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Abstract: The closest vector problem, or CVP for short, is a fundamental lattice problem. The purpose
of this challenge is to identify a lattice point in its ambient space that is closest to a given point. This is
a provably hard problem to solve, as it is an NP-hard problem. It is considered to be more di�cult than
the shortest vector problem (SVP), in which the shortest nonzero lattice point is required.
There are three types of algorithms that can be used to solve CVP: Enumeration algorithms, Voronoi cell
computation and seiving algorithms. Many algorithms for solving the relaxed variant, APPROX-CVP,
have been proposed: The Babai nearest algorithm or the embedding technique.
In this work we will give a heuristic method to approximate the closest vector problem to a given vector
using the embeding technique and the reduced centered law.
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1 Introduction
A lattice is de�ned informally as a regular point
arrangement in a Euclidean space. Formally An
n-Dimensional lattice L is any subset of Rn That
is both:
1- An additive subgroup: 0 ∈ L and −x, x+y ∈ L
for every x, y ∈ L; and
2- Discrete: every x ∈ L has a neighborhood in
Rn in which x is the only lattice point.
It is a Z free module of �nite type and can be
de�ned as the Z -linear span of a set of linearly
independent vectors {b1, ...bm} ⊂ Rn, these vec-
tors are known as a basis of the lattice let:

L(b1, ...bm) := {
i=m∑
i=1

xibi, x1...xm ∈ Z}

Figure 1: Two dimension lattice

Because the dimension (or rank) of the lat-
tice matches the dimension of the vector sub-
space spanL spanned by L, all the bases have

the same number of elements dim(L). When
dim(L ≥ 2), there are an unlimited number
of lattice bases (good bases and bad bases).
All bases have the same Gramian determinant
det1≤i≤i≤m < bi,bj > since they are connected
via a unimodular matrix (integral matrix of de-
terminant ±1). The volume vol(L) (or determi-
nant) of the lattice is by de�nition the square root
of that Gramian determinant, thus corresponding
to the m-dimensional volume of the parallelepiped
spanned by the b′is. In the important case of
full-dimensional lattices where dim(L) = n, the
volume is equal to the absolute value of the de-
terminant of any lattice basis (hence the name
determinant). If the lattice is further an integer
lattice, then the volume is also equal to the index
[Zn : L] of L in Zn.
Since a lattice is discrete, it has a shortest non-
zero vector: the Euclidean norm of such a vector
is called the lattice �rst minimum, denoted by
λ1(L) or ∥L∥.
More generally, for all 1 ≤ i ≤ dim(L),
Minkowski's i-th minimum λi(L) is de�ned as
the minimum of max1≤j≤i∥vj∥ over all i lin-
early independent lattice vectors v1, ....vi ∈ L.
There always exist linearly independent lattice
vectors v1, ....vd reaching the minima, that is
∥vi∥ = λi(L)). However, surprisingly, as soon as
dim(L) ≥ 4, such vectors do not necessarily form
a lattice basis, and when dim(L) ≥ 5, there may
not even exist a lattice basis reaching the min-
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ima. This is one of the reasons why there exist
several notions of basis reduction in high dimen-
sion, without any optimal one.

2 The importance of lattice-based

cryptography is as follows
Lattice-based encryption is a type of cryptog-
raphy that takes advantage of the supposed
di�culty of lattice problems. Lattice cryptogra-
phy has a lot of appealing features, which we'll
go through presently.[1]
Security against quantum assaults that has been
hypothesized:The Di�e- Hellman protocol and
the RSA cryptosystem [2] rely on the conjectured
hardness of integer factorization or the discrete
logarithm problem in certain groups for most
number-theoretic cryptography, to solve the dis-
crete logarithm problem on elliptic curves de�ned
over a �nite �eld, some authors have studied
elliptic curves de�ned on rings, see [14, 15]. Shor
[3], provided excellent quantum algorithms for
all of these problems, making number-theoretic
systems insecure in the future when large-scale
quantum computers become available. For the
challenges commonly encountered in lattice
cryptography, however, no e�cient quantum
techniques exist.
Simplicity, e�ciency, and parallelism in algo-
rithms: Lattice-based cryptosystems are typically
algorithmically simple and highly parallelizable,
relying mostly on linear operations on vectors
and matrices modulo tiny integers. Furthermore,
architectures based on algebraic lattices over
certain rings (e.g., the NTRU cryptosystem [4])
can be extremely e�cient, outperforming more
traditional systems by a large margin in some
circumstances.
Worst-case hardness provides strong security
guarantees: Cryptography necessitates average-
case intractability, or problems that are di�cult
to solve for random cases (taken from a de�ned
probability distribution). This is in contrast to
the worst-case idea of hardness commonly used in
algorithm theory and NP-completeness, in which
a problem is considered hard if there are only a
few intractable examples. Problems that appear
di�cult in the worst-case scenario frequently
turn out to be easier on average.
Ajtai [5] established a striking relationship
between the worst and average cases for lat-
tices in a seminal paper: he demonstrated that
some problems are hard on the average (for
cryptographically meaningful distributions) if
some related lattice problems are hard in the
worst case. Unless all cases of particular lattice

