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1 Introduction
Let us consider a Fredholm integral equation of the
first kind

g(s) =

∫
K(s, t)x(t) dt, (1)

where the square integrable kernel K(s, t) and the
right-hand side g(s) are given functions and x(t) is
the unknown solution to be reconstructed. In many
applications g(s) consists of measured quantities.
Problems modeled by equation (1) are frequent both
in the one-dimensional context (for example in signal
processing and in the computation of inverse trans-
formations) and in the two-dimensional context (for
example in the image deconvolution problem where
K(s, t) represents an imaging system, x(t) and g(s)
represent a real object and its image, respectively).

By discretizing (1), a linear system

Ax = g (2)

is obtained, whose main features are the large dimen-
sion of A and the distribution of its singular values
which often decay gradually to zero. Hence solving
(2) is an ill-posed problem. When some structure can
be considered for A, system (2) results to be solv-
able in practice also for large dimensions. In many
applications K(s, t) can be assumed to be invariant
with respect to translations and with a bounded sup-
port, so that matrix A results to have Toeplitz struc-
ture and a limited bandwidth. Toeplitz systems arise
frequently in linear algebra problems. Unfortunately,
when a simple operation like multiplication or inver-
sion or low rank modification is applied to a Toeplitz
matrix, the Toeplitz structure is lost. For example,
an important quantity as the Schur complement of a
leading principal submatrix of a Toeplitz matrix has
no longer a Toeplitz structure. For this reason we
consider here a more general structure, the class of
Toeplitz-like matrices, which is closed for the most

common operations applied in the numerical algo-
rithms. The Toeplitz-like structure is based on the
concept of displacement rank [1, 2, 3, 4] and has been
studied by many authors with applications in several
fields (see for example [5] for an extensive bibliog-
raphy). In the last decade several papers dealt with
fast and superfast solver (see for example [6, 7, 8],
application to the solution of fractional partial differ-
ential equations [9, 10, 11] and to the queueing prob-
lem [12]. Moreover a great interest was addressed to
the study of Toeplitz-like operators in infinite dimen-
sional spaces ([13, 14, 15])

The special low cost algorithms based on the fast
Fourier transform (FFT), which have been devised
to perform the matrix-vector products with Toeplitz
matrices, can be applied also toToeplitz-likematrices.

FFT was first discussed by Cooley and Tukey in
1965 [16], although Gauss had already described the
critical factorization step as early as 1805. It is one
of the most important numerical algorithms and has
a wide range of applications. Its ubiquitous fortune
is principally due to a low computational cost: com-
puting the discrete Fourier transform of a sequence
of length n according to the definition, takes O(n2)
arithmetical operations, while using FFT it takes only
O(n logn) operations.

When finite-precision floating-point arithmetic is
used, FFT algorithms give results affected by error,
but this error is typically quite small, in fact most
FFT algorithms enjoy excellent numerical stability
(see [17, 18]). We are interested in investigating the
stability of the matrix-vector product based on FFT
for the case of Toeplitz-like matrices. The paper is so
organized: in Section 2 two simple programs describe
the use of FFT in the computation of thematrix-vector
product for triangular Toeplitz matrices, in Section 3 a
brief description of Toeplitz-likematrices is given and
the function which computes the matrix-vector prod-
uct for Toeplitz-like matrices is sketched. The analy-
sis of the stability occupies Section 4 giving an upper
bound of the error which depends on the magnitude of
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the generators of the Toeplitz-like matrix, and finally
in Section 5 the results of the numerical experiments
are shown, confirming the theoretical findings.

Notation: uppercase letters are used for matrix
names, bold lowercase letters are used for vector
names, upper index T indicates the transpose of a ma-
trix or of a vector, upper index ∗ indicates the con-
jugate transpose of a matrix. The special vectors 0
and ei indicate the null vector and the i-th canoni-
cal vector of suitable length. Bold letter i denotes
the imaginary unit. The magnitude of a vector r is
measured by a norm. Specifically ‖r‖1 =

∑
i |ri|,

‖r‖2 =
∑

i |ri|2 and ‖r‖∞ = maxi |ri|. Finally, the
symbol � denotes the componentwise multiplication
between two vectors of equal length.

