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1 Introduction 
One of the most valuable findings is the popular 

Banach contraction  mapping  principle [1] in 

nonlinear analysis. It was used in many different 

mathematical branches and in the general physical 

sciences. Metric fixed-point theory developed in 

various directions by mathematicians over the years. 

A comprehensive account is provided of that 

development Kirk and Sims in the Handbook [2]. 

Extended the contraction mapping theory of Banach 

by the usage of a legal Contractive Situation by 

Dass and Gupta [3]. Abu-Donia establishes some 

fixed point theorems in some types of metric spaces 

[cf.4-8]. Aubin and Cellina discuss some elements 

of this research in their book [9]. Nadler[10] 

expanded the Banach principle of contraction to set-

valued mappings by the Hausdorff metric. Driven 

by Nadler’s results, much research is done on fixed 

points multi-valued functions were conducted using 

this Hausdorff metric in different directions by 

multiple authors [11-15]. Stability is a approach 

associated with the limiting attitude of a system. It 

has been studied in various contexts of discrete and 

continuous dynamical systems [16,17]. Studies of 

the relation between the convergence of a mapping 

sequence and its fixed Points, known as stability of 

fixed points, were also widely studied in different 

settings [18-20]. the set of fixed points of 

multivalued mappings becomes bigger and hence 

more important for the study of stability. In [21] 

Samet et al. presented the definition of 𝛼-admissible 

mapping and a new group contractive mapping type 

known as 𝛼–𝜓-contractive mapping type.[21] 

Expansion and generalization of current fixed-point 

literature results, in fact, the Banach’s contraction 

principle. In addition, Karapinar and Samet [22] 

widespreaded the 𝛼 -𝜓 -contractive type mappings 

and access assorted fixed point theorems for this 

generalized class of contractive mappings. Since 

then, fixed point results of 𝛼-admissible mappings 

have been established, such as [23,24].. 

The concepts from setvalued analysis that we use in 

this paper are as follows. Let (𝑋, 𝑑) be a metric 

space. Then  

 𝑁(𝑋) =
{A: A is a non empty subset of X}, 

 𝑆(𝑋) =
{A: A is a non empty compact subset of X}, 

 𝐵(𝑋) =
{A: A is a non empty bounded subset of X} and 

 𝑆𝐵(𝑋) =
{A: A is a non empty closed and bounded subset of X}. 
 

For 𝑥 ∈ 𝑋 and 𝐵 ∈ 𝑁(𝑋), the function 𝐷(𝑥, 𝐵), and 

for 𝐴, 𝐵 ∈ 𝑆𝐵(𝑋), the function 𝐻(𝐴, 𝐵) are defined  

 

as follows: 

    𝐷(𝑥, 𝐵) = inf{𝑑(𝑥, 𝑦): 𝑦 ∈ 𝐵}  
 

and  

𝐻(𝐴, 𝐵) = max {sup𝑥∈𝐴𝐷(𝑥, 𝐵), sup𝑦∈𝐵𝐷(𝑦, 𝐴)}. 

 

𝐻 is established the Hausdorff metric induced by the 

metric 𝑑 on 𝑆𝐵(𝑋)[23]. encourage, if (𝑋, 𝑑) is a 

complete then 𝑆𝐵(𝑋), 𝐻 is also complete. 

The following lemma Nadler[18] generated by 

Nadler[18] 
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Lemma 1.1 [18] Let (𝑋, 𝑑) be a metric space 

and 𝐴, 𝐵 ∈ 𝑆𝐵(𝑋). Let 𝑞 > 1. next for every 

𝑥 ∈ 𝐴, there exists 𝑦 ∈ 𝐵 so that 𝑑(𝑥, 𝑦) ≤
𝑞𝐻(𝐴, 𝐵). 
In [18] Nadler certain that Lemma 1.1 is also 

accurate for 𝑞 ≥ 1, wherever 𝐴, 𝐵 ∈ 𝑆(𝑋). Here 

we current the lemma  

 

Lemma 1.2 [25] Let (𝑋, 𝑑) be a metric space 

and 𝐴, 𝐵 ∈ 𝑆𝐵(𝑋). Let 𝑞 ≥ 1. next for every 

𝑥 ∈ 𝐴, there exists 𝑦 ∈ 𝐵 so that 𝑑(𝑥, 𝑦) ≤
𝑞𝐻(𝐴, 𝐵). 
The following is aftereffect of Lemma 1.2 

 

Lemma 1.3 [25] Let two non-empty compact 

subsets of a metric space (𝑋, 𝑑) are 𝐴 and 𝐵 and 

𝑇 is a multivalued mapping since 𝑇: 𝐴 → 𝑆(𝐵) 

Let 𝑞 ≥ 1. Next for 𝑎, 𝑏 ∈ 𝐴 and 𝑥 ∈ 𝑇𝑎, there 

endure 𝑦 ∈ 𝑇𝑏 so that 𝑑(𝑥, 𝑦) ≤ 𝑞𝐻(𝑇𝑎, 𝑇𝑏).  

