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Abstract: For an ordered set W = {w1, w2, ..., wk} of k distinct vertices in a connected graph G, the represen-
tation of a vertex v of G with respect to W is the k-vector r(v|W ) = (d(v, w1), d(v, w2), ..., d(v, wk)), where
d(v, wi) is the distance from v to wi for 1 ≤ i ≤ k. The setW is called a connected local resolving set ofG if the
representations of every two adjacent vertices of G with respect toW are distinct and the subgraph ⟨W ⟩ induced
by W is connected. A connected local resolving set of G of minimum cardinality is a connected local basis of
G. The connected local dimension cld(G) of G is the cardinality of a connected local basis of G. In this paper,
the connected local dimensions of some well-known graphs are determined. We study the relationship between
connected local bases and local bases in a connected graph, and also present some realization results.
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1 Introduction
For an ordered setW = {w1, w2, ..., wk} of k distinct
vertices of a connected graphG, the representation of
a vertex v of G with respect toW is the k-vector

r(v|W ) = (d(v, w1), d(v, w2), ..., d(v, wk)),

where d(v, wi) is the distance between v and wi for
each integer i with 1 ≤ i ≤ k. If representations of
any pairs of vertices u and v with respect toW are dis-
tinct, thenW is called a resolving set of G. A resolv-
ing set of minimum cardinality is a minimum resolv-
ing set or a basis ofG. The cardinality of basis ofG is
the dimension of G, which is denoted by dim(G). To
illustrate this concept, consider the graphG of Fig. 1.
We consider the representations of vertices of G with

Figure 1: A connected graph G

respect to the ordered set W1 = {v1, v3}. Therefore,

their representations with respect toW1 are

r(v1|W1) = (0, 2), r(v2|W1) = (2, 2),
r(v3|W1) = (2, 0), r(v4|W1) = (2, 1),
r(v5|W1) = (2, 2), r(v6|W1) = (1, 2),
r(v7|W1) = (1, 1).

Since r(v2|W1) = (2, 2) = r(v5|W1), it follows that
W1 is not a resolving set of G. By considering the
ordered set W2 = {v1, v2, v3}, the representations of
vertices of G with respect toW2 are

r(v1|W2) = (0, 2, 2), r(v2|W2) = (2, 0, 2),
r(v3|W2) = (2, 2, 0), r(v4|W2) = (2, 2, 1),
r(v5|W2) = (2, 2, 2), r(v6|W2) = (1, 2, 2),
r(v7|W2) = (1, 1, 1).

Since these representations are distinct, it follows that
W2 is a resolving set ofG. In fact,W2 is a basis ofG
and so dim(G) = 3.

The concept of resolving sets was introduced by
Slater in [13] and [14]. He used a locating set for
what we have called a resolving set and referred to
the cardinality of a basis of a connected graph as its
location number. He described the usefulness of this
idea when working with U.S. sonar and coast guard
LORAN (long range aids to navigation) stations. Fol-
lowing Slater and others [4], [5] and [6], we can think
of a resolving set as the set W of vertices in a con-
nected graph G so that each vertex in G is uniquely
determined by its distances to the vertices ofW . Inde-
pendently, Harary and Melter [3] discovered this con-
cept as well but used the termmetric dimension rather
than location number. This concept was rediscovered
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by Johnson [8] of the Pharmacia Company while at-
tempting to develop a capability of large datasets of
chemical graphs. In [1], Chartrand and others used
the term resolving set for locating set and used metric
dimension for location number. Wang, Miao and Liu
[15] characterized connected graphs of order n with
dimension n − 3 by using metric matrix. An appli-
cation of resolving set was presented in [11]. Resolv-
ing sets in graphs have been studied further in [7], [9]
and [10].