problems are trivial to solve, one can develop
cryptographic structures and establish that they
are infeasible to crack using results like these.
Constructions of cryptographic objects that are
both adaptable and powerful:Historically, cryp-
tography was used primarily to send encrypted
messages. However, during the last few decades,
the �eld has evolved into a science with far
broader and more varied goals, embracing practi-
cally every scenario involving communication or
computation in the face of potentially malevolent
conduct. For example, Rivest et al. proposed the
powerful concept of fully homomorphic encryp-
tion (FHE), which allows an untrusted worker
to execute arbitrary computations on encrypted
data without learning anything about it. FHE
remained an elusive aim for three decades, until
Gentry [6] proposed the �rst candidate FHE
architecture, which was based on lattices.
In the �eld of cryptanalysis: When a system is
built on a linear problem or is easily linearizable,
lattices are a powerful cryptanalysis tool: The
cryptographic instance is transformed into a lat-
tice instance, and cryptanalysis is predicated on
the capability of locating a small lattice vector.
This is how we can break several knapsack-style
protocols as well as some RSA-style protocols.

we give a table which gives a comparison be-
tween lattice based cryptography and standard
cryptography:

Table 1: Table of this comparison
Lattice based cryptography Standard cryptography
Provably secure Not always provable
Security based on a worst Security based on a average

case problem case problem
based on hardness of Based on hardness of factoring,

lattice problems discrete Log etc...
Not broken by Broken by
quantum algorithms quantum algorithms
Very simple Require modular
computations exponentiation

3 Complexity
P, for polynomial, and NP, for non-deterministic
polynomial, are two notable complexity classes
from computational complexity theory. All prob-
lems that can be solved by a Deterministic Turing
Machine in a time that is bounded from above by
a function that is polynomial in the length of its
input are included in the class P. All problems
that can be solved by a Non-Deterministic Tur-
ing Machine, with a time bound by a function
polynomial in the length of the input, are classi-
�ed as NP. The class P is a subclass of the class
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NP.
The topic of whether these classes are indeed the
same, or whether there are problems in NP that
do not exist in P, is a key unresolved question
in complexity theory. Informally, P refers to the
category of simple problems, whereas NP may in-
clude some di�cult problems that aren't in P.
Karp [7] developed polynomial-time Karp reduc-
tions, which allowed one problem to be reduced
to another. Such reductions assume the existence
of a subroutine that solves the other problem and
can then be applied to the original one. Oracles
are the name for these subroutines. Reducing a
problem A to another problem B in polynomial-
time, thus if B is in P, then A must be as well.
Intuitively, this indicates that problem A cannot
be more di�cult to solve than problem B, be-
cause solving B automatically solves A. Karp also
demonstrated that there was a subgroup of NP
known as NP-complete, in which every problem
in that class can be reduced to any other problem
in NP. This means that proving that any of these
NP-complete problems is genuinely in P automat-
ically establishes P = NP .
The subject of whether P = NP is still open, but
years of investigation have led to the conclusion
that P ⊂ NP . NP-complete problems are re-
garded di�cult to solve until it is proven that
P = NP . As a result, proving that (mathemati-
cally) breaking a cryptosystem is equal to solving
an NP-complete problem should provide a rea-
sonable amount of security. Security proofs are
examples of such proofs.

3.1 Relationships that exist between lattice
problems (Reductions):

Reductions between problems can be used to com-
pare the di�culty of problems. A transformation
from the instances of problem A to the instances
of problem B is called a reduction from problem A
to problem B (A is reduced to B). This indicates
that a solution for solving problem B instances
can also be used to solve problem A instances.
This implies that problem B cannot be easier than
problem A or, alternatively, that problem B is at
least as di�cult as problem A. This is because a
solution to problem B automatically leads to a so-
lution to problem A, whereas the opposite is not
true: a solution to problem A does not always
lead to a solution to problem B.
The typical method for proving that a problem A
is NP-hard (and thus unlikely to have a polyno-
mial time solution) is to reduce some other NP-
hard problem B to A:(B −→ A).
In complexity theory, a problem is said to be dif-
�cult if it is di�cult in the worst-case case, but,

in cryptography, a problem is only considered dif-
�cult if it is di�cult in the average case (i.e, for
all but a negligible fraction of the instances).
Two key achievements in the study of lattices, no-
tably from a computational standpoint, were the
invention of the LLL lattice reduction method and
Ajtai's discovery of a link between the worst-case
and average-case hardness of certain lattice prob-
lems. The innovative aspect of Ajtai's discovery
is that he demonstrates how to construct a cryp-
tographic function that is as di�cult to break in
the average (e.g., over the random choices of the
function instance) as it is to solve the worst case
instance of a lattice problem. This achievement
is unique to lattice theory at this moment, and it
demonstrates that lattices are an excellent source
of hardness for cryptographic applications.

