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Abstract: - In this article was made the identification of dynamic systems of first and second order more common 
in electronics such as low and high pass filters of the first order, pass-band filter and direct current motor through 
the structure of auto-regression with exogenous variable. The proposed dynamical systems    are initially modeled 
by a continuous-time transfer function using physical laws. Subsequently, a step entry signal was applied and the 
data for the identification process was recorded in discrete time. The estimation of parameters was performed 
with the method of decreasing gradient and least squares. It was obtained as a result that the least squares method 
could not find a model for the first-order high-pass filter, but the decreasing grade method allowed to model all 
the proposed systems. 
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1 Introduction 

Dynamical systems modeling is a very vast topic 
to discuss and has become quite useful in the world 
of control. A commonly used parametric structure is 
auto-regression with exogenous variable (ARX) [1] 
and is based on least squares for the estimation of 
parameters, but sometimes this minimization of the 
mean square error does not achieve a model that fits 
the dynamics of the studied system. In a real system 
with sampled data it is not possible to achieve an 
ideal model but that is not the main objective because 
is enough with a good and simple model [2]. 

The ARX structure has been used in different 
types of modeling systems. Reference [3] presents 
the identification of a DC/DC converter using 
parametric structures. The authors note that after 
processing the converter signal data based on the 
impulse response of the input and output voltages, the 
ARX structure produced a better model in terms of 
stability for open-loop analysis. In [4] the ARX 
structure is applied in compression systems to make 
the identification from the least possible number of 

observations when the time-invariant linear system 
presents inputs with different unknown delays. The 
results presented in [5] and [6] demonstrate that an 
ARX structure is not the best option for finding a 
model of an electric motor. According to [7] for an 
inventory system of a warehouse of a distribution 
company, an ARX structure is also not applicable. 
These setbacks lead to an evaluation of the most 
common first and second order dynamic systems in 
the field of electronics [8], which is of our own 
interest. For this reason, the present research work 
studies the identification of systems such as low-pass, 
high-pass, band-pass and servomotor filters. Starting 
from known continuous models [9] of particular 
cases of the systems mentioned above. The data to be 
processed are obtained by means of the 
representation in state space [10] of each one of the 
dynamic systems. 

 
In all the cases mentioned, the minimum square 

method was used for the estimation of the parameters 
of the structure because that method is incorporated 
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into the modeling software tools. This work seeks to 
apply another method of parameter estimation as a 
decreasing gradient to find a discrete-time model 
from the first and second-order systems initially 
known in continuous time. Through the comparison 
of experimental data, the best model in discrete time 
is defined. 
 
2 Methodology 

2.1 ARX Structure 
In [8] is mentioned that probably the simplest 

input-output relationship of a system, is observed in 
(1) as a linear equation in differences, as well as: 

 
y[n] + a1y[n − 1] + ⋯+ anay[n − na] =

b1x[n − 1] + ⋯+ bnbx[n − nb] + e[n] (1) 
 
Where e[n] is white noise and enters as a direct 

error in the difference equation. A real system is not 
strictly causal, which means that the actual input 
cannot have a direct effect on the output x[n]y[n][5]. 
So, in modeling we work from the delayed entry.  
x[n − 1] 

The adjustment parameters for equation (1) are: 
 

θ = �a1  a2   ⋯   ana   b1  b2   ⋯   bnb�
T (2) 

 
Let 𝒵𝒵{y[n]} = Y(z), 𝒵𝒵{x[n]} = X(z),

𝒵𝒵{e[n]} = E(z); then when applying the transform Z 
to both sides of the equation (1), has: 

�1 + a1z−1 + ⋯+ anaz−na�Y(z)

= �b1z−1 + ⋯+ bnbz−nb�X(z) + E(z) 

A(z) = 1 + a1z−1 + ⋯+ anaz−na   

B(z) = b1z−1 + ⋯+ bnbz−nb (3) 
 
More compactly: 

A(z)Y(z) = B(z)X(z) + E(z)    →    Y(z)

=
B(z)
A(z) X(z) +

1
A(z) E(z) 

Or expressed similarly: 

A(z)y[n] = B(z)x[n] + e[n]    →    y[n]

=
B(z)
A(z) x[n] +

1
A(z) e[n] 

 

Where the following is considered: 

G(z, θ) = B(z)
A(z)  ,   H(z, θ) = 1

A(z)   (4) 

The expression (1) is also called an ARX model 
(Auto-Regressive  with eXogenous inputs), where 
AR refers to the auto-regressive part and X 
corresponds to the exogenous input 
A(z)y[n]B(z)x[n] [9][10].  