LetW be an ordered set of vertices of a connected
graphG. For every pair of adjacent vertices u and v in
G, if the representations of u and v with respect toW
are distinct, then W is called a local resolving set of
G. A local resolving set ofG having minimum cardi-
nality is aminimum local resolving set or a local basis
of G and this cardinality is the local dimension of G,
which is denoted by ld(G). A subgraphH of a graph
G is called an induced subgraph of G if whenever u
and v are vertices of H and uv is an edge of G, then
uv is an edge of H as well. If S is a nonempty set of
vertices ofG, then the subgraph ofG induced by S is
the induced subgraph with vertex set S. This induced
subgraph is denoted by ⟨S⟩. A resolving set W of a
connected graphG is called a connected resolving set
of G if the induced subgraph ⟨W ⟩ is connected. The
minimum cardinality of a connected resolving set of
G is the connected dimension of G, which is denoted
by cd(G), and a resolving set of G having this car-
dinality is called a minimum connected resolving set
of a connected basis of G. To illustrate these con-
cepts, consider the graph G of Fig. 1. Recall that
W1 = {v1, v3} is not a resolving set of G. However,
since the representations of any two adjacent vertices
ofGwith respect toW1 are distinct, it follows thatW1

is a local resolving set of G. Clearly, there is no a lo-
cal resolving set ofG consisting of one vertex. There-
fore, W1 is a local basis of G and so ld(G) = 2. For
an ordered set W2 = {v1, v2, v3}, we know that W2

is a resolving set of G. Since ⟨W2⟩ is not connected,
it follows that W2 is not a connected resolving set of
G. It is routine to verify that W3 = {v1, v2, v3, v7}
is a connected resolving set of G. Indeed, W3 is a
connected basis of G, that is, cd(G) = 4.

The concept of local resolving sets was introduced
by Okamoto and others in [2]. They characterized all
nontrivial connected graphs of order n having the lo-
cal dimension 1, n − 2 or n − 1. The idea of con-
nected resolving sets has appeared in [12] and used
the connected resolving number cr(G) of a connected
graph G for what we have called the connected di-
mension ofG. The local dimension and the connected
dimension of some well-known graphs have been de-
termined in [2] and [12], respectively. We state these
results in the next three theorems.

Theorem 1.1 ([2]). Let G be a nontrivial connected
graph of order n. Then

(i) ld(G) = n− 1 if and only if G = Kn and

(ii) ld(G) = 1 if and only if G is bipartite.

Theorem 1.2 ([12]). LetG be a nontrivial connected
graph of order n. Then

(i) cd(G) = 1 if and only if G = Pn and

(ii) if G = Cn, then cd(G) = 2.

Theorem 1.3 ([12]). Let G be a connected graph of
order n ≥ 3. Then cd(G) = n − 1 if and only if
G = Kn or G = K1,n−1.

In this paper, we study a local resolving set W of
a connected graph G such that the induced subgraph
⟨W ⟩ is connected in G. In order to do this, let us in-
troduce some definitions and notation. Let W be an
ordered set of vertices of a connected graph G. Then
W is called a connected local resolving set of G if
W is a local resolving set of G such that the induced
subgraph ⟨W ⟩ of G is connected. A connected local
resolving set of G having minimum cardinality is a
minimum connected local resolving set or a connected
local basis of G and this cardinality is the connected
local dimension ofG, which is denoted by cld(G). To
illustrate this concept, consider the graphG of Fig. 1.
We know that W1 = {v1, v3} is a local resolving set
of G. However, since the induced subgraph ⟨W1⟩ of
G is not connected, it follows that W1 is not a con-
nected local resolving set of G. Then consider the
ordered set W ′ = {v1, v3, v7}. The representations
of vertices of G with respect toW ′ are

r(v1|W ′) = (0, 2, 1), r(v2|W ′) = (2, 2, 1),
r(v3|W ′) = (2, 0, 1), r(v4|W ′) = (2, 1, 1),
r(v5|W ′) = (2, 2, 1), r(v6|W ′) = (1, 2, 1),
r(v7|W ′) = (1, 1, 0).

Since the representations of any two adjacent vertices
ofGwith respect toW ′ are distinct, if follows thatW ′

is a local resolving set of G. Moreover, the induced
subgraph ⟨W ′⟩ is connected and soW ′ is a connected
local resolving set of G. By a case-by-case analysis,
it can be shown that every connected local resolving
set of G must contain at least two vertices, that is,
one of {v1, v6} and one of {v3, v4}. Thus, there is
no connected resolving set of G having cardinality 2
and so W ′ is a connected local basis of G. Hence,
cld(G) = 3.

