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Abstract: - In this short note, we consider interval estimation for the parameters under the uniform distribution
U(a, b). We study two approaches: (1) based on a Wald-type statistic, (2) based on a pivotal statistic. We show
that the first approach in its common form is not valid and we propose a modified version of the first approach. It
turns out it is equivalent to the confidence interval with the shortest length.
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1 Introduction.
The uniform distribution U(a, b) is a common dis-
tribution and has been studied extensively (see, for
example, Kuipers and Niederreiter (2012), Stephens
(2017) and Claessen. et al. (2015), among others.
Themaximum likelihood estimators (MLEs) of its pa-
rameters have explicit expressions. How to construct
a confidence interval (CI) under U(a, b) is a typical
content in a basic statistics course. For example, in
the textbook by Casella and Bergera (2002), it is ex-
plained that if the data are from U(0, b) then the exact
CI for b can be constructed using a pivotal statistic. If
the random sample is from U(a, b) when both a and b
are parameters, then a, b and θ are parameters, where
θ = b−a. Under this assumption, we shall show that
there does not exist an exact CI. We shall discuss how
to construct approximate CIs.

2 Theory.
Let W1, ..., Wn be i.i.d. from W ∼ U(a, b), with
the cumulative distribution function (cdf) FW (·). Let
(â, b̂, θ̂) be the MLE of (a, b, θ), where â = W(1) =

miniWi, b̂ =W(n) = maxiWi and θ̂ = b̂− â. Recall
that P (b̂ ≤ t) = P (W(n) ≤ t) = P (Wi ≤ t, ∀ i) =
(FW (t))n and P (W(1) > t) = P (Wi > t, ∀ i) =
(SW (t))n, where SW = 1 − FW . Thus the distribu-
tion of the MLE of (a, b, θ) is well understood. It is
easy to verify that (â, b̂, θ̂) is consistent.

There are two possible approaches in construct-
ing CI’s for γ ∈ {a, b, θ}: (1) base on the Wald-type
statistic γ̂−γ

σ̂γ̂
, e.g., [γ̂−1.96σ̂γ̂ , , γ̂+1.96σ̂γ̂ ], (2) based

a pivotal statistic T = W−a
b−a , where T ∼ U(0, 1).

The first approach relies on themean and variance.
Recall the cdfs and density functions:
FT(n)

(t) = tn, fT(n)
(t) = ntn−1, FT(1)

= 1−ST(1)
,

ST(1)
(t) = (1 − t)n, fT(1)

(t) = n(1 − t)n−1,
for t ∈ [0, 1]; and for t, s ∈ (0, 1),

fT(1),T(n)
(t, s) =

n!fT (t)(FT (s)− FT (t))
n−2fT (s)

1!(n− 2)!1!
.

Based onW = θT + a, it is easy to derive

σ2
b̂
= θ2σ2T(n)

= σ2â =
θ2n

(n+ 1)2(n+ 2)

and σ2
θ̂
= θ2σ2T(n)−T(1)

=
2(n− 1)θ2

(n+ 2)(n+ 1)2
. (1)

The proofs are also given in Appendix.

3 The Main Results.
We shall consider constructing the CI for a, b or θ un-
der the assumption thatW ∼ U(a, b). For simplicity,
we only discuss the case of a 95%CI (or (1−α)100%
CI’s, with α = 0.05). For general (1− α)100% CI’s,
just replace 0.05 by α.
3.1. CIs for b: First consider the pivotal method.
Since T = W−a

b−a ∼ U(0, 1), T is a pivotal statis-
tic. For t ∈ [0, 0.05], FT(n)

(t) = tn, letting (u, v) =

(t1/n, (0.95 + t)1/n) yields
0.95 = P (u ≤ T(n) ≤ v) = P (u ≤ W(n)−a

b−a ≤ v)

= P ( 1v ≤ b−a
W(n)−a ≤ 1

u)

= P (
W(n)−a

v + a ≤ b ≤ W(n)−a
u + a).

If a is given, a 95% CI for b is

[
W(n)−a

v + a,
W(n)−a

u + a], (2)
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where (u, v) = (t1/n, (0.95 + t)1/n). There
are 3 typical cases: (u, v) = (0, 0.951/n), or
(0.0251/n, 0.9751/n), or (0.051/n, 1), with lengthes:
W(n)(

1
0 − 0.95

−1

n , 0.025
−1

n − 0.975
−1

n , 0.05
−1

n − 1)
≈W(n)(∞, 0.037, 0.030) if n = 100.
Thus the best choice among these three 95% CIs for
b is (W(n),

W(n)−a
0.051/n + a) if a is known. Actually, it

is the shortest 95% CI, which is given by (u, v) =

(0.051/n, 1), as the length of the CI in Eq. (2) is
(W(n) − a)[(0.95 + t)−1/n − t−1/n] and

((0.95 + t)−1/n − t−1/n)′t
= −1

n (0.95+t)
−1

n
−1−−1

n t
−1

n
−1 < 0 for t ∈ [0, 0.05].

