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Abstract: Let [F, be the finite field of g elements, where ¢ is a prime power. In this paper, we study the

%7 denoted by MA,B(%)? (A,B) € (<£§[_X;](>)2~

Using the Montgomery equation, we define the Montgomery curves My p( Of;’[i]()
between this curve and product of two Montgomery curves defined on F,. Furthermore, we study the
Fy[X]
(X2-X)
cryptosystem which is a variant of the ElGamal cryptosystem on a Montgomery curves over the same ring.

Montgomery curves over the ring

) and we give a bijection

addition law of Montgomery curves over the ring . We close this paper by introducing a public key
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1 Introduction We study the addition law of Montgomery curves
Let F, be the finite field of order ¢ = p" where over the ring Fyle]. We finish this paper by in-
n is a positive integer and p is a prime number. troducing a new public key cryptosystem which is
The rine Fa] be identified to the finite ri a variant of the ElGamal cryptosystem [3] on a
€ INg 732 —yy Can be identiied to the inite ring Montgomery curves over the ring IF,[e]. For more
F,le], €> =e. The objective of this article is the works in this direction we refer the reader to [1].
search for new groups of points of a Montgomery
curve on a finite ring, for use in cryptography. In 2  The ring Fq [eL el =e

[10], Montgomery introduced a new elliptic curve
model what became known as Montgomery curves
and the Montgomery scale as way to speed up
Lenstra’s elliptic-curve factorization method [g].

Boulbot et al. study the arithmetic of the ring

An element in F,le] is represented by xo + xie
where (xp,x1) € Fy.

The arithmetic operations in F,[e] can be decom-
posed into operations in F, and they are computed

Fyle], in particular they show that this ring is as follows:

not a local [2]. In section 3, we define the XY = (x0+v0) & (x1 +v1)e
Montgomery curves My p(F4[e]) over this ring, we (%0 +y0) + (x1 +y1)
study Montgomery equation which allows us to de- X.Y = (xoy0) + (xoy1 + x1y0 + x1y1 e,

fine two Montgomery curves: My () x,(5)(IF4) and
My, (4) 7 (5)(F) defined over the finite field F,. In Where X =xotxie anc Y =yoyre. Letus recall
the next of this section, we classify the elements e following results [T} -

of My p(Fyle]) and we give a bijection between o (Fyle],+,.) is a finite unitary commutative
the two sets: My p(IF,[e]) and Mz (a),70(8) (Fg) X ring.
My, (a),m (8)(Fg), where my and 7 are two surjec-
tive morphisms of rings defined by: o Fyle] is an Fy-vector space of dimension 2 with
F,-basis {1,e}.
o Fq[e] — Fq
Xo+xie — X o X.Y = (xoy0) + ((x0 +x1)(yo+y1) — x0y0)e.
and . X2 :x(2)+((xO+xl)2—X%)€.
o Fq[e] — Fq
Xo+xie —  xo+xi. o X3=x+ ((x0+x1)° —x3)e.
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o Let X =xo+x1e € Fyle], then X € (IF,[e])* (the
multiplicative group of Fyle] ) if and only if
xo # 0 and xp +x; # 0. The inverse is given
by:

x! :xal +((xo+x1)_1 —xal)e.

o Let X € Fyle], then X is not invertible if and
only if X = xe or X =x—xe, such that x € F, .

+ F,le] is a non local ring.

e My and m are two surjective morphisms of
rings.

3  Montgomery curves over the ring
Fyle],e* =e

In this section, the elements X,Y,Z, A and B are in
the ring IF,[e] such that X =xo+x1e, ¥ =yo+yie,
Z=z0+z1e, A=Ag+Aie and B= B+ B|e where
X0,X1,Y0,1,20,21,A40,A1,Bo and B; are in F,. We
define a Montgomery curve over the ring F,[e], as
a curve in the projective space P?(F,e]), which is
given by the equation:

BY?Z =X? +AX*Z +XZ7?,
where A and B are parameters satisfying the con-
dition that A = B(A% —4) is invertible in F,]e].
We denote this curves by: My p(F4le]), and we
write:
My p(Fyle]) ={[X :Y:Z] € PX(F,) | BY?Z = X*+
AX?Z +X7%},

there is a unique point O = [0:1: 0] at infnity in
My p: it is the only point on My g where Z = 0.

