al. have showed the following
proposition:
Proposition 2. Let X , Y and Z in Fq[e], then [X : Y :
Z] ∈ P2(Fq[e]) if and only if [πi(X) : πi(Y ) : πi(Z)] ∈
P2(Fq), where i ∈ {0,1}.
Theorem 2. Let X , Y and Z be in Fq[e], then
[X : Y : Z]∈MA,B(Fq[e]) if and only if [πi(X) : πi(Y ) :
πi(Z)] ∈ Mπi(A),πi(B)(Fq), for i ∈ {0,1}.

Proof. We have:

BY 2Z = (B0 +B1e)(y0 + y1e)2(z0 + z1e)

= B0y2
0z0 +[(B0 +B1)(y0 + y1)

2(z0 + z1)−B0

y2
0z0]e

X3 = (x0 + x1e)3

= x3
0 +[(x0 + x1)

3 − x3
0]e

AX2Z = (A0 +A1e)(x0 + x1e)2(z0 + z1e)

= A0x2
0z0 +[(A0 +B1)(x0 + x1)

2(z0 + z1)−A0

x2
0z0]e

XZ2 = (x0 + x1e)(z0 + z1e)2

= x0z2
0 +[(x0 + x1)(z0 + z1)

2 − x0z2
0]e.

As {1,e} is an Fq-basis of the vector space
Fq[e],
then: BY 2Z = X3 +AX2Z +XZ2 if and only if

B0y2
0z0 = x3

0 +A0x2
0z0 + x0z2

0
and
(B0 +B0)(y0 + y1)

2(z0 + z1) = (x0 + x1)
3 +(A0+

A1)(x0 + x1)
2(z0 + z1)+(x0 + x1)(z0 + z1)

2,
so the point [X : Y : Z] is a solution of the

Montgomery equation in MA,B(Fq[e]) if and only
if [πi(X) : πi(Y ) : πi(Z)] is a solution of the same
equation in Mπi(A),πi(B)(Fq) where i ∈ {0,1}.
From the Corollary 1 and Proposition 2 we deduce
the result.

Corollary 3. The mappings π̃0 and π̃1 are well de-
fined, where π̃i for i ∈ {0,1} is given by:

π̃i : MA,B(Fq[e]) → Mπi(A),πi(B)(Fq)
[X : Y : Z] 7→ [πi(X) : πi(Y ) : πi(Z)]
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Proof. From the previous theorem, we have
[πi(X) : πi(Y ) : πi(Z)] ∈ Mπi(A),πi(B)(Fq)
If [X1 : Y1 : Z1] = [X2 : Y2 : Z2], then there exist γ ∈
(Fq)

× such that: X2 = γX1, Y2 = γY1 and Z2 = γZ1,
then:

π̃i([X2 : Y2 : Z2]) = [πi(X2) : πi(Y2) : πi(Z2)]

= [πi(γ)πi(X1) : πi(γ)πi(Y1) : πi(γ)

πi(Z1)]

= [πi(X1) : πi(Y1) : πi(Z1)]

= π̃i([X1 : Y1 : Z1]).

4 The classification of elements in
MA,B(Fq[e])

Let MA,B(Fq[e]) be the Montgomery curve BY 2Z =

X3 +AX2Z +XZ2 over the ring Fq[e]. In this sec-
tion we will classify the elements of the Mont-
gomery curves, into three types, depending on
whether the projective coordinate Z is invertible
or not. The result is in the following proposition.

Proposition 3. The set MA,B(Fq[e]) has the follow-
ing form:

MA,B(Fq[e]) = {[X : Y : 1] | BY 2 = X3 +AX2 +X}
∪{[0 : 1 : 0]}
∪{[xe : 1 : ze] | [x : 1 : z] ∈ Mπ1(A),π1(B)

(Fq)}∪{[xe : y− ye : e] | [x : 0 : 1] ∈
Mπ1(A),π1(B)(Fq)}∪{[x− xe : 1 : z− ze] |
[x : 1 : z] ∈ Mπ0(A),π0(B)(Fq)}∪{[x− xe :

ye : 1− e] | [x : 0 : 1] ∈ Mπ0(A),π0(B)(Fq)}.