Observe that every connected local resolving set
of a connected graphG is also a local resolving set of
G but every local resolving set of G may or may not
be a connected local resolving set of G. This implies
that

1 ≤ ld(G) ≤ cld(G) ≤ n− 1. (1.1)
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IfW is a connected local resolving set ofG, then ⟨W ⟩
is connected. However, since the representations of
any two vertices of G with respect to W need not be
distinct, it follows that W is not necessarily a con-
nected resolving set of G. In fact, every connected
resolving set of G is a connected local resolving set
of G, that is,

1 ≤ cld(G) ≤ cd(G) ≤ n− 1. (1.2)

From Eq.(1.1) and Eq.(1.2), we obtain that

1 ≤ ld(G) ≤ cld(G) ≤ cd(G) ≤ n− 1. (1.3)

For every ordered set W = {w1, w2, . . . , wk} of
vertices of a connected graph G, recall that the only
vertex of G whose representation with respect to W
contains 0 in its ith coordinate is wi, that it, the ver-
tices of W necessarily have distinct representations
with respect to W . On the other hand, the represen-
tations of vertices of G that do not belong toW have
elements, all of which are positive. Indeed, to deter-
mine whether an ordered set W is a connected local
resolving set ofG, we only need to show that any two
adjacent vertices in V (G) − W have distinct repre-
sentations with respect toW and ⟨W ⟩ is connected.

2 The connected local dimensions of
some well-known graphs

In this section, we determined the connected local di-
mensions of some well-known graphs.
Theorem 2.1. Let G be a connected graph of order
n ≥ 2. Then

(i) cld(G) = 1 if and only if G is a bipartite graph,

(ii) cld(G) = n − 1 if and only if G = Kn, a com-
plete graph of order n.

Proof. (i) Assume that cld(G) = 1. Then ld(G) = 1
by Eq.(1.3). Therefore, G is bipartite by The-
orem 1.1 (ii). For converse, suppose that G is
bipartite. By Theorem 1.1 (ii), ld(G) = 1 and so
there is a 1-element local basis W of G. Indeed, W
is also connected local basis ofG, that is, cld(G) = 1.

(ii) Suppose that cld(G) = n−1. Eq.(1.2) implies
that cd(G) = n − 1. Thus, by Theorem 1.3, G is
complete or star. If G is a star that is not complete,
thenG is bipartite of order at least 3. By (i), cld(G) =
1, a contradiction. Hence,G is complete. On the other
hand, if G = Kn, then by Theorem 1.1, ld(G) =
n− 1, and so cld(G) = n− 1 by Eq.(1.3).

Since every bipartite graph contains no odd cycle,
it follows that the connected local dimension of an
even cycle is 1. In fact, the connected local dimension
of an odd cycle is 2, as we present next.

Theorem 2.2. For an integer n ≥ 3, the connected
local dimension of a cycle Cn is

cld(Cn) =

{
1 if n is even,
2 if n is odd.

Proof. If n is even, then Cn is bipartite. By Theo-
rem 2.1 (i), cld(G) = 1. We may assume that n
is odd. Let Cn = (v1, v2, ..., vn, v1) and let W =
{v1, v2}. Consider the representations of vertices in
V (Cn)−W . If 3 ≤ i ≤ n+1

2 , r(vi|W ) = (i−1, i−2).
If i = n+3

2 , r(vi|W ) = (n−1
2 , n−1

2 ). If n+5
2 ≤ i ≤ n,

r(vi|W ) = (n − i + 1, n − i + 2). Thus, W is a
local resolving set of Cn. Since ⟨W ⟩ is connected, it
follows that W is a connected local resolving set of
Cn and so cld(Cn) ≤ 2. Since Cn is not bipartite, it
follows by Theorem 2.1 (i) that cld(Cn) ≥ 2. Hence,
cld(Cn) = 2.

Observe that if G′ is a graph obtained by adding a
pendant edge to a connected graph G, then it is easy
to verify that cld(G′) = cld(G). However, if a vertex
v is added to a connected graphG such that more than
one edge is incident with v, then the connected local
dimension of the resulting graph can stay the same,
decrease, or increase significantly. For example, for
n ≥ 3, 1 ≤ cld(Cn) ≤ 2. Consider the connected
local dimension of a wheel Wn = Cn + K1, where
n ≥ 3. Clearly, cld(W3) = 3, cld(W4) = cld(W5) =
2 and cld(W6) = 3. However, for n ≥ 7, the con-
nected local dimension of a wheelWn increases with
n as we show next.