 

Definition 1.1 [21]. Let 𝑇: 𝑋 → 𝑋 and 𝛼: 𝑋 ×
𝑋 → [0, ∞) be a function. We express that 𝑇 is 

an 𝛼-admissible mapping if 𝑥, 𝑦 ∈ 𝑋,  

𝛼(𝑥, 𝑦) ≥ 1 ⟹ 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1.  

In the following we characterize multivalued 𝛼-

admissible mapping. 𝑁(𝑋) in the interpretation 

stand for the collection of all nonempty subsets 

of a nonempty set 𝑋. 

 

Definition 1.2 [25]. Let 𝑇: 𝑋 → 𝑁(𝑋) a 

multivalued mapping since 𝑋 is non-empty set 

and 𝛼: 𝑋 × 𝑋 → [0, ∞). For 𝑥0, 𝑦0 ∈ 𝑋 the 

mapping 𝑇 called multivalued 𝛼-admissible if 

𝛼(𝑥, 𝑦) ≥ 1 ⟹ 𝛼(𝑥1, 𝑦1) ≥ 1  where 𝑥1 ∈ 𝑇𝑥0 

and 𝑦1 ∈ 𝑇𝑦0. 

 

Definition 1.3 [25]. Let 𝑇: 𝑋 → 𝑆𝐵(𝑌) be a 

multivalued mapping, since (𝑋, 𝜎), (𝑌, 𝑑) are 

two metric spaces and 𝐻 is the Hausdorff metric 

on 𝑆𝐵(𝑌). The mapping 𝑇 is called continuous 

at 𝑥 ∈ 𝑋 if for any sequence {𝑥𝑛} in 𝑋 and 

𝐻(𝑇𝑥, 𝑇𝑥𝑛) → 0 when 𝜎(𝑥, 𝑥𝑛) → 0 as 𝑛 → ∞ 

 

Definition 1.4 [25] Let 𝑝: 𝑋 → 𝑋 a single-

valued mapping, 𝑇: 𝑋 → 𝑁(𝑋) a multivalued 

mapping and 𝑋 is a non-empty set. A point 𝑥 ∈
𝑋 is a fixed point of 𝑝 (resp. 𝑇) iff 𝑥 = 𝑝𝑥 

(resp. 𝑥 ∈ 𝑇𝑥). 
 

2 Main Results 
 for 𝑥 ∈ 𝑋 and 𝐵, 𝐶 ∈ 𝑁(𝑋), for 𝐴, 𝐵 and 𝐶 ∈
𝑆𝐵(𝑋) the functions 

 

𝐻(𝐴, 𝐵, 𝐶)
= max {sup𝑥∈𝐴𝐷(𝑥, 𝐵, 𝐶), sup𝑦∈𝐵𝐷(𝑦, 𝐴, 𝐶), 

                    sup𝑧∈𝐶𝐷(𝑧, 𝐴, 𝐵)}, 

where  

       𝐷(𝑥, 𝐵, 𝐶) = inf {𝑑(𝑥, 𝑦, 𝑧): 𝑦 ∈ 𝐵, 𝑧 ∈ 𝐶}. 

 

𝐻 is known as the Hausdorff metric induced by 

the 2-metric 𝑑 on 𝑆𝐵(𝑋).If (𝑋, 𝑑) is complete 

then (𝑆𝐵(𝑋), 𝐻) is also complete. 

We established the following lemma. 

 

Lemma 2.1 Let (𝑋, 𝑑) be a 2-metric space and 

𝐴, 𝐵 and 𝐶 ∈ 𝑆𝐵(𝑋). Let 𝑞 ≥ 1. next for every 

𝑥 ∈ 𝐴, there exists 𝑦 ∈ 𝐵 and 𝑧 ∈ 𝐶 so that 

𝑑(𝑥, 𝑦, 𝑧) ≤ 𝑞𝐻(𝐴, 𝐵, 𝐶). 
 

proof. Let 𝐴, 𝐵 and 𝐶 ∈ 𝑆(𝑋). and 𝑥 ∈ 𝐴. Since 

𝐴, 𝐵 and 𝐶 ∈ 𝑆(𝑋), the resultbis true if 𝑞 > 1. 