 
Using equation (4) you can construct the 

following block diagram of the ARX structure. 
 

 
Fig.1 Structure of the ARX Model. 

Fig.1 shows the structure of the ARX model 
where white noise passes through the dynamics of the 
system denominator before being added to the output. 
The predictor is defined by a linear regression [7], as 
seen in equation (5). 

 
y�[n|θ] = θTφ[n] = φT[n]θ (5) 

Where the vector φ[n] = �−y[n − 1]  ⋯  − y[n −

na]  x[n − 1]  ⋯   x[n − nb]�T. 

2.2 Least Squares Method 
 
One of the methods of parameter estimation is 

least squares. This method selects as a cost function 
the mean square error between the actual output 
signal and the predictor. [11] 

 
Let y[n] the output of a system in discrete time 

and the y�[n] predictor to find the estimate of the 
parameters of an identification structure; then the 
prediction error ε[n], is determined as: 

ε[n] = y[n] − y�[n] 

Accordingly, the cost function according to the 
quadratic error criterion is expressed as: 

 
J = 1

N
∑ 1

2
ε2N

n=1  (6) 

The least squares method is developed from linear 
parameterization and the quadratic criterion and its 
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only characteristic is to be a quadratic function in the 
parameter vector θ[2]. When replacing the prediction 
error in equation (6), it is obtained as: 

 
J = 1

N
∑ 1

2
[y[n] − φT[n]θ]2N

n=1  (7) 

Equation (7) is known as the least squares criteria 
for the linear regression of the predictor of the ARX 
structure [12] and in vector form is expressed in 
equation (8).  

 

Let be the vector Y = �

y[0]
y[1]
⋮

y[N]

� and the predictor; 

then the cost function as a function of the vectors  Y� =

⎣
⎢
⎢
⎡φ

T[0]
φT[1]
⋮

φT[N]⎦
⎥
⎥
⎤
θ = ΦTθe, is represented as: YY� 

  J = 1
2N
�Y − Y��T ∙ �Y − Y�� = 1

2N
�Y −ΦTθ�T ∙ �Y −

ΦTθ� (8) 
 
Minimization is done by deriving the cost 

equation with respect to the parameter and equalizing 
to zero.θ 

d
dθ

(J) =
1

2N
[−2ΦTY + 2ΦTΦθ] = 0   →   ΦTΦθ

= ΦTY 

θ = �ΦTΦ�−1ΦT𝑌𝑌 (9) 
 
Equation (9) allows to find the parameters of a 

system to be modeled under the ARX structure. 
 

2.3 Decreasing Gradient Method 
 
The decreasing gradient is a numerical method 

that aims to determine the direction of variation of the 
parameters that define a cost function and decreases 
until reaching a minimum value.   The gradient 
algorithm can be used to find the optimal solution for 
quadratic optimization problems and nonlinear 
optimization problems. It can handle not only linear 
regression systems with the known information 
vector, but also linear and nonlinear systems with the 
unknown information vector.  [13] 

 
In equation (10), the decreasing gradient is 

defined. 
 

θ[n] = θ[n − 1] − α ∂
∂θ
�J(θ)� (10) 

 
Where J(θ) is the cost function, is the parameter 

to minimize and is the learning factor, θ[n]α In 
equation (10) one can approximate the derivative of 
the cost function, that is: 

∂
∂θ �

J(θ)� ≅ ∆J(θ) = J(θ + ϵ) − J(θ − ϵ) 

Where ϵ is a very small value and sometimes they 
start with the same value of learning, it is the 
increasing cost function and it is the decreasing cost 
function J(θ + ϵ) [14]. By replacing this 
approximation of the derivative of the cost function 
in equation (10); the parameter search is θ[n] defined 
as: 

 θ[n] = θ[n − 1] − α ∆J(θ)  (11) 
 
The first derivative allows finding critical points, 

which leads to a drawback that the minimization of 
the cost function presents several minimums for 
which the initial conditions are important and thus 
guarantee that the best model of the system in 
question was obtained. It is known that an inherent 
characteristic of iterative search routines is that only 
convergence to a local solution of the problem can be 
guaranteed. To find the global solution, there is 
generally no other way than to start the iterative 
minimization routine at different feasible initial 
values and compare the results [18]. 
 