Proposition 1. Let Ag = Byo(A3—4) and A = (By+
B1)((Ag +A1)> —4). Then,
A=Ay+ (Al — Ao)e.
Proof. We have:

A=B(A*—4)
= (Bo+Bie)[(Ag+Are)* —4]
=Ap+ (Al — Ao)e.

0

Corollary 1. A is invertible in Fyle] if and only if
Ao # 0 and A # 0.
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Using Corollary |1} if A is invertible in Fg[e],
then Mn'o(A),no(B) (Fq) and Mﬂ:I(A),nl(B) (Fq) are two
projective Montgomery curves over the finite field
F,, and we notice:

M) zo8)(Fg) = {[x:y: 2] € P2(Fy) | Boy’z =x°
+Aox’z+x7%}

Mz, 4y (8)(Fq) = {[x: y:2] € P*(Fy) | (Bo+B1)

V22 =X+ (Ao + A1 )X’z +x2°}

In [2] Boulbot et al. have showed the following
proposition:

Proposition 2. Let X, Y and Z in IF[e], then [X : Y :
Z| € P2(F,le]) if and only if [m(X) : ;(Y) : m(Z)] €
P?(F,), where i € {0,1}.

Theorem 2. Let X, Y and Z be in F,[e], then

(X :Y :Z] € Ma p(IF4[e]) if and only if [m;(X) : m(Y) :
ﬂi(Z)] S Mﬂ[(A),TL’,-(B) (Fq), forie {O, 1}

Proof. We have:

BY?Z = (Bo+Bie)(yo+yie)*(z0+z1€)
= Boygzo + [(Bo+B1)(yo +y1)*(z0+21) — Bo
Yozole
X3 = (xo+xie)’
=x3+[(xo +x1)* —xg)e
AX%Z = (Ag+Are)(xo+x1€) (20 +z1€)
= Aox520 + [(Ao + B1) (xo +x1)(20 +21) — Ao
x3z0)e
X7 = (xo +x1€)(z0 +Zle)2
= %025 + [(x0 +x1) (20 +21)° — x0z]e.
As {l,e} is an F,-basis of the vector space
Ft][d)
then: BY2Z = X3 +AX2Z+XZ? if and only if
Boyzo = x +Aoxzo + X023
and
(Bo+Bo)(yo+y1)*(z0+21) = (x0+x1)° + (Ao+
A1) (%0 +x1)(z0+21) + (x0 +x1) (20 +21),
so the point [X : Y : Z] is a solution of the
Montgomery equation in My g(IF,[e]) if and only
if [m(X): m(Y): m(Z)] is a solution of the same
equation in My (4 z,(g)(Fq) where i € {0,1}.
From the Corollary [I|and Proposition 2| we deduce
the result. O

Corollary 3. The mappings 7y and 7 are well de-
fined, where #; for i € {0,1} is given by:

ﬁ,',' : MA,B(Fq[e]) —

My a)8)(Fq)
X:Y:7Z] — (

[ﬂi(X) LT Y) v Z)]
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Proof. From the previous theorem, we have

[7:(X) : ﬂz(Y) : (Z)] € My a),m3)(Fq)

If [X;1:Y1:Z1]) =[Xz:Y2:2Zy], then there exist y €
(Fq)x buCh that: X, = yX1, Yo = 7Y and Z, = yZ,,
then:

7i([X2: Yo : Zp)) = [mi(X2) : mi(Ya) = mi(Z)]
= [m(y)m(X1) : m(Y)m(N) = m(y)

mi(Z1)]
= [ﬂi(Xl) : ﬂi(Yl) :
= ﬁ','([X] . Y] ZZ]]).

mi(Z1))

4 The classification of elements in

My p(Fyle])
Let M4 5(F,[e]) be the Montgomery curve BY?Z =
X3 +AX2Z+XZ2 over the ring Fyle]. In this sec-
tion we will classify the elements of the Mont-
gomery curves, into three types, depending on
whether the projective coordinate Z is invertible
or not. The result is in the following proposition.