4 Computational problems in lattices

4.1 Polynomial problems
We �rst present some easy problems. These prob-
lems are often solved with classical tools of linear
algebra whose complexity is polynomial.

Problem 4.1. (base) Let L be a Lattice de�ned
by a system of vectors that are not necessarily
independent. Give a base of L.

It su�ces to calculate the Hermite normal form
of the system given as input which is obtained
in polynomial time from a Gaussian pivot type
algorithm.

Problem 4.2. (membership) Let L be alattice
given by a base B and a vector v. Decide if v
belongs to the L lattice.

It su�ces to solve the system of equations ac-
cording to Bx = v and to check if the solution
x = (x1, ..., xn) is indeed integer. To solve the
system, we can use the Gaussian pivot method of
cubic complexity in dimension.

Problem 4.3. (equivalence) Let B and B′
be two

bases. Decide if these two bases generate the same
lattice L.

It su�ces to calculate the passage matrix P
and to check if this one is indeed unimodular. In
this section, we present the problems in the worst
case as well as some problems in the average case
to which these �rst can be reduced.

4.2 Worst-case lattice problems:
Many cryptosystems can be proved secure assum-
ing the hardness of certain lattice problems in the
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worst case. In the following, we present the most
useful among them and we brie�y outline their
computational complexity.
SVP- Shortest vector problem:
The �rst successive minimum of the lattice Lis:
λ1(L) = Minv∈L⋆∥v∥

Problem 4.4. (Shortest Vector Problem
SVP):Given a Basis of L �nd v ∈ L such
that ∥v∥ = λ1(L).

Because there are no e�cient algorithms for
solving SVP, computer scientists have turned to
approximation versions of the problem. It's worth
noting that in practice, approximation lattice
problems are required to reduce the average case
to the worst case. These cases are de�ned by an
approximation factor γ ≥ 1, which is normally de-
termined by the lattice dimension n: (γ = γ(n)).
This factor must be polynomial in n in order to
be used in actual protocols, i.e. (γ = poly(n)).

Problem 4.5. ( Approximate shortest vector prob-
lem, (SV Pγ)): Given a basis of L and an ap-
proximation factor γ ≥ 1, �nd v ∈ L such that
0 ≤ ∥v∥ ≤ γλ1(L).

The LLL algorithm was the �rst to solve
(SV Pγ), and it produced a 2O(n) approximation
with a poly(n) running time. If we want to solve
SV P (i.e : γ = 1), we can use the LLL algorithm,

which has a run time of 2O(n2). The quickest
known algorithm for solving the exact SVP has
a running time of 2n.

Figure 2: Complexity of SV Pγ

The goal of the shortest vector problem is to �nd
an explicit vector problem. This implies that the
shortest vector problem was framed as a search
problem with the goal of obtaining something.
There are also decisional issues, in which the
goal is to �gure out whether a statement is true
in the setting of a particular problem instance.
GapSVP is a decisional form of SVP that checks
for the presence of a short vector. Gap(SV Pγ)
and SIV Pγ are two hard lattice problems for
γ = poly(n), and solving either Gap(SV Pγ) or

SIV Pγ appears to take 2O(n) time and space.

Problem 4.6. Decisional shortest vector problem
(Gap(SV Pγ)): Given a Basis of L, where either
λ1(L) ≤ 1 or λ1(L) > γ(n) determine which is
the case.

Problem 4.7. (Approximate Shortest Independent
Vectors Problem (SIV Pγ)): Given a Basis of L,
output n linearly independent lattice vectors ui
where ∥ui∥ ≤ γ(n).λn(L) for all i.

USVP is a promise variation of SVP in the
sense that the second minimum is guaranteed to
be substantially larger than the �rst minimum. In
other words, every vector that is not parallel to
the two shortest vectors of norms λ1 has a greater
norm than λ1. As a consequence, every approx-
imate shortest vector within this gap should be
the shortest vector or a multiple of it.

Problem 4.8. (Unique SV Pγ ,uSV Pγ): Let γ ≥ 1.
Given as input a lattice basis B such that λ2(B) ≥
γ.λ1(B), the goal is to �nd a vector v ∈ L(B) of
norm λ1(B).

Figure 3: An example of USVP instance

Table 2: History of NP-hardness
Problem Norm Hardness Reference
CV P1 Lp NP-hard [vEB81]
SV P1 L∞ NP-hard [vEB81]
SV P1 L2 NP-hard [Ajt98]
SV P√

2 L2 NP-hard [Mic98]
SV Pc Lp NP-hard [Kho04]
SV P

2(logn)
2

2−ϵ
Lp quasi-NP-hard [Kho04]

SV P2(logn)1−ϵ Lp quasi-NP-hard [HR07]

