Generalization Fixed Points of Multivalued α -Admissible Mappings in **2-Metric Spaces**

HANY A. ATIA^{1,*} MONA S. BAKRY², AYA A. ABD-ELRASHED¹ ¹Department of Mathematics, Fauclty of Science, Zagazig University, EGYPT ²Department of Mathematics, Fauclty of Science, Tanta University, EGYPT

Abstract: - In this paper, we create some fixed-point results of multivalue α -admissible of 2-metric spaces. We introduce Hausdorff distance in 2-metric space, use it in our theorem. we investigated the existence of some fixed point results for new types of contraction. We study the stability of fixed point set.

Key-Words: - Metric spaces, 2-metric spaces, multivalued α –admissible mappings, fixed point, Hausdorff metric, $\alpha - \psi$ -contraction.

Received: March 25, 2021. Revised: December 17, 2021. Accepted: January 10, 2021. Published: February 4, 2022.

1 Introduction

One of the most valuable findings is the popular Banach contraction mapping principle [1] in nonlinear analysis. It was used in many different mathematical branches and in the general physical sciences. Metric fixed-point theory developed in various directions by mathematicians over the years. A comprehensive account is provided of that development Kirk and Sims in the Handbook [2]. Extended the contraction mapping theory of Banach by the usage of a legal Contractive Situation by Dass and Gupta [3]. Abu-Donia establishes some fixed point theorems in some types of metric spaces [cf.4-8]. Aubin and Cellina discuss some elements of this research in their book [9]. Nadler[10] expanded the Banach principle of contraction to setvalued mappings by the Hausdorff metric. Driven by Nadler's results, much research is done on fixed points multi-valued functions were conducted using this Hausdorff metric in different directions by multiple authors [11-15]. Stability is a approach associated with the limiting attitude of a system. It has been studied in various contexts of discrete and continuous dynamical systems [16,17]. Studies of the relation between the convergence of a mapping sequence and its fixed Points, known as stability of fixed points, were also widely studied in different settings [18-20]. the set of fixed points of multivalued mappings becomes bigger and hence more important for the study of stability. In [21] Samet et al. presented the definition of α -admissible mapping and a new group contractive mapping type known as $\alpha - \psi$ -contractive mapping type.[21] Expansion and generalization of current fixed-point literature results, in fact, the Banach's contraction principle. In addition, Karapinar and Samet [22] widespreaded the α - ψ -contractive type mappings and access assorted fixed point theorems for this generalized class of contractive mappings. Since then, fixed point results of α -admissible mappings have been established, such as [23,24]..

The concepts from setvalued analysis that we use in this paper are as follows. Let (X, d) be a metric space. Then

$$N(X) =$$

A: A is a non empty subset of X},

{ S(X) =

{A: A is a non empty compact subset of X}, B(X) =

{A: A is a non empty bounded subset of X} and SB(X) =

{A: A is a non empty closed and bounded subset of X}.

For $x \in X$ and $B \in N(X)$, the function D(x, B), and for $A, B \in SB(X)$, the function H(A, B) are defined

as follows: $D(x, B) = \inf\{d(x, y): y \in B\}$

and

$$H(A,B) = \max \{ \sup_{x \in A} D(x,B), \sup_{y \in B} D(y,A) \}.$$

H is established the Hausdorff metric induced by the metric d on SB(X)[23]. encourage, if (X, d) is a complete then SB(X), H is also complete.

The following lemma Nadler[18] generated by Nadler[18]

Lemma 1.1 [18] Let (X, d) be a metric space and $A, B \in SB(X)$. Let q > 1. next for every $x \in A$, there exists $y \in B$ so that $d(x, y) \leq$ qH(A, B).

In [18] Nadler certain that Lemma 1.1 is also accurate for $q \ge 1$, wherever $A, B \in S(X)$. Here we current the lemma

Lemma 1.2 [25] Let (X, d) be a metric space and $A, B \in SB(X)$. Let $q \ge 1$. next for every $x \in A$, there exists $y \in B$ so that $d(x, y) \le qH(A, B)$.

The following is aftereffect of Lemma 1.2

Lemma 1.3 [25] Let two non-empty compact subsets of a metric space (X, d) are A and B and T is a multivalued mapping since $T: A \rightarrow S(B)$ Let $q \ge 1$. Next for $a, b \in A$ and $x \in Ta$, there endure $y \in Tb$ so that $d(x, y) \le qH(Ta, Tb)$.