2 Circulant and Toeplitz matrices
Circulant matrices and Toeplitz matrices (see [19],
[20], [21]) arise frequently in the numerical treatment
of problems of scientific areas such as physics, signal
and image processing, probability, statistics andmany
others. Let us outline some of their properties.

A circulant matrixM of order k is a square k × k
matrix in which the first row [m1,1,m1,2, . . . ,m1,k]

T

is given and each subsequent row is rotated one ele-
ment to the right relative to the preceding row. For-
mally, the (i, j)-th element of the i-th row with i =
2, . . . , k is mi,j = mi−1,j−1 for j = 2, . . . , k and
mi,1 = mi−1,k.

The most important feature of circulant matrices is
that they are diagonalized by a discrete Fourier trans-
form, as shown in the following lemma.

Lemma 1 A circulant matrixM of size k is diagonal-
ized by the Fourier matrix Fk, whose elements are

fi,j =
1√
k
ω(i−1)(j−1), i, j = 1, . . . , k,

with ω = exp(2πi/k).

Denote bym the transpose of the first row ofM , and
by diag(Fk m) the diagonal matrix whose i-th prin-
cipal element is the i-th element of the vector Fk m.
Then

M =
√
k Fk diag(Fk m) F∗

k ,

and for any vector v it holds

Mv =
√
kFk

(
Fkm�F∗

kv
)
. (3)

For a proof of this Lemma, see [19]. 2

The products byFk andF∗
k can be efficiently com-

puted by calling FFTwith computational cost of order
O(k log k) for k → ∞.

A Toeplitz matrix T is a k × k matrix in which
each descending diagonal from left to right is con-
stant. Two k vectors r and s, with r1 = s1, are

given; rT is assumed as first row of T and s is as-
sumed as first column of T . The (i, j)-th element of
T is ti,j = t1+j−i for j ≥ i and ti,j = t1+i−j for
i < j. Circulant matrices are special cases of Toeplitz
matrices with s = [r1, rk, . . . , r2]

T .
Since the case of triangular Toepliz matrices is of

particular interest, we use the following notation. For
a given vector s, L(s) denotes the lower triangular
Toeplitz matrix whose first column is s and U(r) de-
notes the upper triangular Toeplitz matrix whose first
row is rT , as shown in Figure 1. The matrix-vector

L(s) =

[ s1
s2 s1
...

...
. . .

sk sk−1 ··· s1

]
, U(r) =

[ r1 r2 ··· rk
r1 ··· rk−1

. . .
...
r1

]

Figure 1: Lower and upper triangular Toeplitz matri-
ces of size k

product of a Toeplitz triangular matrix can be com-
puted by exploiting the properties of circulant matri-
ces. To see how relation (3) is exploited, consider first
the case of a lower triangular Toeplitz matrix of size
n. Let L = L(s), with s = [s1, s2, . . . , sn]

T . Given
a vector v, let y = Lv be the vector to be computed.
The vector v is embedded in a 2n-vector v̂ and the
matrixL is embedded in a 2n×2n circulantmatrixM ,
whose first row is the 2n-vector [s1,0

T , sn, . . . , s2],
with

v̂ =

[
v
0

]
, M =

[
L L̂

L̂ L

]
,

where L̂ turns out to be an upper triangular Toeplitz
matrix. Since

w =M v̂ =

[
Lv

L̂v

]
,

the vector y is found in the first half of the vector w.
Then, using (3) the product y can be computed by the
function lowert given in Algorithm 1.