CVP- Closest vector problem:
The Closest Vector Problem (CVP) is a lattice-
based computer problem similar to SVP. CVP
asks for the lattice point closest to the target
point t, given a lattice L) and a target point
t. In contrast to SVP, CVP can be described in
terms of any norm, albeit the Euclidean norm is
the most popular. A slightly relaxed variant of
the issue (often employed in complexity theory)
merely asks for the target's distance from the lat-
tice, rather than the nearest lattice vector.
In many CVP applications, all that is required is
to locate a lattice vector that is not too far away
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from the objective, even if it is not necessarily the
closest. For CVP, a γ approximation algorithm lo-
cates a lattice vector within γ times the ideal solu-
tion's distance. Babai and Kannan's best-known
polynomial-time algorithms for solving CVP are
based on lattice reduction and achieve approxima-
tion factors that (in the worst case) are essentially
exponential in the lattice dimension. When the
dimension of the lattice is small enough, heuris-
tics approaches (e.g., the embedding technique)
appear to �nd relatively good approximations to
CVP in a reasonable period of time.
CVP is commonly recognized as a far more di�-
cult problem than SVP, both in theory and in re-
ality. Within any constant factor or even a slowly
growing (sub-polynomial) function of dimension
n, CVP is known to be NP-hard to solve. Gol-
dreich, Micciancio, Safra, and Seifert [8] demon-
strated that any algorithm for e�ciently approx-
imating CVP can also be used to e�ciently ap-
proximate SVP with the same approximation fac-
tor and essentially the same computational e�ort,
formalizing the intuition that CVP is not an eas-
ier (and possibly harder) problem than SVP.
CVP is the foundation of a number of cryptosys-
tems (see lattice-based cryptography), in which
the decryption process is basically equivalent to
a CVP computation. These cryptosystems are
predicated on the notion that any lattice can be
represented in a variety of ways (for example, by
di�erent bases), and some of them may have su-
perior geometric features than others, allowing
them to be used as a decryption trapdoor [9].
However, some lattices accept no good represen-
tation, implying that solving CVP (even roughly)
is NP-hard regardless of the basis (or other auxil-
iary information) provided. As a result, the CVP
instances utilized by lattice-based cryptosystems
(for which CVP may be quickly solved using the
decryption key) may be simpler than generic CVP
instances.

d(t,L) denotes the distance of t ∈ Rn to the
closest lattice vector.

Problem 4.9. (Closest Vector Problem, CVP):
Given a lattice basis B ∈ Zn×m and a target vec-
tor t ∈ Zn, �nd a lattice vector Bx close to the
target t, i.e, �nd an integer vector x ∈ Zm such
that:∥Bx− t∥ ≤ ∥By− t∥ for any t ∈ Zm.

We introduce three di�erent formulations of
CVP:

Problem 4.10. ( Decisional version: GapCVP):
Given integer lattice B, target vector t and a
rational r, determine whether dist(t,L) ≤ r or
dist(t,L) > r.

Problem 4.11. (CVP, Optimisation version):
Given integer lattice B and target vector t, com-
pute dist(t,L(B)).
Problem 4.12. (CVP Search version): Given in-
teger lattice B and target vector t, �nd a lattice
vector Bx such that ∥Bx− t∥ is minimum.

Decision versus Search.
As seen below, each of these problems can be
simply reduced to the next. Given a search oracle
that returns a lattice vector Bx that is close to
t, one may compute the distance between t and
the lattice by evaluating |Bx − t|. Surprisingly,
the search version of CVP is not signi�cantly
more di�cult than the optimization or decisional
variants, given an oracle to resolve the decision
problem associated with CVP, the search problem
can be solved in polynomial time. Micciancio
established in [10] that the search version of CVP
may be solved in polynomial time by calling
a polynomial number of oracles to answer the
decisional CVP issue. This demonstrates that
the decisional, optimization, and search variants
of (exact) CVP are polynomially comparable,
and that decisional CVP re�ects the problem's
hardness.

NP-Completeness:

De�nition 4.13. The subset sum problem (SS) is
the following: Given n+1 integers (a1, ...., an, s),
�nd a subset of the a′is (if one exists) that adds
up to s, or equivalently, �nd coe�cient xi ∈ {0, 1}
such that

∑
i aixi = s. In the decision version of

the problem one is given (a1, ...., an, s) and must
decide if there exist coe�cients xi ∈ {0, 1} such
that

∑
i aixi = s.

For a proof of the NP-hardness of the subset
sum see [10] (Garey and Johnson, 1979).

Theorem 4.14. For any p ≥ 1, GapCVP (i.e. the
decision problem associated to solving CVP) in
the Lp norm is NP-complete.

For a proof of the NP hardness of the GapCVP
problem, i.e., any other problem in NP (or, equiv-
alently, some speci�c NP-complete problem) can
be e�ciently reduced to GapCVP. micciancio
gave a reduction from the subset sum problem
to GapCVP .(SS → GapCVP), the GapCVP is
at least as hard as the subset sum problem. So
GapCVP is NP-hard, afterwards CVP est NP
hard.

Problem 4.15. (CV Pγ)-Approximate closest vec-
tor problem: Given a basis of L and an approx-
imation factor γ ≥ 1, �nd v ∈ L such that
∥v− t∥ ≤ γd(t,L).
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CV Pγ is provably NP-Hard for γ = 2log
1−ϵn.