Definition 1.1 [21]. Let $T: X \to X$ and $\alpha: X \times X \to [0, \infty)$ be a function. We express that *T* is an α -admissible mapping if $x, y \in X$,

 $\alpha(x, y) \ge 1 \Longrightarrow \alpha(Tx, Ty) \ge 1.$

In the following we characterize multivalued α admissible mapping. N(X) in the interpretation stand for the collection of all nonempty subsets of a nonempty set *X*.

Definition 1.2 [25]. Let $T: X \to N(X)$ a multivalued mapping since *X* is non-empty set and $\alpha: X \times X \to [0, \infty)$. For $x_0, y_0 \in X$ the mapping *T* called multivalued α -admissible if $\alpha(x, y) \ge 1 \Longrightarrow \alpha(x_1, y_1) \ge 1$ where $x_1 \in Tx_0$ and $y_1 \in Ty_0$.

Definition 1.3 [25]. Let $T: X \to SB(Y)$ be a multivalued mapping, since $(X, \sigma), (Y, d)$ are two metric spaces and *H* is the Hausdorff metric on *SB*(*Y*). The mapping *T* is called continuous at $x \in X$ if for any sequence $\{x_n\}$ in *X* and $H(Tx, Tx_n) \to 0$ when $\sigma(x, x_n) \to 0$ as $n \to \infty$

Definition 1.4 [25] Let $p: X \to X$ a singlevalued mapping, $T: X \to N(X)$ a multivalued mapping and X is a non-empty set. A point $x \in$ X is a fixed point of p (resp. T) iff x = px(resp. $x \in Tx$).

2 Main Results

for $x \in X$ and $B, C \in N(X)$, for A, B and $C \in SB(X)$ the functions

$$H(A, B, C)$$

= max{sup_{x∈A}D(x, B, C), sup_{y∈B}D(y, A, C),
sup_{z∈C}D(z, A, B)},
where

 $D(x, B, C) = \inf\{d(x, y, z) \colon y \in B, z \in C\}.$

H is known as the Hausdorff metric induced by the 2-metric *d* on SB(X).If (X, d) is complete then (SB(X), H) is also complete. We established the following lemma.

Lemma 2.1 Let (X, d) be a 2-metric space and A, B and $C \in SB(X)$. Let $q \ge 1$. next for every $x \in A$, there exists $y \in B$ and $z \in C$ so that $d(x, y, z) \le qH(A, B, C)$.

proof. Let *A*, *B* and $C \in S(X)$. and $x \in A$. Since *A*, *B* and $C \in S(X)$, the result is true if q > 1. So, we shall prove the result for q = 1. Now, we know that

$$H(A, B, C) = \max\{\sup_{x \in A} D(x, B, C), \sup_{y \in B} D(y, A, C), \sup_{z \in C} D(z, A, B)\}.$$

From the definition,

 $p = D(x, B, C) = \inf\{d(x, y, z): y \in B, z \in C\} \le H(A, B, C)$. Then there exists a sequence $\{y_n\}$ in *B* such that $d(x, y_n, z) \to p$ as $n \to \infty$. Since *B* is compact, $\{y_n\}$ has a convergent subsequence $\{y_{n(k)}\}$. Hunce there exists $y \in X$ such that $y_{n(k)} \to y$ as $k \to \infty$. As *B* is compact, it is closed and $y \in B$. Now, $\lim_{n \to \infty} d(x, y_n, z) = p$

implies that $\lim_{k \to \infty} d(x, y_{n(k)}, z) = p$, that is, $d(x, y, z) = p = D(x, B, C) \le H(A, B, C)$. Hence the proof is completed.

the following is consequence of Lemma 2.1

Lemma 2.2 Let A, B and C are non-empty compact subsets of a 2-metric space (X, d), where $R = B \cup C$ and T is a multivalued mapping since $T: A \rightarrow S(R)$ Let $q \ge 1$. Next for a, b and $c \in A, x \in Ta$ there endure $y \in Tb$ and $z \in Tc$ so that $d(x, y, z) \le qH(Ta, Tb, Tc)$.