Algorithm 1: product of a lower triangular
Toeplitz matrix L(s) by a vector v

function lowert (n, s,v)

m = [s1,0
T , sn, . . . , s2]

T ; v̂ =

[
v
0

]
;

z = F2nm; p = F∗
2nv̂;

q = z � p; w =
√
2n F2nq;

return w(1 : n);

A similar procedure applies to the upper triangu-
lar Toeplitz matrix U = U(r) whose first row is

rT = [r1, r2, . . . , rn]. Given a vector v, let y = Uv
be the vector to be computed. Proceeding with the
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embedding as before, we see that the circulant matrix
M has first row [r1, . . . , rn,0

T ]. So y can be com-
puted by the function uppert given in Algorithm 2.

Algorithm 2: product of an upper triangular
Toeplitz matrix U(r) by a vector v

function uppert (n, r,v)

m =

[
r
0

]
; v̂ =

[
v
0

]
;

z = F2nm; p = F∗
2nv̂;

q = z � p; w =
√
2n F2nq;

return w(1 : n);

Since theToeplitz structure is notmaintainedwhen
simple operations like multiplication or inversion are
applied, some generalizations have been proposed to
deal with this aspect. Among them, we consider here
a Toeplitz-like structure.

3 Toeplitz-like matrices
The definition of Toeplitz-like structure is based on
the concept of displacement rank [1, 2, 3, 4], which
depends on a particularly chosen displacement oper-
ator and measures how close a matrix is to a Toeplitz
matrix. Given an n × n matrix A, we consider here
the displacement operator

∇(A) = A− ZAZT , (4)

whereZ is the n×n down-shiftmatrix, i.e. the binary
matrix with ones only on the subdiagonal and zeros
elsewhere.

The matrixA is said to be Toeplitz-like if the quan-
tity rdisp(A) = rank∇(A) (called displacement rank)
is small with respect to n (more formally rdisp(A) =
O(1) for n→ ∞). Let ρ = rdisp(A), then

∇(A) = C DT , (5)

for suitable n × ρ matrices C and D, called genera-
tors of A. Denoting by ci and di, i = 1, . . . , ρ, the
columns of C and D respectively, then

∇(A) =

ρ∑
i=1

ci d
T
i . (6)

In this sense, we can say thatA is represented through
the generators ci, di. In particular, a Toeplitz matrix
A of elements ai,j with a1,1 6= 0, is so represented

∇(A) = c1 e
T
1 + e1 d

T
2 ,

with c1 = A e1, d2 = ATe1 − a11e1,

i. e. c1 is the first column of A and dT
2 is the first

row of A with the first component set to zero. This
shows that the displacement rank of a Toeplitz matrix
is ρ = 2, except in the case of a triangular matrix
where ρ = 1.

The set of Toeplitz-like matrices, unlike the set of
Toeplitz matrices, is closed for the most common op-
erations applied in the numerical algorithms. This
does not mean that the displacement rank is main-
tained during the computation. For example, the
matrix obtained by multiplying two matrices having
rdisp = ρ has the same rdisp, while the displacement
rank of the inverse of a matrix which has rdisp = ρ
may rise up to ρ+2. The leading principal submatrix
of a matrix which has rdisp = ρ and its Schur comple-
ment have still rdisp = ρ (see [2, 7]).

The generators enable us to express a Toeplitz-like
matrix as the sum of products of lower and upper tri-
angular Toeplitz factors. In fact, from (4) we have

A = ∇(A) + ZAZT = ∇(A) + Z∇(A)ZT

+Z2A(Z2)T = . . . =

n−1∑
s=0

Zs∇(A)(Zs)T .

