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Abstract: - In this paper, we firstly investigate some relations regarding the first and the second Laplace 
operators corresponding to the third fundamental form III of a surface in the Euclidean space E3. Then, we 
introduce the finite Chen type surfaces of revolution with respect to the third fundamental form which Gauss 
curvature never vanishes.  
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1 Introduction 
In 1983 B. Y. Chen introduces the notion of 
Euclidean immersions of finite type, [16], and from 
that time on the research into surfaces of finite type 
has grown up as one can see in the literature in this 
area. Many results in this field have been collected 
in [17]. In this respect, the first-named author with 
S. Stamatakis has given in [23] a new generalization 
to this area of study by giving a similar definition of 
surfaces of finite type. 

Let x be an isometric immersion of a surface M 
in the 3-dimensional Euclidean space E3. We 
represent by ΔJ the Laplacian operator of M acting 
on the space of smooth functions C∞(M). Then M is 
said to be of finite J-type, J = I, II, III, if the position 
vector x of M can be decomposed as a finite sum of 
eigenvectors of ΔJ of M, that is  

 
x = x0 +x1 +x2 +…+ xk,                 (1) 

where 
ΔJ xi = λi xi, i = 1,, k, 

x0 is a fixed vector and λ1, λ2, …, λk are eigenvalues 
of the operator ΔJ . 

Surfaces of finite type in E3 regarding the second 
fundamental form were investigated for some 
important classes of surfaces. More precisely, the 
class of ruled surfaces was studied in [7], while in 
[3], H. AL-Zoubi studied tubular surfaces in E3. 
Other classes such as translation surfaces, Quadric 
surfaces, surfaces of revolution, helicoidal surfaces, 
cyclides of Dupin, and spiral surfaces, the 

classification of its finite II-type surfaces still 
unknown. According to the third fundamental form, 
ruled surfaces in [4], tubes in [5], and quadric 
surfaces [6] are the only classes were investigated in 
E3. 

This type of study can be also extended to any 
smooth map, not necessary for the position vector of 
the surface, for example, the Gauss map of a 
surface. Regarding this see [8, 9]. 

Another generalization to the above, one can 
study surfaces in E3 whose position vector x 
satisfies the following condition  

 

   ΔJx = Ax,   J = I, II, III,                    (2) 
 

where A  33. 
Related to this, in [26] it was proved that the 

spheres and the catenoids are the only surfaces of 
revolution satisfying the above equation. Similarly, 
in [1] it was shown that helicoids and spheres are 
the only quadric surfaces in E3 that satisfy (2). Next, 
in [2] condition (2) was studied for the class of 
translation surfaces. In fact, authored ascertained 
that Scherk's surface is the only translation surface 
in the Euclidean 3-space that satisfies (2), finally, in 
[24] the authors studied the class of translation 
surfaces in Sol3 satisfying (2). Surfaces satisfying 
condition (2) are said to be of coordinate finite J-
type. 

Another interesting study is to find surfaces in E3 
whose Gauss map N satisfies the relation (2) that is  
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ΔJN = AN,   J = I, II, III, 
 

For this problem, readers can be referred to [10, 
11, 13, 18, 20]. 

Interesting research also one can follow the idea 
in [21] by defining the first and second Laplace 
operator using the definition of the fractional vector 
operators. 

In order to achieve our goal, we briefly introduce 
a formula for ΔIIIx and ΔIIIN by using tensors 
calculations. Further, in the last section, we 
contribute to the solution of our main result. 
 

2 Fundamentals 
We consider a smooth surface M in E3 given by a 
patch x = x(u1,u2) on a region U: = (a, b)   of 2 
in which does not contain parabolic points. We 
denote by 
 

I = gijduiduj,    II = bijduiduj,    III = eijduiduj 

 

the three fundamental forms of M. For any two 
differentiable functions f(u1,u2) and g(u1,u2) on M, 
the first differential parameter of Laplace regarding 
the fundamental form J is defined by [12] 
 

J(f,g): = dij f/i g/j,                      (3) 

where f/i: = 
iu

f



  and (dij) denotes the inverse tensor 

of (gij), (bij) and (eij) for J = I, II and III respectively.  

We first prove the following relations: 

  I(f, x) + II(f, N) = 0,               (4) 

  II(f, x) + III(f, N) = 0.               (5) 
 

For the proof of (5) we use (3) and the 
Weingarten equations 
 

N/j = -ejk bkm x/m = -bjk gkm x/m,              (6) 
 

to obtain 
II(f, N) = bij f/i N/j = -bij f/i bjk gkm x/m 

 
= -gim f/i x/m = -I(f, x), 

 
being (4).  We have similarly 
 

III(f, N) = eij f/i N/j = -eij f/i ejk bkm x/m 

 
= -bim f/i x/m = -II(f, x), 

which is (5).  