Proposition 3. The set My g(IF4[e]) has the follow-

ing form:
Map(Fyle]) = {[X : Y : 1] | BY? = X3 + AX? + X}
U{[0:1:0]}
U{[xe: 1 ze] | [x:1:z] € My, (a) 2, (8)
(F)}U{lxe: y—ye:e] | [v:0: 1] €
Mz, (4) 7, ( @) U{lx—xe:1:z—ze]|
[x L Z] mo(A),mo(8) (Fg) } U {fx — xe:
11— ]|[x 0: 1] € My (a),z08)(Fqg) }-
Proof. Let P=[X :Y : Z] € My p(Fy[e])), where

X =xp+x1e, Y =yy+yie and Z =z9+z1e.

We have two cases of the projective coordinate Z:

1) First case: Z is invertible, then: [X :Y :Z] ~

[X : Y : 1], where ~ is the equivalence relation of

the projective space P*(Fyle]) [9, p.6] (see also [II

1,16, 5,17).

2) Second case: Z is no invertible, in this case we

have:

i) Z=ze, where z € F,, then:

elfz=0then [X:Y:Z]=[0:1:0], else z#0:

We have: my([xo+x1e:y0+yie:ze]) =[xo:y0:0] €

My, (a),7(B), then xo =0 and yo # 0, i.e:
[X:Y:Z]=[xe:1+ye:ze]

there are two sub-cases of y € Fy:

a) y# —1, then 1+ ye is invertible in [F,[e], so we

have: [X :Y :Z] ~ [xe:1:ze], where [x:1:7] €
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My, (), z (B)(Fq)'

b) y =1 then 1 —e is not invertible in F,[e], so
we have: [X:Y :Z]=[xe:1—e:ze], where [x:1:
z] € My, (4),z,(8)(Fy) then necessary z # 0 according
to Montgomery equation, hence [X : Y : Z] ~ [xe
y—ye:e], where [x:0: 1] € My, (4) x5 (Fg)

ii) Z=z—ze, where z€F,.

elfz=0then [X:Y:Z]=1[0:1:0], else z#0,

we have m([xo+x1e:yo+yie:z—ze]) = [xo+x1:
Yo+y1:0] € My (a) z,(8) then: xo+x1 =0 and yo +
y1 #0, ie:

X:Y:Z]=[x—xe:yo+yie:z—ze]

there are two sub-cases of yg € F:
a) yo # 0 then yo+yje is invertible in Fye], so we
have:

X:Y:Z]~[x—
b) yo =0 then yy+yie is not invertible in F,[e],
so we have: [X :Y :Z] = [x—xe:ye:z—ze,
where [x:0:z] € My (a) x5 (Fg) then necessary
z # 0 according to Montgomery equation, hence

xe:1:z—ze

X:Y:Z] ~[x—xe:ye:1—e], where [x:0:1] €
Mzy(a),70(8)(Fq) N

Corollary 4. 7 is a surjective mapping.

Proof. Let [x:y:z] € Mg (a) x5 (Fq), then:
o if y=0thenz#0so [x:y:z]~[x:0:1]; hence
[x—xe:e:1—e]is an antecedent of [x:0:Z]
o if y£0, then [x:y:z] ~[x:1:z]; hence [x—xe:
1:z—ze] is an antecedent of [x:1:z]. O

Corollary 5. 7 is a surjective mapping.

Proof. Let [x:y:z] € My (a) x5 (Fq), then:
eif y=0then z#0so [x:y:z]~[x:0:1]; hence
[xe : 1 —e:e] is an antecedent of [x:0: 1]
e if y£0, then [x:y:z] ~[x:1:z]; hence [xe:1:ze]
is an antecedent of [x:1:z].

The next proposition gives a bijection between
the two sets My p(Fyle]) and My ) ) (Fq) X

Mz, ()7, (8) (Fg)-
Proposition 4. The & mapping defined by:

T o MAVB(IFQ[E]) —
X:Y:Z] ~—

is a bijection.