Since

n−1∑
s=0

(
Zsci

) (
Zsdi

)T
= L(ci)U(di), from (6)

it follows that

A =

ρ∑
i=1

L(ci)U(di),

and, given an n-vector v, we have

Av =

ρ∑
i=1

L(ci)U(di)v. (7)

Using (7) we can computeAv by calling alternatively
the matrix-vector products of upper and lower trian-
gular Toeplitz matrices, as outlined inAlgorithm 3. A
saving of the cost can be achieved by skipping the last
FFT call of lowert and exploiting the linearity ofF2n

in the final sum.
If the matrix A is known to be Toeplitz-like, but

it is only given explicitly, any factorization of ∇(A)
can be employed to detect ρ and to construct the gen-
erators. For example, we can compute the Gaussian
factorization ∇(A) = LU , where L and U are lower
and upper triangular matrices, employing a diagonal
pivoting strategy and stopping at the first null pivot.

It follows that while ρ = rank∇(A) is uniquely
determined, the decomposition (5) of∇(A), and con-
sequently the representation of A through the genera-
tors, is not unique. An important representation is the
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Algorithm 3: product of a Toeplitz-like matrix
by a vector

function prod (n, ρ, C,D,v);

for i = 1 to ρ;
hi = uppert (n,di,v);

gi = lowert (n, ci,hi);

end for;

return
ρ∑

i=1
gi;

orthogonal one [22], obtained by computing the SVD
decomposition∇(A) = UΣV T , where ρ is the num-
ber of strictly positive singular values σi inΣ and the
matrices U and V have orthogonal columns.

Denoting by Σ̂ the n × ρ matrix having the i-th
principal element equal to

√
σi for i = 1, . . . , ρ, and

zero elsewere, the n× ρ matrices

Cort = UΣ̂, Dort = V Σ̂, (8)

have orthogonal columns and can be assumed as the
generators C and D in (5).

The following relations hold between the magni-
tudes of A and ∇(A)

‖∇(A)‖2 ≤ 2 ‖A‖2, and ‖A‖2 ≤ n ‖∇(A)‖2. (9)

To measure the magnitude ofAwhen it is represented
through the generators, we consider the function

ψ(C,D) =

ρ∑
i=1

‖ci dT
i ‖2 =

ρ∑
i=1

‖ci‖2 ‖di‖2, (10)

which obviously verifies ‖∇(A)‖2 ≤ ψ(C,D).
It is known that the stability of a method solving

a linear system depends on the growth of the matrix
factors computed by the method. If the computations
are performed on Toeplitz-like matrices represented
through the generators, we expect the stability to de-
pend on how large the generators become [23]. In the
general case, no upper bound of ψ(C,D) in terms of
‖A‖2 can be given. However, if the decomposition
(5) is orthogonal, then from (8)

‖∇(A)‖2 = σ1, ci =
√
σi ui, di =

√
σi vi,

where ui is the i-th column of U and vi is the i-th
column of V . Then

‖cidT
i ‖2 = σi‖ui‖2 ‖vi‖2 = σi,

hence from (9)

ψ(C,D) =

ρ∑
i=1

σi ≤ ρ‖∇(A)‖2 ≤ 2ρ‖A‖2. (11)

4 Stability of the function prod
For the stability analysis we assume that the compu-
tations are carried out in a floating point arithmetic
with unit roundoff ε. The computed value of a vari-
able (scalar, vector or matrix) v will be denoted by
ṽ or by “fl(v)”. We assume also that the quanti-
ties which appear in the bounds are not so large to
invalidate a first order error analysis. For simplic-
ity the term “+O(ε2)”, which appears in the thesis of
the theorems, is omitted in the proofs. Consequently,
any expression of the form x ỹ, where x = O(ε) and
ỹ − y = O(ε), is replaced by x y.

The following bounds are used [18]:

• For any vector s it is ‖L(s)‖1 = ‖L(s)‖∞ =
‖s‖1, then

‖L(s)‖2 ≤
√

‖L(s)‖1‖L(s)‖∞
= ‖s‖1 ≤

√
n‖s‖2,

(12)

and analogously ‖U(r)‖2 ≤
√
n ‖r‖2 for any vector

r.