So, we shall prove the result for 𝑞 = 1. Now, 

we know that  

𝐻(𝐴, 𝐵, 𝐶)
= max {sup𝑥∈𝐴𝐷(𝑥, 𝐵, 𝐶), sup𝑦∈𝐵𝐷(𝑦, 𝐴, 𝐶), 

   sup𝑧∈𝐶𝐷(𝑧, 𝐴, 𝐵)}.  

 

From the definition,  

𝑝 = 𝐷(𝑥, 𝐵, 𝐶) = inf{𝑑(𝑥, 𝑦, 𝑧): 𝑦 ∈ 𝐵, 𝑧 ∈
𝐶} ≤ 𝐻(𝐴, 𝐵, 𝐶). Then there exists a sequence 

{𝑦𝑛} in 𝐵 such that 𝑑(𝑥, 𝑦𝑛, 𝑧) → 𝑝 as 𝑛 → ∞. 

Since 𝐵 is compact, {𝑦𝑛} has a convergent 

subsequence {𝑦𝑛(𝑘)}. Hunce there exists 𝑦 ∈ 𝑋 

such that 𝑦𝑛(𝑘) → 𝑦 as 𝑘 → ∞. As 𝐵 is 

compact, it is closed and 𝑦 ∈ 𝐵. Now, 

lim
𝑛→∞

𝑑(𝑥, 𝑦𝑛, 𝑧) = 𝑝 

 implies that lim
𝑘→∞

𝑑(𝑥, 𝑦𝑛(𝑘), 𝑧) = 𝑝, that is, 

𝑑(𝑥, 𝑦, 𝑧) = 𝑝 = 𝐷(𝑥, 𝐵, 𝐶) ≤ 𝐻(𝐴, 𝐵, 𝐶). 

Hence the proof is completed. 

the following is consequence of Lemma 2.1  

 

Lemma 2.2 Let 𝐴, 𝐵 and 𝐶 are non-empty 

compact subsets of a 2-metric space (𝑋, 𝑑), 

where 𝑅 = 𝐵 ∪ 𝐶 and 𝑇 is a multivalued 

mapping since 𝑇: 𝐴 → 𝑆(𝑅) Let 𝑞 ≥ 1. Next for 

𝑎, 𝑏  and  𝑐 ∈ 𝐴, 𝑥 ∈ 𝑇𝑎 there endure 𝑦 ∈ 𝑇𝑏 

and 𝑧 ∈ 𝑇𝑐 so that 𝑑(𝑥, 𝑦, 𝑧) ≤ 𝑞𝐻(𝑇𝑎, 𝑇𝑏, 𝑇𝑐).  
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Definition 2.1 Let 𝑇: 𝑋 → 𝑋 and 𝛼: 𝑋 × 𝑋 ×
𝑋 → [0, ∞) be a function. We say that 𝑇 is an 

𝛼-admissible mapping if 𝑥, 𝑦, 𝑧 ∈ 𝑋,  

      𝛼(𝑥, 𝑦, 𝑧) ≥ 1 ⟹ 𝛼(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≥ 1.  

 

Definition 2.2 Let (𝑋, 𝑑) be a 2-metric space 

and 𝑇: 𝑋 → 𝑁(𝑋) a multivalued mapping since 

𝛼: 𝑋 × 𝑋 × 𝑋 → [0, ∞). For 𝑥0, 𝑦0 and 𝑧0 ∈ 𝑋 

the mapping 𝑇 called multivalued 𝛼-admissible 

if 

𝛼(𝑥, 𝑦, 𝑧) ≥ 1 ⟹ 𝛼(𝑥1, 𝑦1, 𝑧1) ≥ 1   

where 𝑥1 ∈ 𝑇𝑥0, 𝑦1 ∈ 𝑇𝑦0 and  𝑧1 ∈ 𝑇𝑧0 

 

Definition 2.3 Let (𝑋, 𝑑), (𝑌, 𝜎) are two 2-

metric spaces, 𝑇: 𝑋 → 𝑆𝐵(𝑌) and 𝐻 is the 

Hausdorff metric on 𝑆𝐵(𝑌). The mapping 𝑇 is 

said to be continuous at 𝑥 ∈ 𝑋 if for any 

sequence {𝑥𝑛} in 𝑋, 𝐻(𝑇𝑥, 𝑇𝑥𝑛, 𝑇𝑥𝑛+1) → 0 

whenever 𝑑(𝑥, 𝑥𝑛, 𝑥𝑛+1) → 0 as 𝑛 → ∞.  

