Abstract: - In this paper, by making use of Borel distribution we introduce a new family $G_{\Sigma}(\delta, \gamma, \lambda, \tau, r)$ of normalized analytic and bi-univalent functions in the open unit disk U, which are associated with Horadam polynomials. We establish upper bounds for the initial Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ of functions belonging to the analytic and bi-univalent function family which we have introduced here. Furthermore, we establish the Fekete-Szegö problem of functions in this new family.

Key-Words: - Bi-univalent function, Bazilevič function, λ-Pseudo-starlike function, Borel distribution, Horadam polynomials, Upper bounds, Fekete-Szegö problem.

1 Introduction

Indicate by A, the collection of analytic functions in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$ that have the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n. \quad (1)$$

Further, assume that S stands for the sub-collection of the set A containing of functions in U satisfying (1) which are univalent in U.

A function $f \in A$ is called Bazilevič function in U if (see [26])

$$Re \left\{ \frac{z f'(z)}{f(z)} \right\} > 0, \quad (z \in U, \gamma \geq 0).$$

A function $f \in A$ is called λ-pseudo-starlike function in U if (see [26])

$$Re \left\{ \frac{z (f'(z))^\lambda}{f(z)} \right\} > 0, \quad (z \in U, \lambda \geq 1).$$

The elementary distributions such as the Poisson, the Pascal, the Logarithmic, the Binomial, the beta negative binomial have been partially studied in Geometric Function Theory from a theoretical point of view (see for example [6, 11, 22, 24, 40]).

Very recently, Wanas and Khuttar [42] introduced the following power series whose coefficients are probabilities of the Borel distribution:

$$M(\tau, z) = z + \sum_{n=2}^{\infty} \frac{(\tau(n-1))^{n-2} e^{-\tau(n-1)}}{(n-1)!} z^n$$

$$\quad (z \in U; \ 0 < \tau \leq 1).$$

We note by the familiar Ratio Test that the radius of convergence of the above series is infinity.
The linear operator $B_\tau : A \to A$ is defined as follows (see [12]):

$$B_\tau f(z) = M(\tau, z) \ast f(z) = z + \sum_{n=2}^{\infty} \frac{\tau(n-1)(n-2)e^{-\tau(n-1)}}{(n-1)!} a_n z^n \in U,$$

where (\ast) indicate the Hadamard product of two series.

According to the Koebe One-Quarter Theorem [10], every function $f \in S$ has an inverse f^{-1} defined by $f^{-1}(f(z)) = z$, $(z \in U)$ and $f(f^{-1}(w)) = w$, $(|w| < r_0(f), r_0(f) \geq \frac{1}{2})$, where

$$g(w) = f^{-1}(w) = w - a_2 w^2 + \left(2a_2^2 - a_3\right) w^3 - \left(5a_2^3 - 5a_2 a_3 + a_4\right) w^4 + \cdots. \quad (2)$$

A function $f \in A$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. Let Σ stands for the class of bi-univalent functions in U given by (1).

Srivastava et al. [29] have actually revived the study of analytic and bi-univalent functions in recent years, it was followed by such works as those by Bulut [8], Adegani et al. [2], G"uney et al. [12], Srivastava and Wanas [30] and others (see, for example [14, 16, 19, 23, 25, 27, 31, 34, 35, 36, 37, 38, 39]).

We notice that the class Σ is not empty. For example, the functions $z, \frac{z}{1-z}, -\log(1-z)$ and $\frac{1}{2} \log \frac{1+z}{1-z}$ are members of Σ. However, the Koebe function is not a member of Σ. Until now, the coefficient estimate problem for each of the following Taylor-Maclaurin coefficients $|a_n|$, $(n = 3, 4, \cdots)$ for functions $f \in \Sigma$ is still an open problem.

Let the functions f and g be analytic in U. We say that the function f is subordinate to g, if there exists a Schwarz function ω analytic in U with $\omega(0) = 0$ and $|\omega(z)| < 1$ $(z \in U)$ such that $f(z) = g(\omega(z))$. This subordination is denoted by $f \prec g$ or $f(\omega) \prec g(z)$ $(z \in U)$. It is well known that (see [21]), if the function g is univalent in U, then $f \prec g$ if and only if $f(0) = g(0)$ and $f'(U) \subseteq g(U)$.