In Wn = Cn + K1, let Cn = (v1, v2, ..., vn, v1),
where n ≥ 7, and let v be the central vertex of Wn.
Let S be a set of two or more vertices ofCn, let vi and
vj be two distinct vertices of S, and let P and P ′ de-
note the two distinct vi − vj paths determined by Cn.
If either P or P ′, say P , contains only two vertices of
S (namely, vi and vj), then we refer to vi and vj as
neighboring vertices of S and the set of vertices of P
that belong to Cn − {vi, vj} as the gap of S (deter-
mined by vi and vj). The two gaps of S determined
by a vertex of S and its two neighboring vertices will
be referred to as neighboring gaps. Consequently, if
|S| = r, then S has r gaps, some of which may be
empty.

The next theorem presents a necessary and suffi-
cient condition for a setW to be a local resolving set
ofWn.

Theorem 2.3. Let W be a set of vertices of a wheel
Wn = Cn + K1, where n ≥ 7. Then W is a local
resolving set ofWn if and only if every gap ofW con-
tains at most three vertices of Cn.

Proof. Assume, to the contrary, that there is a gap of
W containing at least four vertices of Cn. Then there
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are two adjacent vertices u and u′ in this gap such
that d(u,w) = d(u′, w) = 2 for all w ∈ W − {v}.
Therefore, r(u|W ) = r(u′|W ), which is impossible.
To show the converse, suppose that every gap of W
contains at most three vertices of Cn. Since n ≥ 7,
it follows thatW contains at least two vertices of Cn.
For any two adjacent vertices x and y contained in a
gap ofW , there exists a vertex inW adjacent to only
one of {x, y}. Hence the representation of x and y
with respect to W are distinct. If the central vertex
v ∈ W , we are done. Suppose that v /∈ W .
Case 1. |W | ≥ 3.
Since v is adjacent to every vertex of Cn, it follows
that the representations of v and any vertices of Cn

with respect toW are distinct.
Case 2. |W | = 2.
Suppose that there is a vertex w′ ∈ V (Cn) such that
r(w′|W ) = (1, 1) = r(v|W ). Since n ≥ 7, W con-
tains a gap of at least four vertices, which is impossi-
ble. Hence the representations of v and any vertices
of Cn with respect toW are distinct.

An immediate consequence from Theorem 2.3 is
that if W is a local resolving of Wn, where n ≥ 7,
W − {v} is also a local resolving set. It follows that,
for n ≥ 7, every local basis ofWn contains no central
vertex. However, every connected local basis of Wn

must contain the central vertex. It is shown in the next
result.

Lemma 2.4. Every connected local basis of a wheel
Wn, where n ≥ 7 must contain the central vertex.

Proof. Assume, to the contrary, that there is a con-
nected local basis W of Wn not containing the cen-
tral vertex v. Then W consists of consecutive ver-
tices in Cn. Without loss of generality, let W =
{v1, v2, ..., vk}. By Theorem 2.3, it implies that
k ≥ n − 3. By the argument similar to the one
used for the proof of Theorem 2.3, the set W ′ =
{v, v1, v4, v5, ..., vk} is a local resolving set of Wn.
Moreover, ⟨W ′⟩ is connected, that is, W ′ is also a
connected local resolving set of Wn having cardinal-
ity k − 1, contradicting the assumption that W is a
connected local basis ofWn.

We are now prepared to present the connected lo-
cal dimension of a wheelWn, where n ≥ 7.

Theorem 2.5. LetWn be a wheel, where n ≥ 7, Then
cld(Wn) = ⌈n4 ⌉+ 1.