 

Theorem 2.1 Let (𝑋, 𝑑) be a complete 2-metric 

space, 𝛼: 𝑋 × 𝑋 × 𝑋 → [0, ∞) and 𝑇: 𝑋 → 𝑆(𝑋) 

a multivalued mapping. Let 𝑇 be multivalued 𝛼-

admissible and continuous. Let 𝜓: [0, ∞) →
[0, ∞) be a nondecreasing function and 

continuos with ∑∞
𝑛=1 𝜓𝑛(𝑡) < ∞ and 𝜓(𝑡) < 𝑡 

for each 𝑡 > 0. Suppose that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋,  

 𝛼(𝑥, 𝑦, 𝑧)𝐻(𝑇𝑥, 𝑇𝑦, 𝑇𝑧) ≤     

𝜓(𝑚𝑎𝑥{𝑑(𝑥, 𝑦, 𝑧), 𝐷(𝑥, 𝑇𝑥, 𝑇2𝑥), 𝐷(𝑦, 𝑇𝑦, 𝑇2𝑦), 
𝐷(𝑥, 𝑦, 𝑇𝑧) − 𝐷(𝑥, 𝑧, 𝑇𝑧)

2
, 

𝐷(𝑦, 𝑇𝑦, 𝑇2𝑦)[1 + 𝐷(𝑥, 𝑇𝑥, 𝑇2𝑥)]

1 + 𝑑(𝑥, 𝑦, 𝑧)
, 

     
𝐷(𝑧, 𝑇𝑦, 𝑇2𝑥)[1 + 𝐷(𝑥, 𝑇𝑦, 𝑇2𝑧)]

1 + 𝑑(𝑥, 𝑦, 𝑧)
}).              (1) 

 

 if there exist 𝑥0 ∈ 𝑋, 𝑥1 ∈ 𝑇𝑥0 and 𝑥2 ∈ 𝑇𝑥1 

such that 𝛼(𝑥0, 𝑥1, 𝑥2) ≥ 1, then 𝑇 has a fixed 

point in 𝑋. 

 

Proof From the condition, there exist 𝑥0 ∈
𝑋, 𝑥1 ∈ 𝑇𝑥0 and 𝑥2 ∈ 𝑇𝑥1 such that 

𝛼(𝑥0, 𝑥1, 𝑥2) ≥ 1. By lemma 2.2, for 𝑥2 ∈ 𝑇𝑥1 

there exists 𝑥3 ∈ 𝑇𝑥2 such that 

𝑑(𝑥1, 𝑥2, 𝑥3) ≤ 𝛼(𝑥0, 𝑥1, 𝑥2)𝐻(𝑇𝑥0, 𝑇𝑥1, 𝑇𝑥2). 

Employ (1) and applying the monotone 

property of 𝜓, we have  

 

 

𝑑(𝑥1, 𝑥2, 𝑥3) ≤ 𝛼(𝑥0, 𝑥1, 𝑥2)𝐻(𝑇𝑥0, 𝑇𝑥1, 𝑇𝑥2) 

 ≤
𝜓(max {𝑑(𝑥0, 𝑥1, 𝑥2), 𝐷(𝑥0, 𝑇𝑥0, 𝑇2𝑥0), 

𝐷(𝑥1, 𝑇𝑥1, 𝑇2𝑥1), 
𝐷(𝑥0, 𝑥1, 𝑇𝑥2) − 𝐷(𝑥0, 𝑥2, 𝑇𝑥2)

2
, 

𝐷(𝑥1, 𝑇𝑥1, 𝑇2𝑥1)[1 + 𝐷(𝑥0, 𝑇𝑥0, 𝑇2𝑥0)]

1 + 𝑑(𝑥0, 𝑥1, 𝑥2)
, 

𝐷(𝑥2, 𝑇𝑥1, 𝑇2𝑥0)[1 + 𝐷(𝑥0, 𝑇𝑥1, 𝑇2𝑥2)]

1 + 𝑑(𝑥0, 𝑥1, 𝑥2)
}) 

  

≤ 𝜓(max {𝑑(𝑥0, 𝑥1, 𝑥2), 𝑑(𝑥0, 𝑥1, 𝑥2), 
𝑑(𝑥1, 𝑥2, 𝑥3), 

𝑑(𝑥0, 𝑥1, 𝑥3) − 𝑑(𝑥0, 𝑥2, 𝑥3)

2
, 

𝑑(𝑥1, 𝑥2, 𝑥3)[1 + 𝑑(𝑥0, 𝑥1, 𝑥2)]