Definition 2.1 Let $T: X \to X$ and $\alpha: X \times X \times X \to [0, \infty)$ be a function. We say that *T* is an α -admissible mapping if $x, y, z \in X$,

 $\alpha(x, y, z) \ge 1 \Longrightarrow \alpha(Tx, Ty, Tz) \ge 1.$

Definition 2.2 Let (X, d) be a 2-metric space and $T: X \to N(X)$ a multivalued mapping since $\alpha: X \times X \times X \to [0, \infty)$. For x_0, y_0 and $z_0 \in X$ the mapping *T* called multivalued α -admissible if

 $\alpha(x, y, z) \ge 1 \Longrightarrow \alpha(x_1, y_1, z_1) \ge 1$ where $x_1 \in Tx_0$, $y_1 \in Ty_0$ and $z_1 \in Tz_0$

Definition 2.3 Let $(X, d), (Y, \sigma)$ are two 2metric spaces, $T: X \to SB(Y)$ and H is the Hausdorff metric on SB(Y). The mapping T is said to be continuous at $x \in X$ if for any sequence $\{x_n\}$ in X, $H(Tx, Tx_n, Tx_{n+1}) \to 0$ whenever $d(x, x_n, x_{n+1}) \to 0$ as $n \to \infty$.

Theorem 2.1 Let (X, d) be a complete 2-metric space, $\alpha: X \times X \times X \to [0, \infty)$ and $T: X \to S(X)$ a multivalued mapping. Let T be multivalued α admissible and continuous. Let $\psi: [0, \infty) \to$ $[0, \infty)$ be a nondecreasing function and continuos with $\sum_{n=1}^{\infty} \psi^n(t) < \infty$ and $\psi(t) < t$ for each t > 0. Suppose that for all $x, y, z \in X$, $\alpha(x, y, z)H(Tx, Ty, Tz) <$

$$\psi(\max\{d(x, y, z), D(x, Tx, T^{2}x), D(y, Ty, T^{2}y), \\ \frac{D(x, y, Tz) - D(x, z, Tz)}{2}, \\ \frac{D(y, Ty, T^{2}y)[1 + D(x, Tx, T^{2}x)]}{1 + d(x, y, z)}, \\ \frac{D(z, Ty, T^{2}x)[1 + D(x, Ty, T^{2}z)]}{1 + d(x, y, z)}\}).$$
(1)

if there exist $x_0 \in X, x_1 \in Tx_0$ and $x_2 \in Tx_1$ such that $\alpha(x_0, x_1, x_2) \ge 1$, then *T* has a fixed point in *X*.

Proof From the condition, there exist $x_0 \in X, x_1 \in Tx_0$ and $x_2 \in Tx_1$ such that $\alpha(x_0, x_1, x_2) \ge 1$. By lemma 2.2, for $x_2 \in Tx_1$ there exists $x_3 \in Tx_2$ such that $d(x_1, x_2, x_3) \le \alpha(x_0, x_1, x_2)H(Tx_0, Tx_1, Tx_2)$. Employ (1) and applying the monotone property of ψ , we have

$$\begin{aligned} d(x_1, x_2, x_3) &\leq \alpha(x_0, x_1, x_2) H(Tx_0, Tx_1, Tx_2) \\ &\leq \\ \psi(\max\{d(x_0, x_1, x_2), D(x_0, Tx_0, T^2x_0), \\ D(x_1, Tx_1, T^2x_1), \\ \frac{D(x_0, x_1, Tx_2) - D(x_0, x_2, Tx_2)}{2}, \\ \frac{D(x_1, Tx_1, T^2x_1)[1 + D(x_0, Tx_0, T^2x_0)]}{1 + d(x_0, x_1, x_2)}, \\ \frac{D(x_2, Tx_1, T^2x_0)[1 + D(x_0, Tx_1, T^2x_2)]}{1 + d(x_0, x_1, x_2)} \}) \\ &\leq \psi(\max\{d(x_0, x_1, x_2), d(x_0, x_1, x_2), \\ d(x_1, x_2, x_3), \\ \frac{d(x_0, x_1, x_3) - d(x_0, x_2, x_3)}{2}, \\ \frac{d(x_1, x_2, x_3)[1 + d(x_0, x_1, x_2)]}{1 + d(x_0, x_1, x_2)}, \\ \frac{d(x_2, x_2, x_2)[1 + d(x_0, x_2, x_4)]}{1 + d(x_0, x_1, x_2)} \}) \\ &\leq \psi(\max\{d(x_0, x_1, x_2), d(x_1, x_2, x_3), \\ d(x_0, x_1, x_2) + d(x_0, x_2, x_3) + d(x_0, x_2, x_3), \\ \frac{d(x_0, x_1, x_2) + d(x_0, x_2, x_3) + d(x_0, x_2, x_3)}{2} + d(x_0, x_1, x_2) + d(x_0, x_2, x_3) + d(x_0, x_1, x_2) + d(x_0, x_1, x_1) + d(x_0, x_1, x_2) + d(x_0, x_1, x_2) + d(x_0, x_1, x_2) + d(x_0$$