Babai nearest plane (based on LLL) solves CV Pγ

in polynomial time for γ = 2(2/
√
3)n.

Figure 4: Complexity of CV Pγ

Problem 4.16. (Bounded Distance Decoding,
BDDα). Let α > 0. Given as inputs a lattice
basis B and a vector t such that dist(t,L(B)) ≤
α.λ1(B), the goal is to �nd a lattice v ∈ L(B)
closest to t.

Unlike CVP, which allows the target vector to be
as far away from the lattice as feasible, the BDD
problem guarantees that the target vector will be
within a de�ned distance of the lattice. It's worth
noting that the range of α in some works is lim-
ited to (0, 12). This ensures that in the ball of
radius α.λ1(B) centered on t, there is precisely
one element of L.

Figure 5: An example of BDD instance

4.3 Average case problems:
An m dimensional lattice is de�ned as a discrete
additive subgroup of (Rm,+), generated by a
basis by forming linear combinations with integer
coe�cients. suppose A ∈ Zn×m

q is a full rank
matrix with m ≥ n. In this work, we consider
two lattices of dimension m.
Λq(A) = {z ∈ Zm/∃s ∈ Zn : z = AT s(modq)}
and Λ⊥

q (A) = {z ∈ Zm/Az = 0(modq)}. The
�rst lattice Λq(A) is formed by linear integer
combinations of the rows of Amodq. vectors in
the second lattice Λ⊥

q (A) are all orthogonal to
the rows of A.
A hard average-case problem: Short integer
solution (SIS)
The Short Integer Solution was de�ned by Ajtai
in [11] and used to develop a conjectured one-way
and collision resistant hash function known as

Ajtai function. Being this work the �rst example
of worst-case to average-case reduction involv-
ing lattice problems, its importance goes well
beyond the hash function itself, which actually
turns out to be quite ine�cient. Many di�erent
cryptographical tools, like identi�cation scheme
and digital signature schemes have been based
on the SIS.

De�nition 4.17. (Short Integer Solution:
SISn,q,β,m)
Given m uniformly random vectors ai ∈ Zn

q ,

grouped as the columns of a matrix A ∈ Zn×m
q ,

�nd a non zero integer vector z ∈ Zm,∥z∥ ≤ β < q
such that Az =

∑m
i=1 aizi = 0 ∈ Zn

q

to solve this problem we consider the lattice:
Λ⊥
q (A) = {z ∈ Zm : Az = 0}}, is discrete because

we are looking for integer solution and it is
subgroup because it is the kernel of a linear
transformation. Without an upper bound on
∥z∥, the problem can be solved in polynomial
time by applying Gaussian reduction (It is easy
to �nd arbitrary integer solution :solving the
linear system). To make this problem hard Ajtai
impose that the solution is short vector in the
lattice (z ∈ {0, 1}n).
Worst-case to Average-case reduction

Theorem 4.18. For m = poly(n), any β > 0
and any su�ciently large q ≥ β.poly(n), solv-
ing SISn,q,β,m is at least as hard as solving the
decisional approximate shortest vector problem
GapSV Pγ and the approximate shortest indepen-
dent vectors SIV Pγ on arbitrary n-dimensional
lattices for some γ = β.poly(n).

A hard average-case problem: Learning With
Error problem (LWE)
In his seminal work from 2005 [Reg2005] [12]
, Regev introduced the average-case problem
known as Learning With Errors problem, a
generalisation of the Learning parity with Noise
problem, has been proven to be equally hard
to solve as worst-case lattice problem. It has
therefore become an important building block
in modern cryptographic systems and popular
topic in present-research. In addition to its
signi�cance in post-quantum cryptography, the
LWE problem also has promising applications,
such as fully-homomorphic and identity-based
encryption. With a fully-homomorphic encryp-
tion scheme it is possible to perform calculations
on encrypted data, which opens up the opportu-
nity to outsource private computations to third
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parties.

De�nition 4.19. (informal) Solve a random sys-
tem of m noisy linear equations and n unknowns
modulo an integer q, with m ≥ n

Let q ≥ 2 be an integral modulus, lets ∈ Zn

be an n-dimensional vector and let χ be a proba-
bility distribution on Zq. Now, de�ne As,χ as the
probability distribution on Zn

q×Zq, where samples
of this distribution are obtained by the following
procedure: As,χ: take a ∈ Zn

q and take e ∈ Zq

according to the distribution χ return the tuple
(a, < a, s > +e) mod q. The learning with errors
can be formulated as follows:

De�nition 4.20. (Learning with Errors(LWE)).
Given a size parameter n ≥ 1, a modulus q ≥ 2. a
probability distribution χ on Zq and an arbitrary
number of independent samples from the distri-
bution As,χ, �nd s.