1 + 𝑑(𝑥0, 𝑥1, 𝑥2)
, 

𝑑(𝑥2, 𝑥2, 𝑥2)[1 + 𝑑(𝑥0, 𝑥2, 𝑥4)]

1 + 𝑑(𝑥0, 𝑥1, 𝑥2)
}) 

≤ 𝜓(max {𝑑(𝑥0, 𝑥1, 𝑥2), 𝑑(𝑥1, 𝑥2, 𝑥3),  
𝑑(𝑥0, 𝑥1, 𝑥2) + 𝑑(𝑥0, 𝑥2, 𝑥3) +

𝑑(𝑥1, 𝑥2, 𝑥3) − 𝑑(𝑥0, 𝑥2, 𝑥3)

2
}) 

≤ 𝜓(𝑚𝑎𝑥{𝑑(𝑥0, 𝑥1, 𝑥2), 𝑑(𝑥1, 𝑥2, 𝑥3)}). 
  

It follows that                          
                𝑑(𝑥1, 𝑥2, 𝑥3)
≤ 𝜓(𝑚𝑎𝑥{𝑑(𝑥0, 𝑥1, 𝑥2), 𝑑(𝑥1, 𝑥2, 𝑥3)}).             (2) 
 

Now,if  

max{𝑑(𝑥0, 𝑥1, 𝑥2), 𝑑(𝑥1, 𝑥2, 𝑥3)} =
𝑑(𝑥1, 𝑥2, 𝑥3) 

 

Then from (2) and property of 𝜓 

𝑑(𝑥1, 𝑥2, 𝑥3) ≤ 𝜓(𝑑(𝑥1, 𝑥2, 𝑥3) < 𝑑(𝑥1, 𝑥2, 𝑥3),  

 

which is a contradiction. Hence 

𝑑(𝑥1, 𝑥2, 𝑥3) ≤ 𝑑(𝑥0, 𝑥1, 𝑥2). Then from (2), we 

have  

 

𝑑(𝑥1, 𝑥2, 𝑥3) ≤ 𝜓𝑑(𝑥0, 𝑥1, 𝑥2).                     (3) 

 

Since 𝑥1 ∈ 𝑇𝑥0, 𝑥2 ∈ 𝑇𝑥1 and 𝑥3 ∈ 𝑇𝑥2 and 

𝛼(𝑥0, 𝑥1, 𝑥2) ≥ 1, the 𝛼-admissibility of 𝑇 

implies that 𝛼(𝑥1, 𝑥2, 𝑥3) ≥ 1. By Lemma (2.2), 

for 𝑥3 ∈ 𝑇𝑥2 there exists 𝑥4 ∈ 𝑇𝑥3 such that  

                        𝑑(𝑥2, 𝑥3, 𝑥4)
≤ 𝛼(𝑥1, 𝑥2, 𝑥3)𝐻(𝑇𝑥1, 𝑇𝑥2, 𝑇𝑥3). 
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employ (1) and using the monotone property of 

𝜓, we have  

𝑑(𝑥2, 𝑥3, 𝑥4) ≤ 𝛼(𝑥1, 𝑥2, 𝑥3)𝐻(𝑇𝑥1, 𝑇𝑥2, 𝑇𝑥3) 
  

≤ 𝜓(max {𝑑(𝑥1, 𝑥2, 𝑥3), 𝐷(𝑥1, 𝑇𝑥1, 𝑇2𝑥1), 
𝐷(𝑥2, 𝑇𝑥2, 𝑇2𝑥2), 

𝐷(𝑥1, 𝑥2, 𝑇𝑥3) − 𝐷(𝑥1, 𝑥3, 𝑇𝑥3)

2
, 

𝐷(𝑥2, 𝑇𝑥2, 𝑇2𝑥2)[1 + 𝐷(𝑥1, 𝑇𝑥1, 𝑇2𝑥1)]

1 + 𝑑(𝑥1, 𝑥2, 𝑥3)
, 

𝐷(𝑥3, 𝑇𝑥2, 𝑇2𝑥1)[1 + 𝐷(𝑥1, 𝑇𝑥2, 𝑇2𝑥3)]

1 + 𝑑(𝑥1, 𝑥2, 𝑥3)
}) 

≤ 𝜓(max {𝑑(𝑥1, 𝑥2, 𝑥3), 𝑑(𝑥1, 𝑥2, 𝑥3), 

𝑑(𝑥2, 𝑥3, 𝑥4),
𝑑(𝑥1, 𝑥2, 𝑥4) − 𝑑(𝑥1, 𝑥3, 𝑥4)