The second Laplace operator according to the 
fundamental form J = I, II, III of M is defined by 
[10] 

 
ΔJf: = –dij J

i f/j, 
 

where f is a sufficiently differentiable function, J

i
 

is the covariant derivative in the ui direction with 
respect to the fundamental form J [12]. For J = III 
we have 

ΔIIIf = –eij III

i f/j,                                (7) 
 

We now compute IIIx and IIIN. From (7) and 
the equations [19, p.128] 

  
III

j x/i = -bkm m

I bij x/k + bij N 

we get  
ΙΙΙx = eij bkm m

I bij x/k - eij bij N.          (8) 
 

Denote by  

 Λij
k: = 

2
1

ekm (-eij/m + eim/j + ejm/i), 

the Christoffel symbols of the second kind regarding 
the third fundamental form. We put 
 

Tij
k: = Γij

k - Πij
k. 

  k

ijT : = Λij
k - Πij

k. 
 
It is known that [19, p.22] 
 

Tij
k = -

2
1

bkm I
m bij,                 (9) 

k

ijT  = -
2
1

bkm III

m bij,                  (10) 

and 
  Tij

k + k

ijT = 0.                       (11) 
Besides, using Ricci’ s Lemma 

III
j eik = 0 

and the formula 
  R= 2H

K
 = eik bik,                     (12) 

where K is the Gauss curvature and H is the mean 
curvature of M respectively we have 
 

R/m = III

m (eik bik) = eik III

m bik.             (13) 
 
From (9), (10), (11) and (13) we find  
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eij bkm m

I bij = -2eij Tij
k = 2eij k

ijT  

= -eij bkm III

m bij = -bkm R/m 

and so  
 

eij bkm m

I bij x/k = -bkm R/m x/k = -ΙI(R, x).      (14) 
 

By combining (8), (12), and (14) we obtain [23] 
 

IIIx = -ΙI(R, x) - R N. 
 

Finally, using (5) we arrive at  
 

 IIIx = ΙII(R, N) - R N.               (15) 
 
From (15) we obtain the following theorems [23]  
 

Theorem 1. A surface M in E3 is of null III–type1 if 
and only if M is minimal. 

 

Theorem 2. A surface M in E3 is of III-type 1 if and 
only if M is part of a sphere. 

 
For the normal vector N we have  

  III
k N/i = -eik N 

we have 
ΔΙΙΙN = -eik III

k N/i = eik eik N, 
 
so that we conclude 
 
  ΔΙΙΙN = 2 N. 

 
From the last equation, it can be seen that the 

Gauss map of every surface M in E3 is of finite III-
type 1, the corresponding eigenvalue is 2.  

 
Now we prove some relations according to the 

third fundamental form of M. 
For any differentiable function f(u1,u2) it can be 

easily shown that 
 

ΔIII(f x) = (IIIf ) x + f IIIx - 2III(f, x) 

= (IIIf ) x + f ΙII(R, N) - fR N - 2III(f, x) 

Similarly 
 

ΔIII(f N) = (IIIf ) N + f IIIN - 2III(f, N) 

= (IIIf ) N + 2f N + 2II(f, x) 
 

Denote by W = − <x, N> the support function of 
M, where <,> is the Euclidean inner product. 
Applying relation (7) for the function W, it can be 
easily verified that  

IIIW = -eikk
IIIW/i = eikk

III< x, N >/i  

= < eikk
IIIx/i, N > + < x, eikk

IIIN/i >  

+ 2eik< x/i, N/k > = - < IIIx, N >  

- < x, IIIN > - 2eik< x/i, bkt g
tr x/r >  

=   – < N, III(R, N) – RN >  

– < x, 2N > – 2eik< x/i, bkt g
tr x/r > 

= 2W - R.                              (16) 

We consider now the surface M of finite III-type 
1. Then we have IIIx = kx, where k is a constant 
eigenvalue. 

From (15) we get ΙII(R, N) − RN = kx. Taking 
the inner product of both sides of this equation with 
N we find R = kW. From the formula (16) we find 
that 
 

IIIW = (2 – k)W,  IIIR = (2 − k)R. 

Thus, we have proved the following: 

Theorem 3. Let M be a surface in E3 of finite III-

type 1 with corresponding eigenvalue l. Then the 

support function W and the sum of the principal 

radii of curvature R are of eigenfunctions of the 

Laplacian III with corresponding eigenvalue 2 − k. 

 

Let now M be a minimal surface. Then we have  
R = 

 K

H2  = 0. 