Proof. By Theorem 2.3 and Lemma 2.4, we obtain
that cld(Wn) ≥ ⌈n4 ⌉ + 1. It remains to verify that
cld(Wn) ≤ ⌈n4 ⌉ + 1. Let W = {vi ∈ V (Cn) | i ≡
1(mod4)} ∪ {v} with |W | = ⌈n4 ⌉ + 1. Since every
gap of W contains at most three vertices from Cn, it
follows by Theorem 2.3 that W is a local resolving

set of Wn. Moreover, since W contains the central
vertex v, it follows that ⟨W ⟩ is connected and so W
is a connected local resolving set of Wn. Therefore,
cld(Wn) ≤ ⌈n4 ⌉+1. Hence, cld(Wn) = ⌈n4 ⌉+1.

3 Graphs with prescribed connected
local dimensions and other
parameters

The open neighborhood or the neighborhood of a
vertex u of a connected graph G is the set of all
vertices that are adjacent to u, which is denoted by
N(u) = {v ∈ V (G) | uv ∈ E(G)}. The closed
neighborhood N [u] of u is defined as N(u) ∪ {u}.
Two vertices u and v of G are twins if either (i)
uv /∈ E(G) andN(u) = N(v) or (ii) uv ∈ E(G) and
N [u] = N [v]. In particular, if the condition (ii) holds,
then u and v are called true twins. Consequently, the
relations twin and true twin are equivalence relations
on V (G) and, as such, these relations partition V (G)
into equivalence classes which are called twin equiv-
alence classes and true twin equivalence classes, re-
spectively or, more simply, twin classes and true twin
classes, respectively. Observe that ifG contains l dis-
tinct true twin classes U1, U2, ..., Ul of G, then every
local resolving set of G must contain at least |Ui| − 1
vertices from each Ui, where 1 ≤ i ≤ l. This obser-
vation has been described in [2] as we state next.

Proposition 3.1 ([2]). Let G be a connected graph
having l true twin classes U1, U2, ..., Ul. Then every
local resolving set ofG must contain |Ui|−1 vertices
from each Ui, where 1 ≤ i ≤ l. Moreover, ld(G) ≥
l∑

i=1
|Ui| − l.

We have seen that if G is a connected graph of
order n with ld(G) = a and cld(G) = b, then
1 ≤ a ≤ b ≤ n− 1 by Eq.(1.1). In fact, any integers
a, b and n with 1 ≤ a ≤ b ≤ n − 1 are realizable as
the local dimension, connected local dimension and
order of some graphs as we show next.

Theorem 3.2. Let a, b, n be integers with n ≥ 4.
Then there exists a connected graphG of order nwith
ld(G) = a and cld(G) = b if and only if a, b, n satisfy
one of the following:

(i) a = b = n− 1,

(ii) a = b = 1, and

(iii) 2 ≤ a ≤ b ≤ n− 2.

Proof. Assume that there exists a connected graph G
of order n with ld(G) = a and cld(G) = b. By
Eq.(1.1), we obtain that 1 ≤ a ≤ b ≤ n − 1. If
b = n − 1, then G is a complete graph Kn. Thus,
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a = b = n − 1. If a = 1, then G is a bipar-
tite graph. Therefore, a = b = 1. For otherwise,
2 ≤ a ≤ b ≤ c ≤ n − 2. Hence, if G is a connected
graph of order n with ld(G) = a and cld(G) = b,
then a, b and n must satisfy one of (i), (ii) and (iii). It
remains to verify the converse. If a = b = n − 1,
then let G be a complete graph Kn and the result is
true. If a = b = 1, then let G be a path Pn. Thus, the
graph G has the desired properties. We may assume
that 2 ≤ a ≤ b ≤ n− 2. We consider two cases.
Case 1. a = b.
LetG′ be a graph obtained from a complete graphKa