If a is unknown, estimating a by W(1) yields an ap-
proximate 95% CI

[W(n),
W(n) −W(1)

0.051/n
+W(1)], (3)

as P (a < W(1) ≤ a+ δ) = P (T(1) ≤ δ
θ )

= 1 − (1 − δ
θ )

n → 1 ∀ δ ∈ (0, θ/2), and thus
P (W(n) ≤ b ≤ W(n)−W(1)

0.051/n + W(1)) ≈ 0.95 if n is
large. The length of the CI is (b̂− â)(201/n − 1).

Wald-type statistic may lead to another possible
95% CI b̂ ± 1.96σ̂b̂, with its length ≈ 4σ̂b̂. By Eq.
(1) and Eq. (3), if n is large then the ratio of these
two lengths is

(b̂−a)(0.05−1/n−1)
4σ̂b̂

= (b̂−a)(0.05−1/n−1)

4θ̂
√

n

n+2
/(n+1)

≈ 0.05−1/n−1
4/n < 0.8,

thus b̂ ± 1.96σ̂b̂ is not as good as the CI in Eq. (3).
Moreover, this approach is based on the belief that
P (

W(n)−b
σ̂W(n)

≤ t) ≈ Φ(t) ∀ t, where Φ is the cdf of
N(0, 1). However, if t > 0 then
0.95 ≥ P (

W(n)−b
σW(n)

≤ t)

= P (W(n) ≤ tσW(n)
+ b)

= (P (T ≤
tσW(n)

+b−a

b−a ))n

= (P (T ≤
tσW(n)

b−a + 1))n

= (1)n, as T ∼ U(0, 1).
It leads to a contradiction: 0.95 ≥ 1. Thus b̂ ± 2σ̂b̂
is not a CI. But we can make use of the Wald-type
statistic as follows. Choose t < 0 such that
0.05 = P (

W(n)−b
σW(n)

≤ t)

= P (W(n) ≤ tσW(n)
+ b)

= (P (W ≤ tσW(n)
+ b))n

= (P (T ≤
tσW(n)

+b−a

b−a ))n

= (
t
θ
√

n
n+2

n+1

θ +1)n (≈ ( t
n+1)n ≈ et).

0.95 = P (
W(n)−b
σW(n)

> t) (t ≈ ln0.05 = −ln20)
= P (b < W(n) − σW(n)

t)
= P (W(n) < b < W(n) − σW(n)

t)
≈ P (W(n) < b < W(n) + σW(n)

ln20).
Thus an approximate 95% CI for b is

(W(n),W(n) + σ̂W(n)
ln20), with

length ≈ b̂−â
n ln20 = (b̂− â)ln201/n,

as σ2
b̂
= (b−a)2n

(n+1)2(n+2) by Eq. (1). It is of interest to
compare its length to the length of the CI in (3):

(b̂− â)(0.05−1/n − 1)

= (b̂− â)(201/n − 1)

≈ (b̂− â)ln201/n, as
ln201/n

= lnx
= lnx− ln1
≈ (lnx)′|x=1(x− 1)

= x− 1 (with x = 201/n).
Thus these two approximate CI’s have the same
length asymptotically.
Remark. In general, an approximate (1 − α)100%
CI for b is{

[W(n),W(n) − σ̂W(n)
lnα] Wald-type method

[W(n),
θ̂

α1/n +W(1)] pivotal method.
3.2. CI for a: W(1)−a

θ = T(1) is a pivatol statistic and
P (T(1) > t) = (1−t)n if t ∈ [0, 1]. Let (u, v) satisfy
0.95 = P (u ≤ W(1)−a

θ ≤ v) (= (1−u)n−(1−v)n)
0.95 = P (W(1)−uθ ≥ a ≥W(1)−vθ), then it leads
to an approximate 95% CI for a, e.g, let

((1− u)n, (1− v)n)
= (0.95, 0), (0.975, 0.025), (1, 0.05), then (u, v) =
(1 − 0.95

1

n , 1) or (1 − 0.975
1

n , 1 − 0.025
1

n ), or
(0, 1− 0.05

1

n ).
Then their length
= θ(0.95

1

n , 0.975
1

n − 0.025
1

n , 1 − 0.05
1

n ). It can be
shown that the shortest 95% CI for a is [â − vθ, â]

if θ is given, where v = 1 − 0.051/n; otherwise, an
approximate 95% CI is [W(1) − vθ̂,W(1)].