$$\leq \psi(\max\{d(x_0, x_1, x_2), d(x_1, x_2, x_3)\}).$$

 $d(x_1, x_2, x_3) - d(x_0, x_2, x_3)$

It follows that

$$d(x_1, x_2, x_3) \le \psi(\max\{d(x_0, x_1, x_2), d(x_1, x_2, x_3)\}).$$
(2)

Now,if

 $\max\{d(x_0, x_1, x_2), d(x_1, x_2, x_3)\} = d(x_1, x_2, x_3)$

Then from (2) and property of ψ $d(x_1, x_2, x_3) \le \psi(d(x_1, x_2, x_3) < d(x_1, x_2, x_3),$

which is a contradiction. Hence $d(x_1, x_2, x_3) \le d(x_0, x_1, x_2)$. Then from (2), we have

$$d(x_1, x_2, x_3) \le \psi d(x_0, x_1, x_2).$$
(3)

Since $x_1 \in Tx_0, x_2 \in Tx_1$ and $x_3 \in Tx_2$ and $\alpha(x_0, x_1, x_2) \ge 1$, the α -admissibility of T implies that $\alpha(x_1, x_2, x_3) \ge 1$. By Lemma (2.2), for $x_3 \in Tx_2$ there exists $x_4 \in Tx_3$ such that $d(x_2, x_3, x_3)$

$$d(x_2, x_3, x_4) \le \alpha(x_1, x_2, x_3) H(Tx_1, Tx_2, Tx_3).$$

employ (1) and using the monotone property of ψ , we have

$$\begin{aligned} d(x_{2}, x_{3}, x_{4}) &\leq \alpha(x_{1}, x_{2}, x_{3}) H(Tx_{1}, Tx_{2}, Tx_{3}) \\ &\leq \psi(\max\{d(x_{1}, x_{2}, x_{3}), D(x_{1}, Tx_{1}, T^{2}x_{1}), \\ D(x_{2}, Tx_{2}, T^{2}x_{2}), \\ \frac{D(x_{1}, x_{2}, Tx_{3}) - D(x_{1}, x_{3}, Tx_{3})}{2}, \\ \frac{D(x_{2}, Tx_{2}, T^{2}x_{2})[1 + D(x_{1}, Tx_{1}, T^{2}x_{1})]}{1 + d(x_{1}, x_{2}, x_{3})}, \\ \frac{D(x_{3}, Tx_{2}, T^{2}x_{1})[1 + D(x_{1}, Tx_{2}, T^{2}x_{3})]}{1 + d(x_{1}, x_{2}, x_{3})} \\ &\leq \psi(\max\{d(x_{1}, x_{2}, x_{3}), d(x_{1}, x_{2}, x_{3}), \\ d(x_{2}, x_{3}, x_{4}), \frac{d(x_{1}, x_{2}, x_{3}), d(x_{1}, x_{2}, x_{3}), \\ d(x_{2}, x_{3}, x_{4}), \frac{d(x_{1}, x_{2}, x_{3}), d(x_{1}, x_{2}, x_{3}), \\ \frac{d(x_{2}, x_{3}, x_{4})[1 + d(x_{1}, x_{2}, x_{3})]}{1 + d(x_{1}, x_{2}, x_{3})}, \\ &\leq \psi(\max\{d(x_{1}, x_{2}, x_{3}), d(x_{2}, x_{3}, x_{4}), \\ d(x_{1}, x_{2}, x_{3}) + d(x_{1}, x_{3}, x_{4}) + \\ \frac{d(x_{2}, x_{3}, x_{4}) - d(x_{1}, x_{3}, x_{4})}{2} \\ \end{vmatrix} \right)$$