• Given a vector x, a vector ε whose components
are bounded in modulus by ε exists such that

x = x̃− x̃� ε+O(ε2). (13)

• Given two vectors x and y, with x̃ = x+ δx and
ỹ = y + δy, then

fl
(
x̃� ỹ

)
= x� y + θ +O(ε2), (14)

where

θ = x� δy + δx � y + ε � x� y,

and ε is a vector whose components are bounded in
modulus by ε.

• Given ρ scalars αi and ρ vectors xi, i = 1, . . . , ρ,
then ρ vectors χi, i = 1, . . . , ρ, with entries bounded
in modulus by ρ ε, exist such that

fl
( ρ∑

i=1
αi xi

)
=

ρ∑
i=1

αi

(
xi + xi � χi

)
+O(ε2).

(15)

The following stability result applies to FFT [17]:

• Given a 2n-vector x, let y = F2nx and ỹ =
fl
(
F2nx

)
, then a 2n× 2n matrix Φ exists such that

ỹ = y + Φy +O(ε2), (16)

with ‖Φ‖2 ≤ 10.7ε log2(2n). An analogous bound
holds for F∗

2n, with Φ replaced by a matrix Φ∗, which
satisfies the same bound.
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Theorem 2 shows how the computed product of a
triangular Toeplitz matrix by a vector can be regarded
as the exact product of a slightly perturbed matrix by
the vector.

Theorem 2 Given two n-vectors r and v, letU(r) be
the n×n upper triangular Toeplitz matrix whose first
row is rT ,

u = U(r)v and ũ = fl
(
uppert(n, r,v)

)
.

Then a matrix H(r) exists such that

ũ = u+H(r)v +O(ε2),

where
‖H(r)‖2 ≤ ε γ ′ ‖r‖2, (17)

with γ ′ = 42.5
√
n log2(2n).

Proof. Applying algorithm uppert we get

z̃ = fl
(
F2nm

)
, p̃ = fl

(
F∗
2nv̂

)
,

q̃ = fl
(
z̃ � p̃

)
, w̃ = fl

(√
2nF2nq̃

)
.

Using (14) and (16) we have

z̃ = z + Φ z, p̃ = p+ Φ∗ p,

q̃ = z � p+ θ, w̃ =
√
2nF2nq̃ + Φw,

where

θ =
(
Φ z

)
� p+ z �

(
Φ∗ p

)
+ ε� z � p = Λp,

with

Λ = diag
(
Φ z

)
+ diag

(
z
)
Φ∗ + diag

(
ε� z

)
.

Then

w̃ =
√
2nF2nq +

√
2nF2nθ + Φw

= w +
√
2nF2nΛp+ Φw.

The vector ũ is found in the first half of w̃. Denoting
by E the first half of the identity matrix of order 2n,
we have

ũ = ET w̃, p = F∗
2nEv and ũ = u+H(r)v

with H(r) =
√
2nETF2nΛF∗

2nE + ETΦM,

where M is the circulant matrix whose first row is
[rT ,0T ]. Using (12) and (16) we get

‖H(r)‖2 ≤
√
2n ‖Λ‖2 +

√
n ‖Φ‖2 ‖r‖2

≤
(√

2n
(
‖Φ‖2 + ‖Φ∗‖2 + ε

)
+
√
n ‖Φ‖2

)
‖r‖2

≤ 42.5 ε
√
n log2(2n) ‖r‖2. 2

An analogous result holds for the matrix-vector
product of a lower triangular Toeplitz computed by
applying algorithm lowert.

Theorem 3 shows how the matrix-vector product
of a Toeplitz-like matrix, computed by the function
prod of Section 3, can be regarded as the exact prod-
uct of a slightly perturbed Toeplitz-like matrix by the
vector.

Theorem 3 Given an n × n Toeplitz-like matrix A
with ∇(A) = C DT and an n-vector v, let

u = Av and ũ = fl
(
prod(n, ρ, C,D,v)

)
.