3 Results 

3.1 Identification by Least Squares 

A first-order system was modeled, such as the low 
pass filter. The input data to the system was from a 
step signal of amplitude 10. Fig.2 shows the actual 
signal and the signal modeled using the least squares 
method. 
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Fig.1 Output response of the model and its 
corresponding signal 𝐺𝐺1(𝑠𝑠)modeled with least 
squares before a stepinput. 

The first order high pass filter does not have the 
form of equation (1) because it presents a zero in its 
transfer function and under this structure the least 
squares method did not allow to find a model that 
characterizes the system. 

The second-order system such as the direct 
current servo motor was also modeled by least 
squares. Fig.3  shows the actual signal and the signal 
modeled by least squares with an input signal step of 
amplitude 10. 

 

Fig.2 Output response of the model and its 
corresponding signal 𝐺𝐺3(𝑠𝑠)modeled with least 
squares before a stepinput. 

Finally, the last second-order system 
corresponding to a band-passing filter is shown in 
Fig.4. 

 
Fig.3 Output response of the model and its 

corresponding signal 𝐺𝐺4(𝑠𝑠)modeled with least 
squares before a stepinput. 

3.2 Identification by Decreasing Gradient 

The strategy for the decreasing gradient method to 
minimize the cost function is to establish an initial 
model. This model must have as small a value as 
possible to perform the adjustment of the parameters. 

This can take several minutes and even hours, the 
process becomes tedious when the input and output 
signals have been sampled at an extremely small 
value. 

 
Finding an initial model with a small cost function 

value is essential for the algorithm to be able to work 
and be able to estimate the parameters of the system. 
The lower the number of parameters, the better for 
the algorithm to perform a minimization of the cost 
function, although it is not a rule because it can be 
seen in Table 1 and Table 2, the values of the initial 
cost function are not the same. Small enough in all 
cases, but still each of the systems could be modeled. 
Once a good initial model is achieved, the learning 
values "α" and the increment "ε" continue to be 
modified. 

 
After modifying the values of "α" and "ε", it is 

checked whether the algorithm can adjust the 
modeled system with the actual signal. In case the 
model has not been adjusted, another initial model 
must be sought again to start the algorithm again. 
This whole process is carried out for each of the 
systems to be identified. 

 
Fig.5 shows the actual signal along with the signal 

modeled using the decreasing gradient method. In 
addition, the evolution of the cost function can be 
observed and before 1600 iterations the algorithm 
achieves minimization. 

 
Fig.4 Output response of the model and its 

corresponding signal 𝐺𝐺1(𝑠𝑠)modeled with decreasing 
gradient before a step input (The upper figure is the 
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output response and the lower one is the evolution of 
the cost function). 

Fig.6 shows the output of the actual signal along 
with the one modeled using the decreasing gradient 
method. This system corresponds to the high pass 
filter, which could be identified. In addition, you can 
see the evolution of the cost function and that before 
100 iterations minimization is performed. 

 
Fig.5 Output response of the model and its 

corresponding signal 𝐺𝐺2(𝑠𝑠)modeled with decreasing 
gradient before a step input (The upper figure is the 
output response and the lower one is the evolution of 
the cost function). 
 

Table 1. Values for starting the decreasing 
gradient algorithm in first-order systems. 

Model Description Value 

𝐺𝐺1(𝑠𝑠)

=
1000

𝑠𝑠 +  1000
 

Initial 
parameter 
vector 

𝜃𝜃 = [0.01, 0.02, 1,−0.9] 

Learning ∝= 0.13 

Increase 𝜀𝜀 = 10−5 
Sampling 
time 

𝑡𝑡𝑠𝑠 = 0.00002 [𝑠𝑠] 

Number of 
iterations 

1530 

Value of the 
initial cost 
function 

Jo = 19.993 

Value of the 
final cost 
function 

Jf = 3.7(10-5) 

𝐺𝐺2(𝑠𝑠)
=

𝑠𝑠
𝑠𝑠 +  1000

 

Initial 
parameter 
vector 

𝜃𝜃
= [0.991,−0.991, 1,−0.982] 

Learning ∝= 0.1 
Increase 𝜀𝜀 = 10−5 
Sampling 
time 𝑡𝑡𝑠𝑠 = 0.00001 [𝑠𝑠] 

Number of 
iterations 89 

Value of the 
initial cost 
function 

Jo = 0.3264 

Value of the 
final cost 
function 

Jf = 2.6(10-4) 

 
Table 1 shows the values to start the decreasing 

gradient algorithm for first-order systems, the same 
ones that correspond to a low pass and high pass 
filter. 

