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1 Introduction

One of the most valuable findings is the popular
Banach contraction mapping principle [1] in
nonlinear analysis. It was used in many different
mathematical branches and in the general physical
sciences. Metric fixed-point theory developed in
various directions by mathematicians over the years.
A comprehensive account is provided of that
development Kirk and Sims in the Handbook [2].
Extended the contraction mapping theory of Banach
by the usage of a legal Contractive Situation by
Dass and Gupta [3]. Abu-Donia establishes some
fixed point theorems in some types of metric spaces
[cf.4-8]. Aubin and Cellina discuss some elements
of this research in their book [9]. Nadler[10]
expanded the Banach principle of contraction to set-
valued mappings by the Hausdorff metric. Driven
by Nadler’s results, much research is done on fixed
points multi-valued functions were conducted using
this Hausdorff metric in different directions by
multiple authors [11-15]. Stability is a approach
associated with the limiting attitude of a system. It
has been studied in various contexts of discrete and
continuous dynamical systems [16,17]. Studies of
the relation between the convergence of a mapping
sequence and its fixed Points, known as stability of
fixed points, were also widely studied in different
settings [18-20]. the set of fixed points of
multivalued mappings becomes bigger and hence
more important for the study of stability. In [21]
Samet et al. presented the definition of a-admissible
mapping and a new group contractive mapping type
known as a-—-contractive mapping type.[21]
Expansion and generalization of current fixed-point
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literature results, in fact, the Banach’s contraction
principle. In addition, Karapinar and Samet [22]
widespreaded the a -y -contractive type mappings
and access assorted fixed point theorems for this
generalized class of contractive mappings. Since
then, fixed point results of a-admissible mappings
have been established, such as [23,24]..
The concepts from setvalued analysis that we use in
this paper are as follows. Let (X,d) be a metric
space. Then

NX) =
{A: Ais a non empty subset of X},

S(X) =
{A: A is a non empty compact subset of X},

B(X) =
{A: A is a non empty bounded subset of X} and

SB(X) =

{A: A is a non empty closed and bounded subset of X}.

For x € X and B € N(X), the function D(x, B), and
for A, B € SB(X), the function H (A, B) are defined

as follows:
D(x,B) = inf{d(x,y):y € B}

and
H(A, B) = max {sup,e,D(x, B), supyepD (¥, A)}.

H is established the Hausdorff metric induced by the
metric d on SB(X)[23]. encourage, if (X,d) is a
complete then SB(X), H is also complete.

The following lemma Nadler[18] generated by
Nadler[18]
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Lemma 1.1 [18] Let (X,d) be a metric space
and A,B € SB(X). Let g > 1. next for every
x € A, there exists y € B so that d(x,y) <
qH (A, B).

In [18] Nadler certain that Lemma 1.1 is also
accurate for g > 1, wherever A, B € S(X). Here
we current the lemma

Lemma 1.2 [25] Let (X,d) be a metric space
and A,B € SB(X). Let g = 1. next for every
X € A, there exists y € B so that d(x,y) <
qH (A, B).

The following is aftereffect of Lemma 1.2

Lemma 1.3 [25] Let two non-empty compact
subsets of a metric space (X, d) are A and B and
T is a multivalued mapping since T: A — S(B)
Let g > 1. Next for a,b € A and x € Ta, there
endure y € Thsothat d(x,y) < qH(Ta,Tb).

Definition 1.1 [21]. Let T: X - X and a: X X
X — [0, ) be a function. We express that T is
an a-admissible mapping if x,y € X,
a(x,y)21= a(Tx,Ty) = 1.

In the following we characterize multivalued a-
admissible mapping. N(X) in the interpretation
stand for the collection of all nonempty subsets
of a nonempty set X.

Definition 1.2 [25]. Let T:X->N(X) a
multivalued mapping since X is non-empty set
and a:X XX - [0,00). For x,,y,€X the
mapping T called multivalued a-admissible if
a(x,y) =2 1= a(xy,y,) =1 where x; € Tx,
and y; € Tyy.

Definition 1.3 [25]. Let T:X — SB(Y) be a
multivalued mapping, since (X,0),(Y,d) are
two metric spaces and H is the Hausdorff metric
on SB(Y). The mapping T is called continuous
at x € X if for any sequence {x,} in X and
H(Tx,Tx,;) = 0when o(x,x,) > 0asn - o

Definition 1.4 [25] Let p:X - X a single-
valued mapping, T:X — N(X) a multivalued
mapping and X is a non-empty set. A point x €
X is a fixed point of p (resp. T) iff x = px
(resp. x € Tx).
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2 Main Results
for x € X and B,C € N(X), for A,B and C €
SB(X) the functions

H(A,B,C)
= max{supxesD(x, B, C),sup,egD(y, 4, C),
supzecD(z, A, B)},
where
D(x,B,C) =inf{d(x,y,z):y € B,z € C}.