2
, 

𝑑(𝑥2, 𝑥3, 𝑥4)[1 + 𝑑(𝑥1, 𝑥2, 𝑥3)]

1 + 𝑑(𝑥1, 𝑥2, 𝑥3)
, 

𝑑(𝑥3, 𝑥3, 𝑥3)[1 + 𝑑(𝑥1, 𝑥3, 𝑥5)]

1 + 𝑑(𝑥1, 𝑥2, 𝑥3)
}) 

≤ 𝜓(𝑚𝑎𝑥{𝑑(𝑥1, 𝑥2, 𝑥3), 𝑑(𝑥2, 𝑥3, 𝑥4), 
𝑑(𝑥1, 𝑥2, 𝑥3) + 𝑑(𝑥1, 𝑥3, 𝑥4) +

𝑑(𝑥2, 𝑥3, 𝑥4) − 𝑑(𝑥1, 𝑥3, 𝑥4)

2
}) 

 ≤
𝜓(𝑚𝑎𝑥{𝑑(𝑥1, 𝑥2, 𝑥3), 𝑑(𝑥2, 𝑥3, 𝑥4)}).                                        (4) 

Suppose that 𝑑(𝑥1, 𝑥2, 𝑥3) < 𝑑(𝑥2, 𝑥3, 𝑥4). 
Then 𝑑(𝑥2, 𝑥3, 𝑥4) ≠ 0 and it folows by (4) and 

property of 𝜓 that  

     𝑑(𝑥2, 𝑥3, 𝑥4) ≤ 𝜓(𝑑(𝑥2, 𝑥3, 𝑥4)) 

                             < 𝑑(𝑥2, 𝑥3, 𝑥4), 

which is a contradiction. Then from (4) we have  

 

 𝑑(𝑥2, 𝑥3, 𝑥4) ≤ 𝜓(𝑑(𝑥1, 𝑥2, 𝑥3)).                (5) 
 

Since 𝑥2 ∈ 𝑇𝑥1, 𝑥3 ∈ 𝑇𝑥2 and 𝑥4 ∈ 𝑇𝑥3 and 

𝛼(𝑥1, 𝑥2, 𝑥3) ≥ 1, the 𝛼-admissibility of 𝑇 

implies that 𝛼(𝑥2, 𝑥|3, 𝑥4) ≥ 1. Continuing this 

process, we build up a sequence {𝑥𝑛} such that 

for all 𝑛 ≥ 0 

 

          𝑥𝑛+1 ∈ 𝑇𝑥𝑛,                                             (6) 
 

   𝛼(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+2) ≥ 1,                                (7) 

 

and  

 

𝑑(𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+3)
≤ 𝜓(𝑑(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+2)). (8) 

 

By copied operation (8) and monotone property 

of 𝜓, we have  

𝑑(𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+3)

≤ 𝜓(𝑑(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+2))      

≤ 𝜓2(𝑑(𝑥𝑛−1, 𝑥𝑛, 𝑥𝑛+1)) ≤. .. 
                 ≤ 𝜓𝑛+1(𝑑(𝑥0, 𝑥1, 𝑥2)). 

 

Then by a property of 𝜓, we have    

  ∑
𝑛

𝑑(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+2)

≤   ∑
𝑛

𝜓𝑛(𝑑(𝑥0, 𝑥1, 𝑥2)) < ∞. 

 

This appearance that {𝑥𝑛} is a Cauchy 

sequence. From the completness of 𝑋, there 

exists 𝑧 ∈ 𝑋 such that 

  

         𝑥𝑛 → 𝑧 as 𝑛 → ∞.                                      (9) 

 

Since 𝑥𝑛+1 ∈ 𝑇𝑥𝑛, we have  

𝐷(𝑥𝑛+2, 𝑥𝑛+1, 𝑇𝑧) ≤ 𝐻(𝑇𝑥𝑛+1, 𝑇𝑥𝑛, 𝑇𝑧). 
Taking limit as 𝑛 → ∞ in the raised inequality, 

and accepting (9) and the continuity of 𝑇, we 

have  

 

𝐷(𝑧, 𝑧, 𝑇𝑧) = lim
𝑛→∞

𝐷(𝑥𝑛+2, 𝑥𝑛+1, 𝑇𝑧) ≤

lim
𝑛→∞

𝐻(𝑇𝑥𝑛+1, 𝑇𝑥𝑛, 𝑇𝑧) = 0,  

that is, 𝐷(𝑧, 𝑧, 𝑇𝑧) = 0.  
 