As with the SIS problem LWE can be de-
scribed in terms of lattices. Consider m LWE
samples (ai,bi) = (ai, < ai, s > +ei) from As,χ
for 1 ≤ i ≤ m. let A the n ×m matrix that has
the vectors ai as his columns. Now, the matrix A
has rank n with high probability. The rows of A
give rise to the lattice: Λq(A) = {z ∈ Zm/∃s ∈
Zn : z = AT s(modq)}.
A secret s ∈ Zn in the LWE problem now corre-
sponds to the lattice vector AT s ∈ Λq(A). The
i'th entry of the vector AT s consists of the inner
product < ai, s > for 1 ≤ i ≤ m. Thus, writ-
ing b = (b1, ..., bm) and e = (e1, ..., em), the LWE
samples gives rise to the equation: b = AT s + e.
The goal of the LWE problem is to �nd s. This
equivalent to �nd AT s, because the matrix A has
rank n with high probability. Since AT s is a lat-
tice vector of Λq(A), LWE can be described as
a closest problem on this lattice. Depending on
the choice of the error vector e. AT s will be the
closest vector to b in the lattice Λq(A). For prac-
tical application, the error distribution χ is cho-
sen such that e is bounded with high probability.
This means that LWE can be described as an
instance of BDD problem, rather than the more
general case of CV P . Thus, the LWE problem is
essentially a bounded distance decoding problem
in the lattice Λq(A).

De�nition 4.21. (LWE Decision problem). Given
(A, b) with A ∈ Zn×m

q and b ∈ Zm
q , determine

whether b is chosen uniformly at random from
Zm
q or b = AT s+ e mod q.

De�nition 4.22. (LWE search problem). Given
(A, b) with A ∈ Zn×m

q and b ∈ Zm
q , �nd s ∈ Zn

q

such that b = AT s+ e mod q.

The Hardness of (LWE)
Regev gives a reduction from approximate ver-
sion of SVP and SIVP to LWE (SIV P → LWE).
However this reduction uses a quantum computer,
this reduction bases the hardness of LWE on the
quantum hardness of SVP and SIVP. This im-
plies that a solution to LWE provide a solution to
GapSVP, making LWE at least as hard as hard
GapSVP.

Theorem 4.23. :If there exists an e�cient algo-
rithm that solves the LWE search problem, then
there is an e�cient quantum algorithm that ap-
proximate the GapSVP and the SVP in the worst
case.

As no such algorithms to solve GapSVP or
SIVP exist, we may indeed assume that the LWE
search problem is hard and can even resist to
quantum adversaries.

4.4 A summary of several reductions
between the di�erent lattice problems

Figure 6: Relation among lattice problems

GapSVP: Compute (or approximate) the value λ1

without necessarily �nding a shortest vector.
GapSIVP: Compute (or approximate) the value
λn without necessarily �nding short linearly in-
dependent vectors.
(GapSV P ≈ GapSIV P ≈ BDD) approximat-
ing λ1 or approximating λn or solving BDD are
all equivalent up to poynomial factor. these class
of problem are those from wich we knew how to
build public key cryptography function.
SIVP: Finding n linearly independent short vec-
tors or solving ADD are equivalent (SIV P ≈
ADD) from those problem we knew how to build
private key cryptography function.
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(BDD ≤ CV P ) the reduction from BDD to CVP
is trivial, because CVP is simply BDD without
the distance bound.
(GapSV P ≤ SV P ) The reduction from GapSVP
to SVP is trivial, because the solution of the
search problem solves the decision problem.
(GapSV P ≤ Search−LWE ≤ decision−LWE)
The learning with errors problem is equivalent to
a bounded distance decoding. Regev gives a re-
duction from approximate versions of SVP and
SIVP to LWE. This reduction uses a quantum
computer and bases the hardness on the quan-
tum hardness fo SVP and SIVP.
(GapSV P ≤ SIS) Micciancio and Regev de-
scribed the reduction from SIVP and GapSVP to
SIS. SIS can be trivially reduced to SVP.
(LWE ≤ SIS) SIS is at least as hard as LWE

5 Algorithms for lattice problems
A lattice has an in�nity of bases, all of which are
algebraically equivalent. But from a Euclidean
point of view, this is no longer the case, and some
of these bases have more interesting Euclidean
properties. The objective of the reduction is to
�nd in one reasonable time a basis with fairly
good Euclidean properties, formed by fairly or-
thogonal vectors, and su�ciently short to give ap-
proximations for successive minima. But, as we
have already seen, and from dimension 5, the suc-
cessive minima do not necessarily form a base of
the lattice.
The LLL method, invented in 1982 by Lenstra,
Lenstra, and Lovasz, is the most well-known and
extensively examined algorithm for lattice prob-
lems. This is a polynomial-time SVP (and most
other fundamental lattice problems) algorithm