Moreover, a 95% CI based on Wald-type statistic
â−a
σ̂â

is [â − tσ̂â, â], where t ≈ n(1 − 0.051/n) and
σ̂θ̂ ≈ θ̂/n. The reason is as follows.
0.95 = P (

W(1)−a
σW(1)

≤ t)

= P (W(1) − tσW(1)
≤ a)

= P (W(1) − tσW(1)
≤ a ≤W(1))

= P (W(1) ≤ tσW(1)
+ a)

= 1− P (W(1) > tσW(1)
+ a)

= 1− P (T(1) >
tσW(1)

+a−a

θ )

= 1− P (T(1) >
tσW(1)

θ )

= 1− (1−
tσW(1)

θ )n
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= 1− (1−
tθ
√

n

n+2

θ(n+1) )
n. =>

0.051/n = 1− t

√
n

n+2

(n+1) =>

t = (1− 0.051/n)

/√
n

n+2

(n+1) ≈ n(1− 0.051/n).

Moreover, σW(1)
=

θ
√

n

n+2

(n+1) ≈ θ/n.
Remark. Both approaches lead to approximately the
same CI, as expected.
3.3. CI for θ: Let 0.95 = 1−P (T(n) ≤ v) = 1−vn,
i.e. v = 0.051/n. Then
P (T(n) =

W(n)−a
θ > v) = P (

W(n)−a
v > θ)

= P (
W(n)−a

v > θ > b̂− â).
Hence, an approximate 95% CI for θ is (θ̂, θ̂

0.051/n ],
where θ̂ =W(n) −W(1), Or in general, (θ̂, θ̂

α1/n ].
On the other hand, in order to study Wald-type

approach, we need to find the distribution of θ̂
(=W(n)−W(1)). Let f be the density of (T(n), T(1)).

G(t)
def
= P (T(n) − T(1) ≤ t)

=
∫ ∫

1(0 ≤ x− y ≤ t)f(x, y)dxdy

=
∫ t
0

∫ x
0 f(x, y)dydx +

∫ 1
t

∫ x
x−t f(x, y)dydx (t ∈

[0, 1]).

G′(t) =
∫ t
0 f(t, y)dy−

∫ t
0 f(t, y)dy+

∫ 1
t f(x, x−t)dx

=
∫ 1
t n(n− 1)tn−2dx = n(n− 1)tn−2(1− t) =>

G(t) =
∫ t
0 n(n− 1)xn−2(1− x)dx

= n(n− 1)[x
n−1

n−1 − xn

n ]|t0 =>

G(t) = ntn−1 − (n− 1)tn, t ∈ [0, 1]. (4)

Let v be determined by 0.05 = P ( θ̂−θ
σθ̂

≤ v). Then

0.05 = P ( θ̂−θ
σθ̂

≤ v) = P (θ̂ − vσθ̂ ≤ θ)

= P (W(n) −W(1) ≤ vσθ̂ + θ)

= P (T(n) − T(1) ≤
vσθ̂+θ

θ )

= P (T(n) − T(1) ≤
v

θ

√
2(n−1)
n+2

n+1
+θ

θ )

= P (T(n) − T(1) ≤
v

√
2(n−1)

n+2

n+1 + 1)

= G(v

√
2(n−1)

n+2

n+1 ) (= 0.05);

0.95 = P (θ̂ − vσθ̂ > θ)

= P (θ̂ − vσθ̂ > θ ≥ θ̂)

(= 1−G(v

√
2(n−1)

n+2

n+1 )).

Thus [θ̂, θ̂ − vσ̂θ̂] is an approximate 95% CI for θ,

where v is specified by G(v

√
2(n−1)

n+2

n+1 ) = 0.05 and
G(t) = ntn−1 − (n− 1)tn by Eq. (4).

4 Summary.
The confidence intervals for the parameters under
U(a, b) are not of the typical form of [ψ̂ − u, ψ̂ + u],

but are of the form either ψ̂, ψ̂+u], or ψ̂−u, ψ̂], where
ψ ∈ {a, b, θ}.

Appendix

E(T(1)) =
1

n+1 ,
V (T(1)) =

n
(n+1)2(n+2) ,

E(T(n)) =
n

n+1 .
V (T(n)) =

n
(n+1)2(n+2) ,

E(W(1)) =
b

n+1 + a n
n+1 .

E(W(n)) = b n
n+1 + a

n+1 .
V (W(1)) = V (W(n)) =

θ2n
(n+1)2(n+2) ,

Let Z =W(n) −W(1),
then E(Z) = (b− a)(n− 1)/(n+ 1).
σ2Z = 2n

(n+1)2(n+2)θ
2

−2[E(W(n)W(1))− E(W(n))E(W(1))].

fW(i),W(j)
(x, y) =

n!(FW (x))i−1fW (x)(FW (y)−FW (x))j−i−1fW (y)(SW (y))n−j

(i−1)!1!(j−i−1)!1!(n−j)! ,
x < y, i < j,
fW(1),W(n)

(x, y) = n!fW (x)(FW (y)−FW (x))n−2fW (y)
(n−2)!

= n(n− 1) (y−x)n−2

θ2 , a < x < y < b.
σ2
θ̂
= σ2W(n)−W(1)

= 2nθ2

(n+1)2(n+2) −
2θ2

(n+2)(n+1)2 = 2(n−1)θ2

(n+2)(n+1)2 .
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