Thus from the equation (16) we get IIIW = 2W. 
So we have 
 
Corollary 1. Let M be a minimal surface. Then the 

support function W is of an eigenfunction of III with 

corresponding eigenvalue equal 2. 
 
We consider now a surface M which is defined 

on a simply connected domain D in the (u, v)-plane 
with parametric representation M: y = y(u,v). Let M* 
be a parallel surface of M in distance λ = const.  0, 
so that  

1 - 2λH + λ2K  0. 
Then M* possesses the position vector  
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y*= y + λN. 
We represent by K* and H* the Gauss and mean 

curvature of M* respectively, It’s well-known that  
 

K* = 
 K  + H 2 - 1

K
2

, 

H* = 
 K  + H 2 - 1

KH
2

 . 

Thus we obtain 

R* = 
 K

H
*

*2 = R – 2 λ.                  .(17) 

Besides, the surfaces M, M* have same unit 
normal vector N. Hence III = III* and ΔΙΙΙ = ΔΙΙΙ*, 
which we will denote it, for simplicity, by Δ. We 
mention the following theorem which was proved in 
[23] 
 

Theorem 4. Let M be a surface satisfying H

K
 = μ = 

const.  0, which is not part of a sphere. Then M is 

of null III-type 2. 
 

We prove now the following theorem for later 
use. 
 

Theorem 5. The surface M* is a parallel surface of 

the minimal M in E3 if and only if the sum of the 

principal radii of curvature R* of M* is constant. 
 

Proof. Let M: y = y(u,v), defined on the domain D, 
be a minimal surface in E3, and  
 

M*: y*= y + λN,  λ  0 
 

being a parallel surface of M. Taking into account 
relation (17) and that H = 0, we get R* = -2λ = 
const.. Thus we proved the first part of the theorem. 

Conversely, let R* = const.  0. Then from 
Theorem 4, M* is of null III- type 2. Therefore from 
(1) there exist nonconstant eigenvectors y1(u, v) and 
y2(u, v) defined on the same domain D such that 
 

y*= y1 + y2,                                    (18) 
 

where  y1 = 1y1,  y2 = 2y, also since M* is of 
null III- type 2, we have 1 = 0. 

From  y* = y1 +  y2, we get 
 

 y* = 2y2.                                  (19) 
 

Besides, since R* = const.  0, we find 
 

y* = – R* N.                                (20) 

 
Thus from (19) and (20), one finds 

 
2y2 = – R* N 

 

or y2 = c N, where c = 
 

R

2

*

 , and then (18) becomes 

 
y*= y1 + cN.                                   (21) 

 
The differential of the above equation is 
 

dy*= dy1 + cdN.                             (22) 
 

Taking the inner product of both sides of (22) 
with N yields 

 
< dy1, N > = 0.                              (23) 

  
If we prove that  

 
y1/u y1/v  0,  (u, v)D, 

 
where  is the Euclidean cross product, then y1 (u, v) 
is a regular parametric representation of a surface in 
E3.  We have 
 

y1= y*- λN*                                               (24) 
 
Using the Weingarten equations  
 

N/i = -bijg
jk y*

/k. 

 
and the equation (24), it follows that 

y1/u y1/v = (y*
/u - λN/u)  (y*

/v
 - λN/v)  

= (y*
/u y*

/v) - λ (y*
/u N/2) + λ(y*

/v
  N/u) 

+ λ2(N/u N/v) 

= (1 - 2 λH + λ2K)(y*
/u y*

/v)  0, 

(u, v)D.                          (25) 

Hence, on account of (23) and (25), we conclude 
that y1(u, v) is a regular parametric representation of 
a surface in E3 with N its Gauss map. 

Since y1 = 0. Consequently, from Theorem 1, 
y1(u, v) is a minimal surface. Thus from (21), we 
obtain that M* is a parallel surface of a minimal. 
Now we mention and prove our main theorem. 
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Theorem 6. The only surfaces of revolution in E3 of 

which the sum of the radii of the principal curvature 

R is constant are parts of spheres which are of finite 

III-type 1, catenoids which are of finite null III-type 

1, and the parallel surfaces to the catenoids, which 

are of finite null III-type 2. 
 
 

3 Proof of main result 
Let C be the profile curve of a surface of revolution 
M of the differentiation class C3. We suppose that C 
lies on the xz-plane, the axis of revolution of M is 
the z-axis and C is parametrized by it’s arc-length s. 
Then C admits the parametric representation 

 
r(s) = (f(s), 0, g(s)), s  J, (J  ), 

 
where f, g are smooth functions and f is a positive 
function. Then the position vector of M is given by 
see ([14, 24]) 

y(s, v) = (f(s) cos v, f(s) sin v, g(s)),             (26) 

s  J, v [0, 2). 