that achieves a 2Θ(n) approximation factor, where
n is the lattice dimension.
The LLL algorithm, as bad as it may appear,
is surprisingly helpful, with applications ranging
from factoring polynomials over rational num-
bers to integer programming, as well as numer-
ous cryptanalysis applications (such as attacks on
knapsack-based cryptosystems and special cases
of RSA).
Schnorr published an extension of the LLL
method in 1987 that resulted in somewhat bet-
ter approximation factors. The primary idea be-
hind Schnorr's algorithm is to replace the LLL
method's core, which contains blocks, with larger
blocks. At the cost of higher running time, in-
creasing the block size improves the approxima-
tion factor (i.e., leads to shorter vectors). There
are several variations of Schnorr's algorithm, in-
cluding one developed recently by Gama and
Nguyen that is quite natural and elegant. Re-

grettably, all of these alternatives attain a similar
level of exponential approximation.
The best known algorithm has a running time of
2O(n) if one insists on a precise solution to SVP, or
even only an approximation to within poly(n) fac-
tors. Unfortunately, this algorithm's space need is
likewise exponential, making it virtually imprac-
tical. Other techniques use only polynomial space
but take 2O(nlogn) time to complete. The above
debate leads us to the following hypothesis:
Conjecture: There is no polynomial-time algo-
rithm that can solve lattice problems inside a
polynomial factor.

6 Lattices and quantum algorithms:
As we've seen, lattice problems are extremely dif-
�cult. The most well-known algorithms either
take an in�nite amount of time or have poor
approximation ratios. The �eld of lattice-based
cryptography arose from the belief that lattice
problems are di�cult. Is lattice-based cryptog-
raphy, on the other hand, appropriate for a post-
quantum world? Is it true that lattice problems
are intractable even for quantum computers?.
The short answer is probably yes: there are cur-
rently no quantum algorithms for solving lattice
problems that outperform the best known classi-
cal (non-quantum) techniques. This is despite the
fact that lattice problems appear to be a natural
candidate for solving with quantum algorithms:
they aren't thought to be NP-hard for typical ap-
proximation factors, they have a periodic struc-
ture, and the Fourier transform, which is widely
used in quantum algorithms, is closely linked to
the concept of lattice duality.
Since Shor's discovery of the quantum factoring
algorithm in the mid-1990s, attempts to solve
lattice problems using quantum algorithms have
met with little success, if any at all. The fun-
damental issue is that the periodicity discovery
technique employed in Shor's factoring algorithm
and other quantum algorithms does not appear
to work for lattice problems. As a result, it is
only natural to explore the following conjecture
to justify the adoption of lattice-based cryptog-
raphy for post-quantum encryption: Conjecture:
There isn't a polynomial time quantum algorithm
that can solve lattice problems inside polynomial
factors.

7 Reduction of the lattice basis
As a result, lattice reduction methods can be uti-
lized to approximate the shortest vector problem
by providing a foundation of su�ciently short vec-
tors. However, the �ndings of lattice reduction
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can also be used to develop an algorithm that ap-
proximates the closest vector problem. Here are
two methods for approximating the nearest vec-
tor problem. The embedding approach [13] and
Babai's rounding technique.

7.1 The Babai's Rounding technique
Given a target w ∈ Rn we can write w =

∑n
i=1 libi

with li ∈ R.One computes the coe�cient li by
solving the system of linear equation (since the
lattice is full rank we can also compute the vector
(l1, ..., ln) as wB−1). The rounding method tech-
nique is simply to set v =

∑n
i=1⌊li⌉bi. Where ⌊li⌉

means take the closest integer to the real number
li.

7.2 Embedding technique
Although SV P can be reduced to CV P , there
also exists a heuristic method to convert instances
of CV P to an instance of SV P in a lattice in a
similar dimension. This method, known as the
"embedding technique" allows for reasonable ap-
proximations to CV P .
The embedding technique works as follows. Take
an instance of the CV P with a basis {b1, ..., bn}
for the lattice L and with the target vector c.
Now construct the (n + 1)-rank lattice L′

using
the rows of the following matrix as basis vectors:

B′
=



b11 b12 ... b1i ... b1n 0
b21 b22 ... b2i ... b2n 0
... ... ... ... ... ... 0
bi1 bi2 ... bii ... bin 0
... ... ... ... ... ... 0
bn1 bn2 ... bni ... bnn 0
c1 c2 ... ci ... cn 1


The determinant of B′

is the same as the deter-
minant of B of L. Thus the volume of the lat-
tice L′

is the same as that of L. Furthermore,
the rank is nearly the same, since the rank of L
is n and the rank of L′

is n + 1. The expec-
tation is that the length of the shortest lattice
vector is approximately the same in both lattices.
Now, consider the vector that is closest to c as an
linear combination of the b,is,x =

∑
i λibi. The

idea is that (c − x) will have relatively small en-
tries(depending on how close c to the lattice), and
therefore (c− x, 1) will be a short vector in L′

.

8 Our method to approximate the

closest vector problem
De�nition 8.1. Random variables: A random
variable is any rule(i.e,function)that associates a
number with each outcome in the sample space.