with vertex set {u1, u2, ..., ua} and a path Pn−a =
(v1, v2, ..., vn−a) by joining v1 to every vertex ofKa.
Since V (Ka) is a true twin class of G′, every local
resolving set of G′ must contain at least a − 1 ver-
tices from V (Ka). However, if a setW contains only
a − 1 vertices from V (Ka), then W does not con-
tain ui for some integer i with 1 ≤ i ≤ a and so
r(ui|W ) = r(v1|W ) = (1, 1, ..., 1). Therefore, G
contains no local resolving set of cardinality a−1, that
is, ld(G′) ≥ a. Since r(vj |V (Ka)) = (j, j, ..., j),
where 1 ≤ j ≤ n − a, it follows that V (Ka) is a
local resolving set of G′ having cardinality a, that is,
V (Ka) is a local basis of G′. Moreover, V (Ka) is
also a connected local basis of G′. Hence, ld(G′) =
cld(G′) = a.
Case 2. a < b.
Let G be a graph obtained from a complete graph
Ka with vertex set {u1, u2, ..., ua} and two paths
Pb−a+1 = (v1, v2, ..., vb−a+1) and Pn−b−1 =
(w1, w2, ..., wn−b−1) by joining v1 to every vertex of
Ka, and w1 to both vb−a and vb−a+1. Since V (Ka) is
a true twin class of G, it follows by Proposition 3.1
that every local resolving set of G must contain at
least a − 1 vertices from V (Ka). However, ev-
ery set consisting of a − 1 vertices from V (Ka) is
not a local resolving set of G since the representa-
tions of vb−a+1 and w1 with respect to this set are
the same. Thus, every local resolving set of G con-
tains at least a vertices. It is routine to verify that
every local resolving set of G must contain at least
one vertex from {vb−a+1} ∪ V (Pn−b−1). Then the
set (V (Ka)− {u1}) ∪ {vb−a+1} is a minimum local
resolving set of G. Hence, ld(G) = a. Since ev-
ery connected local resolving set of G is also a lo-
cal resolving set ofG, it follows that every connected
local resolving set of G must contain at least a − 1
vertices from V (Ka) and at least one vertex from
{vb−a+1} ∪ V (Pn−b−1). Therefore, every connected
local resolving set of G contains v1, v2, ..., vb−a. In
fact, the set (V (Ka) − {u1}) ∪ V (Pb−a+1) is a con-
nected local basis of G, that is, cld(G) = b.

We know by Eq.(1.2) that ifG is a connected graph
of order n with cld(G) = b and cd(G) = c, then 1 ≤

b ≤ c ≤ n − 1. Next, we show that for any integers
b, c and n with 1 ≤ b ≤ c ≤ n − 1 are realizable as
the connected local dimension, connected dimension
and order of some graphs.

Theorem 3.3. Let b, c, n be integers with n ≥ 4.
Then there exists a connected graphG of order nwith
cld(G) = b and cd(G) = c if and only if b, c, n satisfy
one of the following:

(i) b = c = n− 1,

(ii) b = 1 and 1 ≤ c ≤ n− 1, and

(iii) 2 ≤ b ≤ c ≤ n− 2.

Proof. Assume that there exists a connected graph
of order n with cld(G) = b and cd(G) = c. By
Eq.(1.2), we obtain that 1 ≤ b ≤ c ≤ n − 1. If
b = n − 1, then c = n − 1 by Eq.(1.2). If b = 1,
then 1 ≤ c ≤ n − 1 by Eq.(1.2). If 2 ≤ b ≤ n − 2,
then G is neither a star nor a complete graph, and so
2 ≤ b ≤ c ≤ n − 2. Hence, if G is a connected
graph of order n with cld(G) = b and cd(G) = c,
then b, c and n must satisfy one of (i), (ii) and (iii). It
remains to verify the converse. If b = c = n − 1,
then let G be a complete graph Kn and the result is
true. Next, assume that b = 1 and 1 ≤ c ≤ n − 1.
For c = 1, let G be a path Pn; while for c = n − 1
let G be a starK1,n−1. Since cld(Pn) = cd(Pn) = 1,
and cld(K1,n−1) = 1 and cd(K1,n−1) = n− 1, it fol-
lows that the result holds for b = 1 and c = 1, n− 1.
For 2 ≤ c ≤ n − 2, let G be a graph obtained
from a complete bipartite graph K2,c−1 with partite
sets U = {u1, u2} and U ′ = {w1, w2, ..., wc−1}, and
a path Pn−c−1 = (v1, v2, ..., vn−c−1) by joining v1
to both u1 and u2. Since G is bipartite, it follows
that cld(G) = 1. It is routine to show that the set
V (K2,c−1)− {u2} is a connected basis of G. There-
fore, cd(G) = c. Hence, the result holds for b = 1 and
2 ≤ c ≤ n− 2. Now assume that 2 ≤ b ≤ c ≤ n− 2.
We consider two cases.
Case 1. b = c.
The graph G′ of the proof for Theorem 3.2 has
cld(G′) = b with a connected local basis V (Kb). In
fact, V (Kb) is also a connected basis of G′, that is,
cd(G′) = b.
Case 2. b < c.
Let G be a graph obtained from a complete graph
Kb with vertex set {u1, u2, ..., ub}, a starK1,c−b with
vertex set {v, v1, v2, ..., vc−b} and a path Pn−c−1 =
(w1, w2, ..., wn−c−1) by joining the central vertex v
of K1,c−b to w1 and every vertex of Kb. It is im-
mediate that the set V (Kb) is a connected local ba-
sis of G. Therefore, cld(G) = b. Moreover, the set
(V (Kb)−{u1})∪ V (K1,c−b) is a connected basis of
G, that is, cd(G) = c.
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4 Connected local bases and local
bases in graphs