H is known as the Hausdorff metric induced by
the 2-metric d on SB(X).If (X,d) is complete
then (SB(X), H) is also complete.

We established the following lemma.

Lemma 2.1 Let (X, d) be a 2-metric space and
A,B and C € SB(X). Let g > 1. next for every
x € A, there exists y € B and z € C so that
d(x,y,z) < qH(A, B, ().

proof. Let 4, B and C € S(X). and x € A. Since
A,B and C € S(X), the resultbis true if g > 1.
So, we shall prove the result for g = 1. Now,
we know that
H(A,B,0)
= max{supyesD (x, B, C), sup,epD (¥, 4, C),
sup,ecD (2,4, B)}.

From the definition,

p=D(x,B,C) =inf{d(x,y,z):y €EB,z €

C} < H(A,B,C). Then there exists a sequence
{y} in B such that d(x,y,,z) - p as n — oo.
Since B is compact, {y,} has a convergent
subsequence {yn}. Hunce there exists y € X
such that y,4)—>y as k—>o. As B is
compact, it is closed and y € B. Now,
limd(x,yn,2z) = p

implies that Ili_r)rolod(x, Yn(k» Z) = p, that is,
d(x,y,z) =p=D(x,B,C) < H(A,B,C).
Hence the proof is completed.

the following is consequence of Lemma 2.1

Lemma 2.2 Let A,B and C are non-empty
compact subsets of a 2-metric space (X,d),
where R=BUC and T is a multivalued
mapping since T: A - S(R) Let g > 1. Next for
a,b and c € A,x € Ta there endure y €Th
and z € Tcsothatd(x,y,z) < qH(Ta,Th, Tc).

Volume 21, 2022



WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2022.21.5

Definition 2.1 Let T:X - X and a: X X X X
X — [0,0) be a function. We say that T is an
a-admissible mapping if x,y,z € X,

a(x,y,z) 21 = a(Tx, Ty, Tz) = 1.

Definition 2.2 Let (X,d) be a 2-metric space
and T: X - N(X) a multivalued mapping since
a:X XX xX - [0,0). For x,,y, and z5 € X
the mapping T called multivalued a-admissible
if

a(x,y,z) =21= a(x1,y1,z1) =1
where x; € Tx,, y; € Typand z; € Tz,

Definition 2.3 Let (X,d),(Y,0) are two 2-
metric spaces, T:X — SB(Y) and H is the
Hausdorff metric on SB(Y). The mapping T is
said to be continuous at x € X if for any
sequence {x,} in X, H(Tx,Tx,, Txps1) = 0
whenever d(x, x,, X,4+1) = 0asn — oo,

Theorem 2.1 Let (X, d) be a complete 2-metric
space, a: X X X X X = [0,00) and T: X — S(X)
a multivalued mapping. Let T be multivalued a-
admissible and continuous. Let :[0,00) =
[0,0) be a nondecreasing function and
continuos with 7, Y™ (t) < oo and Y(t) <t
for each t > 0. Suppose that for all x,y, z € X,
a(x,y,z)H(Tx, Ty, Tz) <

Y(max{d(x,y,z),D(x,Tx,T?x),D(y, Ty, T?y),

D(x,y,Tz) —D(x,2z,Tz)

> )

D(y, Ty, T?y)[1 + D(x,Tx, T?x)]
1+d(x,y,2)
D(z, Ty, T*x)[1+ D(x,Ty, T?*z)]
1+d(x,y,2)

)

if there exist x, € X,x; € Tx, and x, € Tx;
such that a(xg, x1,x,) = 1, then T has a fixed
point in X.

Proof From the condition, there exist x, €
X,x; €Tx, and x, €Tx; such that
a(xy, xq,x3) = 1. By lemma 2.2, for x, € Tx;
there exists x; € Tx, such that

d(xq, %9, x3) < a(xg, x4, x2)H(Txg, Tx1, Tx3).
Employ (1) and applying the monotone
property of ¥, we have
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d(x1,%2,%3) < a(xg, xq1,x2)H(Txq, Tx1, Tx3)
<
¥ (max{d (xo, X1, X2), D (xo, Txo, T*xo),
D(xq,Txy, T?xy),
D(xg, %1, Tx3) — D (X0, %2, Tx3)
2 )
D(xq,Tx1, T?x1)[1 + D(xg, Txo, T?x0)]
1+ d(xg, %1, x3)
D (x5, Txy, T?x9)[1 + D(xo, Txq, T%x3)]