 $\psi(max\{d(x_1, x_2, x_3), d(x_2, x_3, x_4)\}).$ Suppose that $d(x_1, x_2, x_3) < d(x_2, x_3, x_4).$ Then $d(x_2, x_3, x_4) \neq 0$ and it follows by (4) and property of ψ that

$$d(x_2, x_3, x_4) \le \psi(d(x_2, x_3, x_4)) < d(x_2, x_3, x_4),$$

which is a contradiction. Then from (4) we have

$$d(x_2, x_3, x_4) \le \psi(d(x_1, x_2, x_3)).$$
(5)

Since $x_2 \in Tx_1, x_3 \in Tx_2$ and $x_4 \in Tx_3$ and $\alpha(x_1, x_2, x_3) \ge 1$, the α -admissibility of *T* implies that $\alpha(x_2, x|_3, x_4) \ge 1$. Continuing this process, we build up a sequence $\{x_n\}$ such that for all $n \ge 0$

$$x_{n+1} \in Tx_n, \tag{6}$$

$$\alpha(x_n, x_{n+1}, x_{n+2}) \ge 1, \tag{7}$$

and

$$d(x_{n+1}, x_{n+2}, x_{n+3}) \le \psi(d(x_n, x_{n+1}, x_{n+2})). (8)$$

By copied operation (8) and monotone property of ψ , we have

$$d(x_{n+1}, x_{n+2}, x_{n+3}) \leq \psi(d(x_n, x_{n+1}, x_{n+2})) \leq \psi^2(d(x_{n-1}, x_n, x_{n+1})) \leq \dots \leq \psi^{n+1}(d(x_0, x_1, x_2)).$$

Then by a property of ψ , we have

$$\sum_{n} d(x_n, x_{n+1}, x_{n+2})$$

$$\leq \sum_{n} \psi^n(d(x_0, x_1, x_2)) < \infty.$$

This appearance that $\{x_n\}$ is a Cauchy sequence. From the completness of *X*, there exists $z \in X$ such that

$$x_n \to z \text{ as } n \to \infty.$$
 (9)

Since $x_{n+1} \in Tx_n$, we have

 $D(x_{n+2}, x_{n+1}, Tz) \leq H(Tx_{n+1}, Tx_n, Tz).$ Taking limit as $n \to \infty$ in the raised inequality, and accepting (9) and the continuity of *T*, we have

$$D(z, \underline{x}, \overline{\mathcal{P}}z) = \lim_{n \to \infty} D(x_{n+2}, x_{n+1}, Tz) \le \lim_{n \to \infty} H(Tx_{n+1}, Tx_n, Tz) = 0,$$

that is, $D(z, z, Tz) = 0.$

Since $Tz \in S(x)$, Tz is compact and hence Tz is closed, that is, $Tz = \overline{Tz}$, where \overline{Tz} denotes the closure of Tz. Now, D(z, z, Tz) = 0 implies that $z \in \overline{Tz} = Tz$, that is, z is a fixed point of T.

Theorem 2.2 Let (X, d) be a 2-metric space, $T_i: X \to S(X)$, i = 1,2 be two multivalued mapping and $\alpha: X \times X \times X \to [0, \infty)$. Let each $T_i, i = 1,2$ be continuous and multivalued α admissible. Let $\psi: [0, \infty) \to [0, \infty)$ be a continuous and nondecreasing function with $\Phi(t) = \sum_{n=1}^{\infty} \psi^n(t) < \infty, \ \Phi(t) \to 0$ as $t \to 0$ and $\psi(t) < t$ for each t > 0. Suppose that (i) each $T_i, i = 1,2$ satisfing (1), that is, for all

(1) each $I_i, i = 1, 2$ satisfing (1), that is, for all x, y and $z \in X$, $a(x, y, z) H(T, x, T, y, T, z) \leq 1$

$$\psi(\max\{d(x, y, z), D(x, T_i x, T_i^2 x), D(y, T_i y, T_i^2 y), \frac{D(x, y, T_i z) - D(x, z, T_i z)}{2},$$

$$\frac{D(y,T_iy,T_i^2y)[1+D(x,T_ix,T_i^2x)]}{1+d(x,y,z)},\\\frac{D(z,T_iy,T_i^2x)[1+D(x,T_iy,T_i^2z)]}{1+d(x,y,z)}\});$$

(ii) for any $x \in F(T_1)$, and $y \in T_2 x$, we have $\alpha(x, y, z) \ge 1$ whenever $z \in T_3 x$; and for any $x \in F(T_2)$ and $y \in T_1 x$, we have $\alpha(x, y, z) \ge 1$ whenever $z \in T_3 x$.