Proof. e As 7y and 7} are well defined, then &
is well defined.
e Let ([xo:yo:zo],[x1 :y1 2 21]) € Mgy zy(8) (Fq) X
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My, (a).m 8)(Fq)), clearly:
#i([xo+ (x1 —x0)e :yo+ (y1 —yo)e: 20+ (21 —z0)e]) =
([x0 : y0 & zo],[x1 : y1 : z1]), hence 7 is a surjective
mapping.
e Let [X:Y:Z] and [X':Y':Z/| are elements of
My (Fyle]), where X =xo+x1e, Y =yo+yie, Z=
z20+zie, X' =xp+xje, Y =y, +yje and Z' =z +
Zie,
such that: #([X :Y :Z]) = #(X': ¥': Z1]),
then:

[x0 : 0 : 20 = [x0 : ¥0 © 2]

and

[ro-tx1: 30+ 220+ ai] = [ 41 ¥h 0t 12+,

then there exist (k,1) € (IF'Z)Z such that:

xg) = kxo x§)+x:1 =1(xp+x1)
yp=kyo and Yo +y1 =1(yo+y1)

zy = kzo zp+2) =1(z0+21)
x) = (I —k)xo+x
So ¢ Yy =(—k)yo+y
Z1=(1-kz+z
Then:

Y'=kyo+ ((I=k)yo+y1)e = (k+ (I —k)e)Y

Z' =kzo+ (I —k)zo+z1)e = (k+ (I —k)e)Z

As k+ (I —k)e is invertible in Fyle], so
[X':Y':Z'|=[X:Y :Z], hence % is an injective
mapping.
We can easily show that the mapping ! defined
by:

{ X'=kxo+ (1 —k)xo +x1)e = (k+ (I —k)e)X

7 ([xo 1 yo 2 zo), [x1 : y1 1 21]) = [xo+ (x1 —x0)e : yo+

(y1 —yo)e 1 20+ (21 —20)e]

is the inverse of 7. J

Corollary 6. The cardinal of My g(F[e]) is equal to
the cardinal of Mﬂfg(A),?ro(B) (]Fq) X [W,,;1 (A), 7, (B) (Fq)

5 The group law

Let P= (X1 :Y1:Z;) be a point on My g(F,[e])
and [n]P = (X, : Y, :Z,). By [10], the sum [n+
m|P = [n]P @ [m]P is given by the following formu-
las where Y,, never appears.

Addition: n#m

Xm+n = Zm—n((Xm - Zm)(Xn +Zn) + (Xm +Zm)
(Xn_Zn))27

Zm+n = Xm—n((Xm - Zm)(Xn +Zn) - (Xm +Zm)
(X —Zn))%
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Doubling: n=m
A%, Zy = (Xn+Za)? — (X — Z0)?,
Xon = (X +2Z0)* (X0 — Z,)?,
Zon = 4XnZn((Xn — Zn)* + (A +2) /4) (4X,Z,)).

6 Cryptography applications

6.1 Cryptography results

From the proposition [4] we have:

o If card(Mu.p(Fyle])) == n is an odd num-
ber, then n = s xt is the factorization of
n, where s := card(Mya).z,8)(F;)) and ¢ :=
card(My, (a):,(8)(Fg)), hence the cardinal of
My.g(F4e]) is not a prime number.

e The discrete logarithm problem in My g(Fyle])
is equivalent to the discrete logarithm problem in
My a):m0(8) (Fg) X M (a):, () (Fg)-

6.2 ElGamal cryptosystem on a
Montgomery curves over this ring
ElGamal cryptosystem for My p(IF,[e]) consists es-
sentially in mapping the operations customarily
carried out in the multiplicative group Z, to the
set of points of a Montgomery curve My g(F,[e]),
endowed with an additive group operation. An
entity chooses and publishes a prime number p
(large), a Montgomery curve My g(F,le]) and a

point P in My g(F,[e]).

6.2.1 Key creation:
o Choose a secret integer s4.

« Compute Q4 = saP in My p(F,le]).
e Publish the public key Q4.

6.2.2 Encryption:
+ Choose the plain text P, in My g(F,[e]).

o Choose an ephemeral key k.

o Use Alice’s public key Qa to calculate u = kP
in My p(IFye]) and v =B, +kQy4 in My p(Fye]).

 Send the cipher text (u, v)

6.2.3 Decryption:

Calculate v —sau in My p(Fye]).
equal to P,.

ElGamal cryptosystem is directly based on the
difficulty of solving the discrete logarithm prob-
lem over (E,+) of base P. This problem requires to
find n where Q = nP and points P, Q belong to a set
of points E of a Montgomery curve My g(F,[e]). It
is known to be computationally difficult and thus
can be utilized to accomplish a more elevated level
of security in cryptosystem.

This value is
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