Since 𝑇𝑧 ∈ 𝑆(𝑥), 𝑇𝑧 is compact and hence 𝑇𝑧 is 

closed, that is, 𝑇𝑧 = 𝑇𝑧, where 𝑇𝑧 denotes the 

closure of 𝑇𝑧. Now, 𝐷(𝑧, 𝑧, 𝑇𝑧) = 0 implies 

that 𝑧 ∈ 𝑇𝑧 = 𝑇𝑧, that is, 𝑧 is a fixed point ot 𝑇.  
 

Theorem 2.2 Let (𝑋, 𝑑) be a 2-metric space, 

𝑇𝑖: 𝑋 → 𝑆(𝑋), 𝑖 = 1,2 be two multivalued 

mapping and 𝛼: 𝑋 × 𝑋 × 𝑋 → [0, ∞). Let each 

𝑇𝑖, 𝑖 = 1,2 be continuous and multivalued 𝛼-

admissible. Let 𝜓: [0, ∞) → [0, ∞) be a 

continuous and nondecreasing function with 

𝛷(𝑡) = ∑∞
𝑛=1 𝜓𝑛(𝑡) < ∞, 𝛷(𝑡) → 0 as 𝑡 → 0 

and 𝜓(𝑡) < 𝑡 for each 𝑡 > 0. Suppose that  

(i) each 𝑇𝑖, 𝑖 = 1,2 satisfing (1), that is, for all 

𝑥, 𝑦 and 𝑧 ∈ 𝑋,  

   𝛼(𝑥, 𝑦, 𝑧)𝐻(𝑇𝑖𝑥, 𝑇𝑖𝑦, 𝑇𝑖𝑧) ≤
𝜓(𝑚𝑎𝑥{𝑑(𝑥, 𝑦, 𝑧), 𝐷(𝑥, 𝑇𝑖𝑥, 𝑇𝑖

2𝑥), 𝐷(𝑦, 𝑇𝑖𝑦, 𝑇𝑖
2𝑦), 

𝐷(𝑥, 𝑦, 𝑇𝑖𝑧) − 𝐷(𝑥, 𝑧, 𝑇𝑖𝑧)

2
, 
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𝐷(𝑦, 𝑇𝑖𝑦, 𝑇𝑖
2𝑦)[1 + 𝐷(𝑥, 𝑇𝑖𝑥, 𝑇𝑖

2𝑥)]

1 + 𝑑(𝑥, 𝑦, 𝑧)
, 

𝐷(𝑧, 𝑇𝑖𝑦, 𝑇𝑖
2𝑥)[1 + 𝐷(𝑥, 𝑇𝑖𝑦, 𝑇𝑖

2𝑧)]

1 + 𝑑(𝑥, 𝑦, 𝑧)
}); 

 

(ii) for any 𝑥 ∈ 𝐹(𝑇1),and 𝑦 ∈ 𝑇2𝑥, we have 

𝛼(𝑥, 𝑦, 𝑧) ≥ 1 whenever 𝑧 ∈ 𝑇3𝑥; and for any 

𝑥 ∈ 𝐹(𝑇2) and 𝑦 ∈ 𝑇1𝑥, we have 𝛼(𝑥, 𝑦, 𝑧) ≥ 1 

whenever 𝑧 ∈ 𝑇3𝑥. 

Then 𝐻(𝐹(𝑇1), 𝐹(𝑇2), 𝐹(𝑇3)) ≤ Φ(𝑤), where 

     𝑤 = sup𝑥∈𝑋𝐻(𝑇1𝑥, 𝑇2𝑥, 𝑇3𝑥). 

 

Proof From Theorem 2.1, the set of fixed point 

of 𝑇𝑖(𝑖 = 1,2) are non-empty, that is, 𝐹(𝑇𝑖) ≠
∅, for 𝑖 = 1,2. Let 𝑦0 ∈ 𝐹(𝑇1), that is, 𝑦0 ∈
𝑇1𝑦0. Then by Lemma 2.1, there exists 𝑦1 ∈
𝑇2𝑦0 and 𝑦2 ∈ 𝑇3𝑦0 such that  

 

𝑑(𝑦0, 𝑦1, 𝑦2) ≤ 𝐻(𝑇1𝑦0, 𝑇2𝑦0, 𝑇3𝑦0).           (10) 
 

Since 𝑦0 ∈ 𝐹(𝑇1), 𝑦1 ∈ 𝑇2𝑦0 and 𝑦2 ∈ 𝑇3𝑦0, by 

condition (ii) ,we have 𝛼(𝑦0, 𝑦1, 𝑦2) ≥ 1. By 

lemma 2.2, for 𝑦1 ∈ 𝑇2𝑦0, 𝑦2 ∈ 𝑇2𝑦1 there 

exists 𝑦3 ∈ 𝑇2𝑦2 such that  

  𝑑(𝑦1, 𝑦2, 𝑦3) ≤
𝛼(𝑦0, 𝑦1, 𝑦2)𝐻(𝑇2𝑦0, 𝑇2𝑦1, 𝑇2𝑦2).  