Then a matrix Θ exists such that

ũ = u+Θ v +O(ε2) with ‖Θ‖2 ≤ ε γ ′′ ψ(C,D),

where γ ′′ = cn log2(2n), c not depending on n.

Proof. From (7) we have

u =

ρ∑
i=1

gi,

where for i = 1, . . . , ρ,

gi = L(ci)hi and hi = U(di)v.

The following quantities are effectively computed

h̃i = fl
(
uppert (n,di,v)

)
,

g̃i = fl
(
lowert (n, ci, h̃i

)
,

ũ = fl
( ρ∑

i=1
g̃i

)
.

By Theorem 2 we have

h̃i = hi +H(di)v,

where ‖H(di)‖2 ≤ ε γ ′ ‖di‖2,

g̃i = L(ci) h̃i +H(ci)hi,

where ‖H(ci)‖2 ≤ ε γ ′ ‖ci‖2, then

g̃i = gi + δi v,

where δi = L(ci)H(di)+H(ci)U(di). Using (12)
and (17) we have

‖L(ci)‖2 ≤
√
n ‖ci‖2

and

‖δi‖2 ≤ ‖L(ci)‖2 ‖H(di)‖2 + ‖H(ci)‖2 ‖U(di)‖2
≤ 2ε

√
nγ ′ ‖ci‖2 ‖di‖2.
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Summing for i = 1 , . . . , ρ and applying (15) we get

ũ = fl
( ρ∑

i=1
g̃i

)
=

ρ∑
i=1

gi +
ρ∑

i=1

(
δi v + gi � χi

)
= u+Θ v,

where the entries ofχi are bounded in modulus by ε ρ
and

Θ =

ρ∑
i=1

(
δi + diag(χi)L(ci)U(di)

)
.

Then from (10)

‖Θ‖2 ≤ ε
(
2
√
nγ ′ + ρn

) ρ∑
i=1

‖ci‖2 ‖di‖2
≤ ε γ ′′ψ(C,D), where γ ′′ = 2

√
nγ ′ + ρn.

Taking into account the expression of γ ′ in (17), the
thesis follows. 2

If the decomposition of ∇(A) is orthogonal, then
from (11) it follows

‖Θ‖2 ≤ ε γ ′′ρ ‖∇(A)‖2 ≤ 2 ε γ ′′ρ ‖A‖2, (18)

suggesting the stability of the algorithm prod.

5 Numerical experiments
The experiments, which have been conducted on an
Intel Core Duo @ 3 GHz, 2GB RAM, using dou-
ble precision arithmetic, have been carried out on
Toeplitz-like matrices of growing size n and different
displacement rank ρ.

Two sets of numerical experiments are performed,
in order to validate the upper bound given in Theorem
3 by investigating the behaviour of the error produced
in the computation of prod (n, ρ, C,D,v).

(i) The matrices for the first set of experiments have
been generated for different values of the displace-
ment rank and growing values of n in the range
[23, 29]. For each size n and fixed values of ρ, ten
triples {C, D, v}, with entries uniformly distributed
in [−10, 10] and v 6= 0, are randomly generated. In
Figure 2 the arithmetic mean µn of the errors ‖ũ −
u‖2/‖v‖2 is plotted versus n for the case ρ = 5 (no
significant differences occurring for other values of
ρ), together with the upper bound τn = ε γ ′′ψ(C,D)
of Theorem 3, with γ ′′ = 85n log2(2n) + 5n. As
expected, µn is largely overestimated by τn.

(ii) For the second set of experiments we fix n = 29

and ρ = 5 and generate matrices C and D as in the
previous case, except for the fact that different pairs
of generators corresponding to the same matrix A are

100 200 300 400 500

-11

-10

-9

-8

-7

-6

Figure 2: Log plot of µn(dashed line) and τn (solid
line) as functions of n.