In this section, we study the relationship between
connected local bases and local bases in a connected
graphG. Certainly, ifW is a local resolving set ofG,
then a set W ′ containing W is also a local resolving
set of G. Therefore, if W is a local basis of G such
that ⟨W ⟩ is disconnected, then surely there is a small-
est superset W ′ of W for which ⟨W ′⟩ is connected.
This suggests the following question: Does there ex-
ist a graph with a connected local basis not containing
any local bases? The answer to this question is given
in the next result.

Theorem 4.1. There is an infinite class of connected
graphs G such that some connected local bases of G
contain a local basis ofG and others contain no local
basis of G.

Proof. Let G be a graph obtained from a com-
plete graph Ka of order a ≥ 2 with vertex set
{u1, u2, ..., ua}, a cycle C4 = (v1, v2, v3, v4, v1) and
a path P3 = (w1, w2, w3) by joining v1 to every ver-
tex of Ka and joining w1 and w3 to v1, v4 and v2, v3,
respectively. A graph G is shown in Fig. 2. We first

Figure 2: A graph G

verify that the set B = {u1, u2, ..., ua−1} ∪ {w2} is
a local basis of G. We can show, by a case-by-case
analysis, that B is a local resolving set of G. Next,
we claim that B is a local resolving set of minimum
cardinality. Assume, to the contrary, that there is a
local resolving setW ofG having cardinality at most
a − 1. Since V (Ka) is a true twin class of G, it fol-
lows that every local resolving set of G must contain
at least a − 1 vertices of Ka. Therefore, W consists
of a − 1 vertices of Ka. However, v4 and w1 are ad-
jacent and d(v4, ui) = d(w1, ui) for each integer i
with 1 ≤ i ≤ a. This is a contradiction. Hence, B
is a local basis of G and so ld(G) = a. Second, we
determine that cld(G) = a + 2. In order to do this,
we claim that cld(G) ≥ a + 2. Suppose, contrary to
our claim, that there is a connected local resolving set
W ′ of G having cardinality a + 1. Recall that every
connected local basis ofGmust contain at least a− 1

vertices ofKa. We consider two cases.
Case 1. V (Ka) ⊆ W ′.
Since ⟨W ′⟩ is connected and |W ′| = a+1, it follows
thatW ′ = V (Ka)∪{v1}. However, since v4 is adja-
cent to w1 and r(v4|W ′) = r(w1|W ′), it follows that
W ′ is not a connected resolving set of G, which is a
contradiction.
Case 2. V (Ka) * W ′.
Since ⟨W ′⟩ is connected and |W ′| = a+1, it follows
thatW ′ contains v1 and one vertex from {v2, v4, w1}.
IfW ′ contains v2 or w1, then r(v3|W ′) = r(w3|W ′).
If W ′ contains v4, then r(w2|W ′) = r(w3|W ′).
Therefore, W ′ is not a connected local resolving set
of G. This is also a contradiction.
Therefore, cld(G) ≥ a + 2. On the other hand,
the sets S1 = {u1, u2, ..., ua−1} ∪ {v1, w1, w2} and
S2 = {u1, u2, ..., ua−1} ∪ {v1, v4, w1} are connected
local resolving sets ofG. Therefore, cld(G) ≤ a+2.
Hence, cld(G) = a+ 2.