The set of possible values that a random variable
X can takes is called the range of X. A random
variable X is said to be discrete if its range con-
sists of �nite or countable number of values.
The probability function of a discrete a random
variable X is the function p(x) satisfying:

p(x) = Pr(X = x)

for all x in the range of X.
The mean or expectation of a discrete random
variable X, E(X) is de�ned as

E(X) =
∑
x

xPr(X = x)

Variance:

V ar(X) = E(X2)− {E(X)}2

Standard deviation:

Sd(X) =
√

V ar(X)

.

Our approach to reducing the closest vector
to the shortest problem is as follows. Assume we
want to �nd the point in a lattice L(B) where
B = ({b1, ..., bn}) (approximately) closest to
some target c is to embed the vectors [B|c] in a
higher dimensional space (using the Embedding
Technique) and add to c a component orthogonal
to B. In other words we consider the lattice
generated by the matrix.

B′
=

(
B 0
c 1

)
Notice that if B is a basis of L(B), then the rows
of matrix B′

are linearly independent,i.e B′
is a

basis of L(B′
). The determinant of B′

is the same
as the determinant of B of L. Thus the volume
of the lattice L′

is the same as that of L. Fur-
thermore,the rank is nearly the same, since the
rank of L is n and the rank of L′

is n+1.The ex-
pectation is that the length of the shortest lattice
vector is approximately the same in both lattices.

L(B′) =



b11 b12 ... b1i ... b1n 0
b21 b22 ... b2i ... b2n 0
... ... ... ... ... ... ...
bi1 bi2 ... bii ... bin 0
... ... ... ... ... ... ...
bn1 bn2 ... bni ... bnn 0
c1 c2 ... ci ... cn 1


we will approximate the shortest problem in the
lattice L(B′) by the reduced centred law. On each
column i we will do the following calculations.
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The mean: mi = b1i+b2i+...+bni+ci
n+1 ; σi =

( b
2
1i+b22i+...+b2ni+c2i+

n+1 −m2
i )

1

2

xi =
ci−mi

σi
, we then obtain an approximation of

the shortest vector x = (⌈x1⌋, ⌈x2⌋, ..., ⌈xn⌋). And
�nally the approximation of the closest vector:

t = (c1 − ⌈x1⌋, c2 − ⌈x2⌋, ..., cn − ⌈xn⌋)

Example 8.2. Consider the basis matrix:

B =

(
35 72 −100
−10 0 −25
−20 −279 678

)

of a lattice in R3. We solve the closest vector
problem instance with w = (100, 100, 100). Apply
the method of the reduced centred law to the basis
:

B′
=

 35 72 −100 0
−10 0 −25 0
−20 −279 678 0
100 100 100 1


The mean:

(26, 25;−26, 75; 163, 25; 0, 25)

The variance:

(2242, 1875; 22540, 6875; 93426, 6875; 0, 1875)

The standard deviation:

(47, 35174231; 150, 1355637; 305, 6577948; 0, 433012702)

The reduced centered matrix:

C =

 0, 184787287 0, 657738896 −0, 861257277 −0, 577350269
−0, 765547332 0, 178172309 −0, 615884833 −0, 577350269
−0, 976732803 −1, 680148219 1, 684072871 −0, 577350269
1, 557492848 0, 844237014 −0, 206930761 1, 732050808


The method give an approximation du shortest
vector problem of the lattice Λ(B)′ is (0, 1, 0, 1),
so we know that (0, 1, 0) is the di�erence between
w and a lattice point v. On veri�es that:

v = (100, 100, 100)− (0, 1, 0) = (100, 99, 100),

is the lattice vector close to w.
Example 8.3. Consider the basis matrix:

B =


7 69 −990 425 512 −346
56 575 −8514 934 1345 3
−77 −644 8019 66 156 −33
17 −275 4514 −34 45 365
516 −75 14 −634 137 −31
230 −5 14 −2334 845 −63


of a lattice in R6. We solve the closest vector
problem instance with

w = (282759, 2639330,−2132526,−1039397, 491124, 1762598).

Apply the method of the reduced centred law to
the basis (using the embeding technique to the
lattice L(B′

):

B
′

=



7 69 −990 425 512 −346 0
56 575 −8514 934 1345 3 0

−77 −644 8019 66 156 −33 0
17 −275 4514 −34 45 365 0
516 −75 14 −634 137 −31 0
230 −5 14 −2334 845 −63 0

282759 2639330 −2132526 −1039397 491124 1762598 1



Calculations are made with the Maple applica-
tion: The inverse matrix

Figure 7: Inverse matrix

We obtain the shortest vector:

e = (0, 1, 0,−1, 1, 0)

The lattice vector v close to w is:

v :=


282759

2639331
−2132526
−1039398

491125
1762598


For veri�cation we solve the equation: xB = v, we
�nd that

x :=


243
456

−234
−512
631
253


Indeed v is the lattice vector close to w.

9 Conclusion
Cryptography is used to protect the integrity and
con�dentiality of messages, as well as to authen-
ticate their source. The security of most crypto-
graphic primitives relies on number theory prob-
lems. In this work we have dealt with the problem
of the closest vector on a Lattice, we have used a
statistical method.
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