 
In the next figure (Fig. 7) shows the output of the 

actual model and the output of the decreasing 
gradient method for the direct current servo motor. In 
addition, you can see the evolution of the cost 
function and before reaching 160 iterations you 
manage to minimize the cost function. 

 

 
Fig.6 Output response of the model and its 

corresponding signal 𝐺𝐺3(𝑠𝑠)modeled with decreasing 
gradient before a step input (The upper figure is the 
output response and the lower one is the evolution of 
the cost function). 

In the next figure (Fig. 8) shows the output of the 
actual model and the output of the decreasing 
gradient method for the direct current servo motor. In 
addition, you can see the evolution of the cost 
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function or in its minimization process and before 
reaching 300 iterations the method finds the 
parameters of the modeled system. 

 

 
Fig.7 Output response of the model and its 

corresponding signal 𝐺𝐺3(𝑠𝑠)modeled with decreasing 
gradient before a step input (The upper figure is the 
output response and the lower one is the evolution of 
the cost function). 

Table 2. Values for starting the decreasing 
gradient algorithm in second-order systems.  

Model Description Value 

𝐺𝐺3(𝑠𝑠)

=
1.17

𝑠𝑠(0.12𝑠𝑠 + 1)
 

Initial 
parameter 
vector 

𝜃𝜃 = [0.09,−1 − 1, 0.16] 

Learning ∝= 0.01 
Increase 𝜀𝜀 = 10−4 
Sampling 
time 

𝑡𝑡𝑠𝑠 = 0.1 [𝑠𝑠] 

Number of 
iterations 

154 

Value of the 
initial cost 
function 

J0 = 237.79 

Value of the 
final cost 
function 

Jf = 0.006968 

𝐺𝐺4(𝑠𝑠)

=
4𝑠𝑠

𝑠𝑠2  +  3𝑠𝑠 + 2
 

Initial 
parameter 
vector 

 

Learning ∝= 10−8 

Increase 𝜀𝜀 = 10−10 
Sampling 
time 𝑡𝑡𝑠𝑠 = 0.0001 [𝑠𝑠] 

Number of 
iterations 0.5614 

Value of the 
initial cost 
function 

J0 = 0.5614 

Value of the 
final cost 
function 

Jf = 2.77(10-6) 

 
Table 2 shows the values for starting the 

decreasing gradient algorithm for second-order 
systems, which correspond to a direct current servo 
motor and a band-passing filter. 

 
Getting a very low initial cost function value in 

the order of the units or less, as can be seen in Table  
1  and  Table  2 for the  models of the three filters, 
does not establish a rule to get a good model because 
the value of the initial cost function of the engine 
reached a very high value in the order of hundreds 
and the algorithm of the decreasing gradient found a 
consistent  model. 

4 Conclusions 

The systems proposed are based on a transfer 
function in continuous time and from this, the data 
acquisition for the identification process was carried 
out. The selected structure was auto-regression with 
exogenous variable and the coefficients were found 
by means of least squares and decreasing gradient. 
The least squares estimation was perfect, without 
errors, this is because it was based on an ideal model 
in continuous time; For a real system, it is not 
common to find a perfect model in its identification 
process. 

However, for the high pass filter it was not 
possible to find a model because in an ARX structure 
for a first order model it does not admit the presence 
of zeros in the transfer function because it is a causal 
system. 

On the other hand, the decreasing gradient method 
allowed to characterize all the proposed systems, but 
with the presence of a small error. It is worth 
mentioning that it took a bit of difficulty to find the 
initial model for your programming algorithm. As the 
model increases in order, the difficulty of finding an 
initial model also increases because there are more 
parameters to consider. 
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A perfect combination would be to start modeling 
a real system with least squares and consider this 
model as a starting point for decreasing gradient and 
thus improve the model found. 
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