Since s is the arc-length of C, then we have 

 (f ')2 + (g')2 = 1,                              (27) 

where ' : = 
ds

d . Furthermore if f ' g' = 0, then f = 

const. or g = const. and M would be a circular 
cylinder or part of a plane, respectively. A case that 
has been excluded since M would consist only of 
parabolic points.  

Denoting by κ the curvature of the curve C and 
r1, r2 the principal radii of curvature of M, we have 
 

r1 =


1  , r2 = 
'g

f , 

 
The parametric representation of the Gauss map N 

is  
 

N(s,v) = (–g'cos v, –g'sin v, –f ' ).                (28) 
 

Now, by using the natural frame {Ns, Nv} of M 
defined by 
 

Ns = ( -g'' cos v, -g'' sin v, f '') 
and 

Nv = ( g' sin v, -g' cos v, 0) 
 

the components eij of the third fundamental form in 
(local) coordinates are the following 
 

e11 =< Ns, Nu >= (g'')2 + ( f '')2, 
  

e12 =< Ns, Nv >= 0,  e22 =< Nv, Nv >= (g')2. 
 

The Beltrami operator  in terms of local 
coordinates (s, v) with respect to the third 
fundamental form of S can be expressed as follows 
 

Δ = – 
2

2

232

2

2

11
vg'sg'κ

κg"g'κ'

sκ 











 .       (29) 

 
On account of (27) we put 
 

f '  = cos φ, g' = sin φ, 
 

where φ = φ (s). Then κ = φ' and the parametric 
representation (28) of the unit vector N of M 
becomes 

 
N(s, v) = {–sinφ cosv, –sinφ sin v, cosφ}.    (30) 

 
Also relation (29) takes the following form 

 

Δ = .11
2

2

232

2

2 vφsinuφsinφ'

φcos

φ'

φ"

uφ' 




















       (31) 

For the sum of the principal radii of curvature R 
= r1 + r2 = 

K

H2 , one finds 

R = .1
φ'φsin

f
                                   (32) 

 
Taking the derivative of (32) we find 

 
.'"' 22 φsin

cos

φsin

cosf

φ'
R


                     (33) 

 
Let (y1, y2, y3) be the coordinate functions of (26). 

By virtue of (31), we obtain 
 
y1 = vosc

φsin

f

φ'

φsin

φsinφ'φ'

φoscφ"










 23

21         (34) 

                     
Δy2 = vsin

φsin

f

φ'

φsin

φsinφ'φ'

φoscφ"










 23

21          (35) 

   
Δy3 = –

3

2
φ'

φsinφ"

φ'

φosc
 .                  (36) 

From (32) and (33), equations (34), (35) and (36) 
become respectively 
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Δy1 = osvc
φ'

φoscR'
φsinR 








 ,                       (37) 

Δy2 = vsin
φ'

φoscR'
φsinR 








 ,                       (38) 

Δy3 = φoscR
φ'

φsinR'
 .                       (39) 

We obtain the following two cases: 

Case Ι.  R  0. Thus H  0. Consequently M, being a 
minimal surface of revolution, is a catenoid. 

Case ΙΙ. R = const.  0. From (37), (38), and (39) we 
obtain 















 Rcos- = y 

v sinRsin = y 

 vcos Rsin = y 

3

2

1






                           (40) 

 
Let (N1, N2, N3) be the coordinate functions of N. 
From (29), relations (40) can be written 
 

y1 = –RN1, Δy2 = –RN2, Δy3 = –RN3, 
 

and hence 
y = –R N.                               (41) 

 
In view of (7) and (41) we have 
 

my = –(2m – 1 )R N.                      (42) 
 
Now, if M is of finite type k, then there exist real 
numbers c1, c2, …, ck such that 
 

Δky + c1Δk −1y + ... + cky = 0.             (43) 
 

From (41) and (42) relation (43) becomes 
 

–2 k 1
R N – 2 k 2

c1R N –  – ck-1R N + ck y = 0, 
or 

c N + ck y = 0,                                (44) 
 

where c = –R(2 k 1 + 2 k 2
c1 +  + ck-1) = const.. 

On one hand, if cκ  0, then from (44) we find y = –

kc

c N, thus we get |y| = 
kc

c  and so M is a sphere. 

From Theorem 2, M is of finite III-type 1. On the 
other hand, if ck = 0, then M is of null type k. 
Because of R = const., and according to Theorem 4, 
and Theorem 5, M is of null III-type 2 which is a 
parallel surface of a minimal. 
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