 

Then contend similarly as in the proof of 

Theorem 2.1, we construct a sequence 𝑦𝑛 such 

that for all 𝑛 ≥ 0 

      𝑦𝑛+1 ∈ 𝑇2𝑦𝑛,                                              (11) 
 

      𝛼(𝑦𝑛, 𝑦𝑛+1𝑦𝑛+2) ≥ 1,                               (12) 

 

𝑑(𝑦𝑛+1, 𝑦𝑛+2, 𝑦𝑛+3)

≤ 𝜓(𝑑(𝑦𝑛, 𝑦𝑛+1, 𝑦𝑛+2))    (13) 

 

and 

𝑑(𝑦𝑛+1, 𝑦𝑛+2, 𝑦𝑛+3) ≤ 𝜓(𝑑(𝑦𝑛, 𝑦𝑛+1, 𝑦𝑛+2))
≤ 𝜓2(𝑑(𝑦𝑛−1, 𝑦𝑛, 𝑦𝑛+1)) ≤. .. 

           ≤ 𝜓𝑛+1(𝑑(𝑦0, 𝑦1, 𝑦2)).                     (14) 
 

Contend similarly as in the proof of Theorem 

2.1, we prove that {𝑦𝑛} is a Cauchy sequence 𝑋 

and there exists 𝑣 ∈ 𝑋 such that  

 

 𝑦𝑛 → 𝑣 as 𝑛 → ∞,                             (15)  

 

further v is a fixed point of 𝑇2, that is, 𝑣 ∈ 𝑇2𝑣. 

Now, from (10) and the definition of 𝑤, we 

have  

 

 𝑑(𝑦0, 𝑦1, 𝑦2) ≤ 𝐻(𝑇1𝑦0, 𝑇2𝑦0, 𝑇3𝑦0) ≤ 𝑤
= sup𝑥∈𝑋𝐻(𝑇1𝑥, 𝑇2𝑥, 𝑇3𝑥).                              (16) 

 

Repeatedly, by the triangle inequality and using 

(14), we have  

𝑑(𝑦0, 𝑦1, 𝑣) ≤ ∑
𝑛

𝑖=0
(𝑑(𝑦𝑖, 𝑦𝑖+1, 𝑦𝑖+2))

+ 𝑑(𝑦𝑛, 𝑦𝑛+2, 𝑣)
+ 𝑑(𝑦𝑛+1, 𝑦𝑛+2, 𝑣) 

                    ≤ ∑𝑛
𝑖=0 𝜓𝑖(𝑑(𝑦0, 𝑦1, 𝑦2)) +

                        𝑑(𝑦𝑛, 𝑦𝑛+2, 𝑣 + 𝑑(𝑦𝑛+1, 𝑦𝑛+2, 𝑣). 

 

Taking limit 𝑛 → ∞ in the above inequality, 

using (15),(16) and the propertyies of 𝜓, we 

have  

𝑑(𝑦0, 𝑦1, 𝑣) ≤ ∑∞
𝑖=0 𝜓𝑖(𝑑(𝑦0, 𝑦1, 𝑦2)) ≤

∑∞
𝑖−0 𝜓𝑖(𝑤) = Φ(𝑤). 

 

Thus, given arbitrary 𝑦0 ∈ 𝐹(𝑇1), we can find 

𝑣 ∈ 𝐹(𝑇2) for which  

𝑑(𝑦0, 𝑦1, 𝑣) ≤ Φ(𝑤). 
 

Similarly, we can prove that for arbitrary 𝑐0 ∈
𝐹(𝑇2), there exists a 𝑝 ∈ 𝐹(𝑇1) such that 

𝑑(𝑐0, 𝑐1, 𝑝) ≤ Φ(𝑤). Hence, we conclude that 

𝐻(𝐹(𝑇1), 𝐹(𝑇2, 𝐹(𝑇3))) ≤ Φ(𝑤). 
 

 

3 Conclusion 
In this paper we established the existence of fixed 

points of multivalued 𝛼-admissible mappings in 2-

metric spaces. and we investigated the stability of 

fixed point, also we introduced and studied the 

notion of multivalued 𝛼-admissible in 2-metric 

spaces   
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