Proof. Let P = [X : Y : Z] ∈ MA,B(Fq[e])), where
X = x0 + x1e, Y = y0 + y1e and Z = z0 + z1e.
We have two cases of the projective coordinate Z:
1) First case: Z is invertible, then: [X : Y : Z] ∼
[X : Y : 1], where ∼ is the equivalence relation of
the projective space P2(Fq[e]) [9, p.6] (see also [1,
4, 6, 5, 7]).
2) Second case: Z is no invertible, in this case we
have:
i) Z = ze, where z ∈ Fq, then:
• If z = 0 then [X : Y : Z] = [0 : 1 : 0], else z 6= 0:
We have: π0([x0+x1e : y0+y1e : ze]) = [x0 : y0 : 0]∈
Mπ0(A),π0(B), then x0 = 0 and y0 6= 0, i.e:

[X : Y : Z] = [xe : 1+ ye : ze]

there are two sub-cases of y ∈ Fq:
a) y 6=−1, then 1+ ye is invertible in Fq[e], so we
have: [X : Y : Z] ∼ [xe : 1 : ze], where [x : 1 : z] ∈

Mπ1(A),π1(B)(Fq).
b) y = 1 then 1− e is not invertible in Fq[e], so
we have: [X : Y : Z] = [xe : 1− e : ze], where [x : 1 :
z]∈ Mπ1(A),π1(B)(Fq) then necessary z 6= 0 according
to Montgomery equation, hence [X : Y : Z] ∼ [xe :
y− ye : e], where [x : 0 : 1] ∈ Mπ1(A),π1(B)(Fq)
ii) Z = z− ze, where z ∈ Fq.
• If z = 0 then [X : Y : Z] = [0 : 1 : 0], else z 6= 0,
we have π1([x0 + x1e : y0 + y1e : z− ze]) = [x0 + x1 :
y0 +y1 : 0] ∈ Mπ1(A),π1(B) then: x0 +x1 = 0 and y0 +
y1 6= 0, i.e:

[X : Y : Z] = [x− xe : y0 + y1e : z− ze]

there are two sub-cases of y0 ∈ Fq:
a) y0 6= 0 then y0 + y1e is invertible in Fq[e], so we
have:

[X : Y : Z]∼ [x− xe : 1 : z− ze]

b) y0 = 0 then y0 + y1e is not invertible in Fq[e],
so we have: [X : Y : Z] = [x − xe : ye : z − ze],
where [x : 0 : z] ∈ Mπ0(A),π0(B)(Fq) then necessary
z 6= 0 according to Montgomery equation, hence
[X : Y : Z] ∼ [x− xe : ye : 1− e], where [x : 0 : 1] ∈
Mπ0(A),π0(B)(Fq)

Corollary 4. π̃0 is a surjective mapping.

Proof. Let [x : y : z] ∈ Mπ0(A),π0(B)(Fq), then:
• if y = 0 then z 6= 0 so [x : y : z]∼ [x : 0 : 1]; hence
[x− xe : e : 1− e] is an antecedent of [x : 0 : z]
• if y 6= 0, then [x : y : z]∼ [x : 1 : z]; hence [x− xe :
1 : z− ze] is an antecedent of [x : 1 : z].

Corollary 5. π̃1 is a surjective mapping.

Proof. Let [x : y : z] ∈ Mπ1(A),π1(B)(Fq), then:
• if y = 0 then z 6= 0 so [x : y : z]∼ [x : 0 : 1]; hence
[xe : 1− e : e] is an antecedent of [x : 0 : 1]
• if y 6= 0, then [x : y : z]∼ [x : 1 : z]; hence [xe : 1 : ze]
is an antecedent of [x : 1 : z].

The next proposition gives a bijection between
the two sets MA,B(Fq[e]) and Mπ0(A),π0(B)(Fq)×
Mπ1(A),π1(B)(Fq).

Proposition 4. The π̃ mapping defined by:

π̃ : MA,B(Fq[e]) → Mπ0(A),π0(B)(Fq)×
Mπ1(A),π1(B)(Fq)

[X : Y : Z] 7→ ([π0(X) : π0(Y ) : π0(Z)],
[π1(X) : π1(Y ) : π1(Z)])

is a bijection.

Proof. • As π̃0 and π̃1 are well defined, then π̃

is well defined.
• Let ([x0 : y0 : z0], [x1 : y1 : z1]) ∈ Mπ0(A),π0(B)(Fq)×
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Mπ1(A),π1(B)(Fq)), clearly:
π̃([x0+(x1−x0)e : y0+(y1−y0)e : z0+(z1−z0)e]) =
([x0 : y0 : z0], [x1 : y1 : z1]), hence π̃ is a surjective
mapping.
• Let [X : Y : Z] and [X ′ : Y ′ : Z′] are elements of
MA,B(Fq[e]), where X = x0 + x1e, Y = y0 + y1e, Z =
z0 + z1e, X ′ = x′0 + x′1e, Y ′ = y′0 + y′1e and Z′ = z′0 +
z′1e,
such that: π̃([X : Y : Z]) = π̃([X ′ : Y ′ : Z′]),
then:

[x0 : y0 : z0] = [x′0 : y′0 : z′0]

and

[x0+x1 : y0+y1 : z0+z1] = [x′0+x′1 : y′0+y′1 : z′0+z′1],

then there exist (k, l) ∈ (F∗
q)

2 such that:{ x′0 = kx0
y′0 = ky0
z′0 = kz0

and

{ x′0 + x′1 = l(x0 + x1)
y′0 + y′1 = l(y0 + y1)
z′0 + z′1 = l(z0 + z1)

So

{ x′1 = (l − k)x0 + x1
y′1 = (l − k)y0 + y1
z′1 = (l − k)z0 + z1

Then:{ X ′ = kx0 +((l − k)x0 + x1)e = (k+(l − k)e)X
Y ′ = ky0 +((l − k)y0 + y1)e = (k+(l − k)e)Y
Z′ = kz0 +((l − k)z0 + z1)e = (k+(l − k)e)Z

As k + (l − k)e is invertible in Fq[e], so
[X ′ : Y ′ : Z′] = [X : Y : Z], hence π̃ is an injective
mapping.
We can easily show that the mapping π̃−1 defined
by:

π̃
−1([x0 : y0 : z0], [x1 : y1 : z1]) = [x0+(x1−x0)e : y0+

(y1 − y0)e : z0 +(z1 − z0)e]

is the inverse of π̃.

Corollary 6. The cardinal of MA,B(Fq[e]) is equal to
the cardinal of Mπ0(A),π0(B)(Fq)×Mπ1(A),π1(B)(Fq).

5 The group law
Let P = (X1 : Y1 : Z1) be a point on MA,B(Fq[e])
and [n]P = (Xn : Yn : Zn). By [10], the sum [n+
m]P = [n]P⊕ [m]P is given by the following formu-
las where Yn never appears.
Addition: n 6= m

Xm+n = Zm−n((Xm −Zm)(Xn +Zn)+(Xm +Zm)
(Xn −Zn))

2,
Zm+n = Xm−n((Xm −Zm)(Xn +Zn)− (Xm +Zm)

(Xn −Zn))
2.

Doubling: n = m

4XnZn = (Xn +Zn)
2 − (Xn −Zn)

2,

X2n = (Xn +Zn)
2(Xn −Zn)

2,

Z2n = 4XnZn((Xn −Zn)
2 +((A+2)/4)(4XnZn)).

6 Cryptography applications
6.1 Cryptography results
From the proposition 4, we have:
• If card(MA;B(Fq[e])) := n is an odd num-
ber, then n = s × t is the factorization of
n, where s := card(Mπ0(A);π0(B)(Fq)) and t :=
card(Mπ1(A);π1(B)(Fq)), hence the cardinal of
MA;B(Fq[e]) is not a prime number.
• The discrete logarithm problem in MA,B(Fq[e])
is equivalent to the discrete logarithm problem in
Mπ0(A);π0(B)(Fq)×Mπ1(A);π1(B)(Fq).

6.2 ElGamal cryptosystem on a
Montgomery curves over this ring

ElGamal cryptosystem for MA,B(Fq[e]) consists es-
sentially in mapping the operations customarily
carried out in the multiplicative group Zp to the
set of points of a Montgomery curve MA,B(Fq[e]),
endowed with an additive group operation. An
entity chooses and publishes a prime number p
(large), a Montgomery curve MA,B(Fq[e]) and a
point P in MA,B(Fq[e]).

6.2.1 Key creation:
• Choose a secret integer sA.

• Compute QA = sAP in MA,B(Fq[e]).

• Publish the public key QA.

6.2.2 Encryption:
• Choose the plain text Pm in MA,B(Fq[e]).

• Choose an ephemeral key k.

• Use Alice’s public key QA to calculate u = kP
in MA,B(Fq[e]) and v=Pm+kQA in MA,B(Fq[e]).

• Send the cipher text (u, v)

6.2.3 Decryption:
Calculate v − sAu in MA,B(Fq[e]). This value is
equal to Pm.
ElGamal cryptosystem is directly based on the
difficulty of solving the discrete logarithm prob-
lem over (E,+) of base P. This problem requires to
find n where Q= nP and points P, Q belong to a set
of points E of a Montgomery curve MA,B(Fq[e]). It
is known to be computationally difficult and thus
can be utilized to accomplish a more elevated level
of security in cryptosystem.
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