Last, it can be verified that every local basis of G
contains exactly a− 1 vertices ofKa and exactly one
vertex from {v3, w2}. Observe that the connected lo-
cal basis S1 contains the local basis B of G, while
the connected local basis S2 contains no local basis
of G.

From the previous theorem, there is a connected
graph having many connected local bases. This leads
us to determine a connected graphG having a unique
connected local basis. It has been shown in [2] that
there is a connected graph with a unique local basis.
In fact, there is a connected graph with a unique con-
nected local basis as we show next.

Theorem 4.2. For k ≥ 3, there exists a graph with a
unique connected local basis of cardinality k + 1.

Proof. Let G1 be a complete graph K2k with vertex
set U = {u0, u1, ..., u2k−1}, and let G2 be a empty
graphKk with vertex setW = {wk−1, wk−2, ..., w0}.
Then the graph G is obtained from G1 and G2 by
adding edges between U andW as follows. Let each
integer j for 1 ≤ j ≤ 2k − 1 be expressed in its base
2 (binary) representation. Thus, each such j can be
expressed as a sequence of k coordinates, that is, a k-
vector, where the rightmost coordinate represents the
value (either 0 or 1) in the 20 position, the coordinate
to its immediate left is the value in the 21 position,
etc. For integers i and j with 0 ≤ i ≤ k − 1 and
0 ≤ j ≤ 2k − 1, we join wi and uj if and only if the
value in the 2i position in the binary representation
of j is 1. For example, Fig. 3 shows the edges join-
ing between U and W in the graph G for k = 3. It
was shown in [2] thatW is a unique local basis of G.
Therefore, there is no connected local basis ofG hav-
ing cardinality k, that is, cld(G) ≥ k+1. SinceW is
a local basis of G, it follows thatW ′ = W ∪ {u2k−1}
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Figure 3: A graph G for k = 3

is a connected local resolving set of G. In fact,W ′ is
a connected local basis of G.

It remains only to show that G has no other con-
nected local basis. If U ′ ⊆ U and |U ′| = k + 1, then
|U − U ′| = 2k − k − 1 ≥ 2. Since the distance of
every two vertices ofU is 1, it follows that there are at
least two adjacent vertices of U −U ′ having the same
representation with respect to U ′, and so U ′ is not a
connected local resolving set of G. Thus, every con-
nected local resolving set of G must contain at least
one vertex of W . Suppose that B ̸= W ′ is a con-
nected local basis of G. Therefore, B = U ′′ ∪ W ′′,
where U ′′ ⊆ U and W ′′ ⊆ W . If |W ′′| = k, then
B does not contain u2k−1. Therefore, ⟨B⟩ is not con-
nected, which is impossible. If |W ′′| ≤ k − 1, then
U ′′ contains at least two vertices. We may therefore
assume that |U ′′| = i ≥ 2. Then |W ′′| = k − i + 1.
Since every vertex of U − U ′′ has distance 1 from
every vertex of U ′′, it follows that there are at most
2k−i+1 distinct representations of vertices of U −U ′′

with respect to B. However, since 2k − i > 2k−i+1,
there are two vertices of U −U ′′ such that their repre-
sentationwith respect toB are the same, contradicting
the fact thatB is a connected local basis ofG. Hence,
W ′ is a unique connected local basis of G.

5 Discussion and conclusions
By Eq.(1.3), it suggests the following question: For
which quadruples a, b, c, n of integers with 1 ≤ a ≤
b ≤ c ≤ n−1, does there exist a connected graphG of
order n with ld(G) = a, cld(G) = b and cd(G) = c?

In this research, we have investigated the con-
nected local dimensions of bipartite graphs, complete
graphs, cycles and wheels. We show the realiza-
tion results that any integers a, b and n with 1 ≤
a ≤ b ≤ n−1 are realizable as the local dimen-
sion, connected local dimension and order of some
graphs. Moreover, for any integers b, c and n with
1 ≤ b ≤ c ≤ n−1 are realizable as the connected
local dimension, connected dimension and order of

some graphs. We present the relationship between
connected local bases and local bases in a connected
graph, that is, there is an infinite class of connected
graphs G such that some connected local bases of G
contain a local basis of G and others contain no lo-
cal basis of G. We determine the stronger result that
there is a connected graph with a unique connected
local basis.
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