1+ d(xg,x1,%3)

)

)]

< Y(max{d(xo, x1, x2), d(xg, X1, X2),
d(x1,x2,X3),
d(x01x11x3) - d(xOIxZIx3)

> )

d(x1, %2, x3)[1 + d(xg, X1, x3)]
1+ d(xg,xq1,x3)

d(xz, X2, %2)[1 + d(xg, X2, X4)]
1+ d(xg,xq1,x3) )

< Y (max{d(xg, x1, X2), d(x1, X2, X3),

d(xg,x1,%5) + d(xg, X3, x3) +

d(x1, %3, %3) — d(xg, X3, X3)

. )

< Y(max{d(xg, x1,x3), d(x1, X2, X3)}).

)

It follows that

d(x1, %3, x3)
< Y(max{d(xo, x1,x2), d(X1, X2, X3)}). (2)
Now, if
max{d (xg, x1,x3), d(x1, %3, x3)} =
d(xl' X2, X3)

Then from (2) and property of ¢
d(xq, %2, x3) < P(d(x1, X2, X3) < d(x1, X2, X3),

which is a contradiction. Hence
d(xq1, x5, %x3) < d(xg, X1, x5). Then from (2), we
have

d(x1, X2, x3) < Pd(xg, X1, X3). 3
Since x; € Txy,x, € Tx; and x3 € Tx, and
a(xg,x1,%3) =1, the a-admissibility of T
implies that a (x4, x5, x3) = 1. By Lemma (2.2),
for x5 € Tx, there exists x, € Tx; such that

d(xz, X3, X4)
< a(xq, x5, x3)H(Txq, Txy, Tx3).
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employ (1) and using the monotone property of
Y, we have
d(x5,x3,%4) < a(x1,%5,x3)H(Txq, Tx5, Tx3)

< Y(max{d(xq,x,, x3), D (x1, Tx1, T?x;),
D(x,,Tx,,T?x5,),
D (xy, x5, Tx3) — D(xq, %3, Tx3)
2 )
D (x5, Txy, T?x,)[1 + D(x1, Txy, T?x,)]
1+ d(xq,x5,x3)
D(x3,Txy, T?x)[1 + D (x4, Tx,, T?x3)]
1+ d(xq,x2,x3)
< Y(max{d (x1, x2, X3), d(x1, X2, X3),
d(xq1,x3,%x,) — d(xq, X3, X4)
d(x2'x3'x4)' 2 )
d(x3,x3,%4)[1 + d (%1, X2, x3)]
1+ d(xq,x5,x3)
d(x3,x3,x3)[1 + d(xq, X3, xs)]})
1+ d(xq,x2,x3)
< Y(max{d(xy, X2, x3), d(x2, X3, X4),
d(xq, %2, x3) + d(xq, x3,%,) +
d(x3,%3,%4) — d(xq, X3, X4)
2

)

1))

)

)

<

Y(max{d(xy, X2, x3), d (X2, X3, %4)}).
Suppose  that  d(xq, x5, x3) < d(xy, X3,X4).
Then d(x;, x3,x,) # 0 and it folows by (4) and
property of ¥ that
d(xz,x3,x4) < ll’(d(xzf X3, X4))
< d(xy,x3,%4),
which is a contradiction. Then from (4) we have

d(x2,x3,%4) < P(d(x1, X2, x3)). (5)
Since x, € Txy,x3 € Tx, and x, € Tx; and
a(xq,x,,x3) =1, the a-admissibility of T
implies that a(x,, x|, x4) = 1. Continuing this

process, we build up a sequence {x,} such that
foralln >0

Xn+1 € Txp, (6)

a(xn: xn+1jxn+2) = 1' (7)

and

d(xn+1: Xn+2) xn+3)
< lp(d(xn: Xn+1) xn+2))' (8)

E-ISSN: 2224-2880

Hany A. Atia, Mona S. Bakry,
Aya A. Abd-Elrashed

By copied operation (8) and monotone property
of Y, we have
d(Xnt1) Xnt2) Xns3)
= l/}(d(xn: xn+1'xn+2))
< lpz(d(xn—l'xn' xn+1)) <.
< PY™H(d (x0, X1, X2)).

Then by a property of i, we have

d(xn' Xn+1, xn+2)

< D WG xx) < o

This appearance that {x,} is a Cauchy
sequence. From the completness of X, there
exists z € X such that

X, > Zzasn — o, 9

Since x4+, € Tx,, we have

D(xn+2' Xn+1s TZ) = H(Txn+1' Txn' TZ)-
Taking limit as n — oo in the raised inequality,
and accepting (9) and the continuity of T, we
have

D(z, £,4ﬁz) = lim D(xp 42, Xp41,T2) <
n—-oo
lim H(Txp44,Tx,,Tz) = 0,
n—oo
thatis, D(z,z,Tz) = 0.