β ψ(Cβ, Dβ) eβ

101 260 5.5 10−11

102 391 6.5 10−11

103 1.7 103 6.1 10−10

104 1.5 104 6.7 10−8

105 1.5 105 7.4 10−6

106 1.5 106 5.6 10−5

107 1.5 107 9.1 10−2

108 1.5 108 5.4 100

ort 247 1.2 10−10

Table 1: Values of ψ(Cβ, Dβ) and of eβ varying β.
Last row shows the corresponding values for the or-
thogonal representation.

obtained by allowing the columns of C and D to de-
pend on a parameter β. In this way, very different val-
ues of the function ψ(Cβ, Dβ) occur, which increase
with β. Table 1 shows that also the relative errors
eβ = ‖ũ − u‖2/‖v‖2 increase with β. However by
using the orthogonal representation Cort, Dort of A,
the function ψ(Cort, Dort) can be bounded by ‖A‖2
(in this example ‖A‖2 = 355) and consequently the
relative error is reduced as suggested by (18) (see last
row of Table 1).

6 Conclusions
The numerical stability of the matrix-vector product
for Toeplitz-like matrices, performed via FFT, has
been analyzed. The analysis has pointed out that the
error greatly depends on the magnitude of the gener-
ators of the matrix. The numerical experimentation
confirms this result, suggesting that the magnitude of
the generators should be monitored, and the genera-
tors should be replaced by orthogonal ones when they
become too large with respect to the magnitude of
the associated matrix. For example, when ψ(C,D)
becomes larger than 2ρ‖A‖2. The present study is
part of a researchwhich analyzes some superfast algo-
rithms, like the one proposed in [7], for the solution of
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Toeplitz-like systems from the stability point of view.
From a theoretical error analysis, it turns out that in-
stability and computational complexity balance, since
in general larger errors tend to be produced by faster
algorithms. For the near future we are planning to
continue our study of this interesting field, by detect-
ing the parameters which rule the stability behavior
of iterative superfast algorithms and focusing on the
conditioning properties connected with themagnitude
of the generators of the matrices involved.

References:

[1] T. Kailath, A. Viera and M. Morf, “Inverses of
Toeplitz operators, innovations and orthogonal
polynomials”, SIAM Rev., 20, pp. 106-119, 1978.

[2] T. Kailath, S. Y. Kung and M. Morf, “Displace-
ment ranks of matrices and linear equations”, J.
Math. Anal. Appl., 68, pp. 395-407, 1979.

[3] G. Heinig and K. Rost, Algebraic methods for
Toeplitz-like matrices and operators, Akademie-
Verlag, Berlin, 1984.

[4] T. Kailath andA. H. Sayed, “Displacement struc-
ture: theory and applications”, SIAM Rev., 37, pp.
297-386, 1995.

[5] D. A. Bini, “Matrix structures and applica-
tions”, Centre international de rencontres mathe-
matiques, U.M.S. 822 C.N.R.S./S.M.F., 4, pp. 1-
45, 2014.

[6] A.Aricó and G. Rodriguez, “A fast solver for lin-
ear systems with displacement structure”, Numer.
Algorithms, 55, pp. 529-556, 2010.

[7] P. Favati, G. Lotti and O. Menchi, “A Divide
and ConquerAlgorithm for the Superfast solution
of Toeplitz-like Systems”, SIAM. J. Matrix Anal.
Appl., 33, pp. 1039-1056, 2012.

[8] Y. Xi, J. Xia, S.Cauley andV.Balakrishnan, “Su-
perfast and stable structured solvers for Toeplitz
least squares via randomized sampling”, SIAM. J.
Matrix Anal. Appl., 35, pp. 44-72, 2014.

[9] R. Ke, M. K. Ng and H. W. Sun, “A fast direct
method for block triangular Toeplitz-like with tri-
diagonal block systems from time-fractional par-
tial differential equations”, Journal of Computa-
tional Physics, 303, pp. 203-211, 2015.