Then $H(F(T_1), F(T_2), F(T_3)) \le \Phi(w)$, where $w = \sup_{x \in X} H(T_1x, T_2x, T_3x)$.

Proof From Theorem 2.1, the set of fixed point of $T_i(i = 1,2)$ are non-empty, that is, $F(T_i) \neq \emptyset$, for i = 1,2. Let $y_0 \in F(T_1)$, that is, $y_0 \in T_1y_0$. Then by Lemma 2.1, there exists $y_1 \in T_2y_0$ and $y_2 \in T_3y_0$ such that

$$d(y_0, y_1, y_2) \le H(T_1 y_0, T_2 y_0, T_3 y_0).$$
(10)

Since $y_0 \in F(T_1)$, $y_1 \in T_2y_0$ and $y_2 \in T_3y_0$, by condition (ii) ,we have $\alpha(y_0, y_1, y_2) \ge 1$. By lemma 2.2, for $y_1 \in T_2y_0, y_2 \in T_2y_1$ there exists $y_3 \in T_2y_2$ such that

 $d(y_1, y_2, y_3) \le \\ \alpha(y_0, y_1, y_2) H(T_2 y_0, T_2 y_1, T_2 y_2).$

Then contend similarly as in the proof of Theorem 2.1, we construct a sequence y_n such that for all $n \ge 0$

$$y_{n+1} \in T_2 y_n, \tag{11}$$

$$\alpha(y_n, y_{n+1}y_{n+2}) \ge 1, \tag{12}$$

$$d(y_{n+1}, y_{n+2}, y_{n+3}) \le \psi(d(y_n, y_{n+1}, y_{n+2}))$$
(13)

and

$$d(y_{n+1}, y_{n+2}, y_{n+3}) \leq \psi(d(y_n, y_{n+1}, y_{n+2}))$$

$$\leq \psi^2(d(y_{n-1}, y_n, y_{n+1})) \leq \dots$$

$$\leq \psi^{n+1}(d(y_0, y_1, y_2)).$$
(14)

Contend similarly as in the proof of Theorem 2.1, we prove that $\{y_n\}$ is a Cauchy sequence *X* and there exists $v \in X$ such that

$$y_n \to v \text{ as } n \to \infty$$
, (15)

further v is a fixed point of T_2 , that is, $v \in T_2 v$.

Now, from (10) and the definition of w, we have

$$d(y_0, y_1, y_2) \le H(T_1 y_0, T_2 y_0, T_3 y_0) \le w$$

= sup_{x \in X} H(T_1 x, T_2 x, T_3 x). (16)

Repeatedly, by the triangle inequality and using (14), we have

$$d(y_{0}, y_{1}, v) \leq \sum_{i=0}^{n} (d(y_{i}, y_{i+1}, y_{i+2})) + d(y_{n}, y_{n+2}, v) + d(y_{n+1}, y_{n+2}, v) \leq \sum_{i=0}^{n} \psi^{i} (d(y_{0}, y_{1}, y_{2})) + d(y_{n}, y_{n+2}, v + d(y_{n+1}, y_{n+2}, v).$$

Taking limit $n \to \infty$ in the above inequality, using (15),(16) and the property es of ψ , we have

 $\begin{aligned} &d(y_0, y_1, v) \leq \sum_{i=0}^{\infty} \psi^i(d(y_0, y_1, y_2)) \leq \\ &\sum_{i=0}^{\infty} \psi^i(w) = \Phi(w). \end{aligned}$

Thus, given arbitrary $y_0 \in F(T_1)$, we can find $v \in F(T_2)$ for which

$$d(y_0, y_1, v) \le \Phi(w).$$

Similarly, we can prove that for arbitrary $c_0 \in F(T_2)$, there exists a $p \in F(T_1)$ such that $d(c_0, c_1, p) \leq \Phi(w)$. Hence, we conclude that $H(F(T_1), F(T_2, F(T_3))) \leq \Phi(w)$.