Since Tz € S(x), Tz is compact and hence Tz is
closed, that is, Tz = Tz, where Tz denotes the
closure of Tz. Now, D(z,z,Tz) =0 implies
that z € Tz = Tz, that is, z is a fixed point ot T.

Theorem 2.2 Let (X,d) be a 2-metric space,
Ti:X - S(X), i=12 be two multivalued
mapping and a: X X X X X — [0, ). Let each
T;,i = 1,2 be continuous and multivalued a-
admissible. Let :[0,00) > [0,0) be a
continuous and nondecreasing function with
D) =X YH(t) < oo, d(t)>0ast—-0
and Y (t) < t for each t > 0. Suppose that
(i) each T;,i = 1,2 satisfing (1), that is, for all
x,yand z € X,
a(x,y,z)H(Tix, T;y, Tiz) <
(max{d(x,y,z), D (x, Tix, T2x), D(y, Tyy, T2Y),
D(x,y,T;z) — D(x,2,T;z)
> )
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D(y, Tiy, T?y)[1 + D (x, Tyx, T x)]
1+d(x,y,2)
D(z Ty, T?x)[1 + D(x, T;y, T?2)]
1+d(x,y,2)

)

D

(ii) for any x € F(T;),and y € T,x, we have

a(x,y,z) =1 whenever z € T;x; and for any

x € F(T,) and y € Tyx, we have a(x,y,z) = 1

whenever z € T;x.

Then H(F(Ty),F(T,),F(T3)) < ®(w), where
W = sup,exH(T1x, Tyx, T3x).

Proof From Theorem 2.1, the set of fixed point
of T;(i = 1,2) are non-empty, that is, F(T;) #
@, for i =1,2. Let y, € F(T,), that is, y, €
Tiyo.- Then by Lemma 2.1, there exists y; €
T,y, and y, € T3y, such that

d(Yo,y1,¥Y2) < H(T1Y0, T2Y0, T5Y0)- (10)

Since y, € F(T;), y1 € T,y, and y, € T3y,, by
condition (ii) ,we have a(yy,v1,y,) = 1. By
lemma 2.2, for y, € T,y, v, € T,y,; there
exists y; € T,y, such that

d(y1,Y2,¥3) <
a(yo, y1, ¥2)H(T2¥0, T2y1, T2Y2)-

Then contend similarly as in the proof of
Theorem 2.1, we construct a sequence y, such
that foralln > 0

Yn+1 € szn' (11)
a(yn» yn+1yn+2) = 1; (12)

d(yn+1r Yn+2 yn+3)
< l/)(d(yn, Yn+1) yn+2)) (13)

and

d(yn+1: Yn+2 yn+3) < lp(d(yn: Yn+1, yn+2))
< lpz(d(yn—lf Yn, yn+1)) <.
< YP™(A o Y1 ¥2))- (14)

Contend similarly as in the proof of Theorem
2.1, we prove that {y,} is a Cauchy sequence X
and there exists v € X such that

Y, 2 vasn — o, (15)

further v is a fixed point of T,, that is, v € T,v.
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Now, from (10) and the definition of w, we
have

d(Yo,¥1,¥2) < H(T1y0, T2Y0, T3y0) < w
= supyexH(Tyx, Tox, T3x). (16)

Repeatedly, by the triangle inequality and using
(14), we have

n
d(Yo,y1,v) < Z . AW Vi1 Viez))
1=

+d(Yn Yn+2, V)

+ d()’n+1" Yn+2'v)

< Yizo lpl(d(}’od’l'h)) +
d(yn' Yn+2,V + d()’n+1' Vn+2, U).

Taking limit n - o in the above inequality,
using (15),(16) and the propertyies of ¥, we
have

d(Yo, y1,v) < X2 Y (Ao, ¥1,¥2)) <
LiZo P(w) = d(w).

Thus, given arbitrary y, € F(T;), we can find
v € F(T,) for which

d(yO' y1,v) S CD(W)

Similarly, we can prove that for arbitrary ¢, €
F(T,), there exists a p € F(T;) such that
d(cy,c1,p) < ®(w). Hence, we conclude that
H(F(Ty), F(T2, F(T3))) < @(w).

3 Conclusion

In this paper we established the existence of fixed
points of multivalued a-admissible mappings in 2-
metric spaces. and we investigated the stability of
fixed point, also we introduced and studied the
notion of multivalued a-admissible in 2-metric
spaces
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