[10] X. Lin, M. K. Ng and H. W. Sun, “A Split-
ting Preconditioner for Toeplitz-Like Linear Sys-
tems Arising from Fractional Diffusion Equa-
tions”, SIAM. J. Matrix Anal. Appl., 38, pp. 1580-
1614, 2017.

[11] N. Akhoundi, “Toeplitz-like preconditioner for
linear systems from spatial fractional diffusion
equations”, Iranian Journal of Numerical Anal-
ysis and Optimization, 11, pp. 95-106, 2021.

[12] D. Bini and B.Meini, “On Cyclic ReductionAp-
plied to a Class of Toeplitz-Like MatricesArising
in Queueing Problems”, in: W. J. Stewart (eds)
Computations with Markov Chains. Springer,
Boston, MA , 1995.

[13] A. Böttcher, C. Garoni and S. Serra-Capizzano,
“Exploration of Toeplitz-like matrices with un-
bounded symbols is not a purely academic jour-
ney”, Sb. Math., 208, pp.1602-1627, 2017.

[14] A. Bostan, C. P. Jeannerod, C. Mouilleron
and E. Schost, “On matrices with displacement
structure: generalized operators and faster algo-
rithms”, SIAM. J. Matrix Anal. Appl., 38, pp. 733-
775, 2017.

[15] G. J. Groenewald, S. ter Horst, J. Jaftha and A.
C. M. Ran, “A Toeplitz-Like Operator with Ra-
tional Matrix Symbol Having Poles on the Unit
Circle: Fredholm Properties”, Complex Analysis
and Operator Theory 15, pp. 1-29, 2021.

[16] J. W. Cooley and O. W. Tukey, “An Algorithm
for the Machine Calculation of Complex Fourier
Series”, Math. Comput., 19, pp. 297-301, 1965.

[17] M. Arioli, H. Munthe-Kaas and L. Valdettaro,
“Componentwise error analysis for FFT’s with
applications to fast Helmholtz solvers”, Numer.
Algorithms, 12, pp. 65-88, 1996.

[18] N. J. Higham, Accuracy and Stability of Numer-
ical Algorithms, SIAM, Philadelphia, PA, 1996.

[19] P. J. Davis, Circulant Matrices, Wiley, New
York, 1979.

[20] G. H. Golub and C. F. Van Loan, “Circulant
Systems”, par. 4.7.7 inMatrix Computations (3rd
ed.), Johns Hopkins, 1996.

[21] R. M. Gray, “Toeplitz and Circulant Matrices: A
Review”, Foundations and Trends in Communi-
cations and Information Theory, 2, pp. 155-239,
2006.

[22] V.Y. Pan,Y. Rami andX.Wang, “Structuredma-
trices and Newton’s iteration: unified approach”,
Linear Algebra and its Applications, 343-344, pp.
233-265, 2002.

[23] P. Favati, G. Lotti and O. Menchi, “Stability
of the Levinson algorithm for Toeplitz-like sys-
tems”, SIAM Journal on Matrix Analysis and Ap-
plications, 31, pp. 2531-2552, 2010.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.12 Paola Favati, Ornella Menchi

E-ISSN: 2224-2880 83 Volume 21, 2022



Contribution of individual authors to

the creation of a scientific article

(ghostwriting policy)
All the authors have contributed substantially and in
equal measure to all the phases of the work reported.

Creative Commons Attribution

License 4.0 (Attribution 4.0

International , CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0

https://creativecommons.org/li-
censes/by/4.0/deed.en_US

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.12 Paola Favati, Ornella Menchi

E-ISSN: 2224-2880 84 Volume 21, 2022

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

	Introduction
	Circulant and Toeplitz matrices
	Toeplitz-like matrices
	Stability of the function prod
	Numerical experiments
	Conclusions