3 Conclusion

In this paper we established the existence of fixed points of multivalued α -admissible mappings in 2metric spaces. and we investigated the stability of fixed point, also we introduced and studied the notion of multivalued α -admissible in 2-metric spaces

References:

- Banach, S.: Sur les oprations dans les ensembles abstraits et leurs applications aux quations intgrales. Fund. Math. 3, 133–181 (1922).
- [2] Kirk, W.A., Sims, B.: Handbook of Metric Fixed Point Theory. Springer, Netherlands (2001).
- [3] Dass, B.K., Gupta, S.: An extension of Banach contraction principle through

rational expressions. Indian J. Pure Appl. Math. 6, 1455–1458 (1975).

- [4] Abu-Donia, H. M., Atia, H. A., Khater, O. M. "Fixed point theorem by using ψ -contraction and (ψ, ϕ) -contraction in probabilistic 2-metric spaces". Alexandria Engineering Journal 59(3)(2020), pp.1239-1242.
- [5] Abu-Donia, H. M., Atia, H. A., Khater, O. M. "Common fixed point theorems in intuitionistic fuzzy metric spaces and intuitionistic (φ, ψ)-contractive mappings". Journal of Nonlinear Sciences and Applications (JNSA), 13(6)(2020).
- [6] Abu-Donia, H. M., Atia, H. A., Khater, O. M. "Some fixed point theorems in fuzzy 2– metric spaces under ψ -contractive mappings". Numerical and Computational Methods in Sciences and Engineering 2(1)(2020), pp.11-15.
- [7] Abu-Donia, H. M., Atia, H. A., Khater, O. M. "Fixed point theorem in intuitionistic fuzzy 3-metric spaces under strict contractive conditions". Applied Mathematics and Information Sciences. 14(6)(2020), pp1-5.
- [8] Abu-Donia, H. M., Atia, H. A., Khater, O. M. "Fixed point theorems for compatible mappings in intuitionistic fuzzy 3-metric spaces". Thermal Science, 24 (Suppl. 1), 371-376.
- [9] Aubin, J.P., Cellina, A.: Differential inclusions multivalued maps and viability theory. Springer, Berlin(1984)
- [10] Nadler Jr, S.B.: Multivalued contraction mapping. Pac. J. Math. 30, 475–488 (1969).
- [11] Ćirić, L.B., Ume, J.S.: Some common fixed point theorems for weakly compatible mappings. J. Math. Anal. Appl. 314, 488– 499 (2006).
- [12] Fakhar, M.: Endpoints of set-valued asymptotic contractions in metric spaces. Appl. Math. Lett. 24,428–431 (2011).
- [13] Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1990).
- [14] Gordji, M.E., Baghani, H., Khodaei, H., Ramezani, M.: A generalization of Nadler's

fixed point theorem. J. Nonlinear Sci. Appl. 3, 148–151 (2010).

- [15] Harandi, A.A.: End points of setvalued contractions in metric spaces.Nonlinear Anal. 72, 132–134 (2010).
- [16] Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, 2nd edn. CRC Press, Boca Raton (1998).
- [17] Strogatz, S.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, Boulder (2001).
- [18] Lim, T.C.: Fixed point stability for set valued contractive mappings with applications to generalized differential equations. J. Math. Anal. Appl. 110, 436– 441 (1985).
- [19] Markin, J.T.: A fixed point stability theorem for nonexpansive set valued mappings. J. Math. Anal. Appl. 54, 441–443 (1976).
- [20] Nadler Jr, S.B.: Sequences of contractions and fixed points. Pac. J. Math. 27, 579–585 (1968).
- [21] Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for α - ψ -contractive type mappings.Nonlinear Anal. 75, 2154–2165 (2012).
- [22] Karapinar, E., Samet, B.: Generalized α - ψ contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. 2012, Article ID 793486 (2012).
- [23] Karapinar, E., Agarwal, R.P.: A note on 'Coupled fixed point theorems for α - ψ contractive-type mappings in partially ordered metric spaces. Fixed Point Theory Appl. 2013, 216 (2013).
- [24] Salimi, P., Latif, A., Hussain, N.: Modified α - ψ -contractive mappings with applications. Fixed Point Theory Appl. 2013, 151 (2013).
- [25] Choudhury, B.S., Metiya, N., Bandyopadhyay, c.:Fixed points of multivalued α-admissible mappings. Rend. Circ. Mat. Palermo (2015) 64:43–55.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0) This article is published under the terms of the Creative Commons Attribution License 4.0 https://creativecommons.org/licenses/by/4.0/deed.en US