The Horadam polynomials $h_n(r)$ are defined by the following repetition relation (see [14]):

$$h_n(r) = prh_{n-1}(r) + qh_{n-2}(r) \quad (3)$$

$(r \in \mathbb{R}, n \in \mathbb{N} = \{1, 2, 3, \cdots\}),$

with $h_1(r) = a$ and $h_2(r) = br$, for some real constant a, b, p and q. The characteristic equation of repetition relation (3) is $t^2 - prt - q = 0$. This equation has two real roots $x = \frac{pr + \sqrt{p^2r^2 + 4q}}{2}$ and $y = \frac{pr - \sqrt{p^2r^2 + 4q}}{2}$.

Remark 2.1. By selecting the particular values of a, b, p and q, the Horadam polynomial $h_n(r)$ reduces to several polynomials. Some of them are illustrated below:

1. Taking $a = b = p = q = 1$, we obtain the Fibonacci polynomials $F_n(r)$;
2. Taking $a = 2$ and $b = p = q = 1$, we attain the Lucas polynomials $L_n(r)$;
3. Taking $a = q = 1$ and $b = p = 2$, we have the Pell polynomials $P_n(r)$;
4. Taking $a = b = p = 2$ and $q = 1$, we get the Pell-Lucas polynomials $Q_n(r)$;
5. Taking $a = b = 1, p = 2$ and $q = -1$, we obtain the Chebyshev polynomials $T_n(r)$ of the first kind;
6. Taking $a = 1, b = p = 2$ and $q = -1$, we have the Chebyshev polynomials $U_n(r)$ of the second kind.

These polynomials, the families of orthogonal polynomials and other special polynomials, as well as their generalizations, are potentially important in a variety of disciplines in many of sciences, especially in the mathematics, statistics and physics. For more information associated with these polynomials see [13, 14, 17, 18].

The generating function of the Horadam polynomials $h_n(r)$ (see [15]) is given by

$$\Pi(r, z) = \sum_{n=1}^{\infty} h_n(r)z^{n-1} = \frac{a + (b - ap)r z}{1 - prz - qz^2}. \quad (4)$$

Srivastava et al. [28] have studied the Horadam polynomials in a similar context involving analytic and bi-univalent functions, it was followed by such works as those by Al-Amoush [3], Wanas and Alb Lupaş [43], Abramovich et al. [1] and others (see, for example, [14, 28, 31, 34, 35, 36, 37, 38, 39, 43]).

In this paper we define a subclass $G_\Sigma(\delta, \gamma, \lambda, \tau, r)$ of normalized analytic and bi-univalent function using Borel distribution and Horadam polynomial $h_n(r)$. We obtain Taylor-Maclaurin coefficient inequalities for functions belonging to the defined subclass $G_\Sigma(\delta, \gamma, \lambda, \tau, r)$ and study the famous Fejèke Szegő problem.

2 Main Results

We begin this section by defining the family $G_\Sigma(\delta, \gamma, \lambda, \tau, r)$ as follows:

Definition 2.1. For $0 \leq \delta \leq 1$, $\gamma \geq 0$, $\lambda \geq 1$, $0 < \tau \leq 1$ and $r \in \mathbb{R}$, a function $f \in \Sigma$ is said to be in the family $G_\Sigma(\delta, \gamma, \lambda, \tau, r)$ if it satisfies the
subordinations:

\[(1 - \delta) \frac{z^{1-\gamma} (B_{\gamma} f(z))' + \delta z (B_{\gamma} f(z))'}{(B_{\gamma} f(z))^{1-\gamma}} < \Pi(r, z) + 1 - a\]

and

\[(1 - \delta) \frac{w^{1-\gamma} (B_{\gamma} g(w))' + \delta w (B_{\gamma} g(w))'}{(B_{\gamma} g(w))^{1-\gamma}} < \Pi(r, w) + 1 - a\]

where \(a\) is a real constant and the function \(g = f^{-1}\) is given by \((3)\).

Note: \(\theta = (1 - \delta)(\gamma + 1) + \delta(2\lambda - 1)\) is used throughout the paper unless otherwise mentioned.

Theorem 2.1. For \(0 \leq \delta \leq 1, \gamma \geq 0, \lambda \geq 1, 0 < \tau \leq 1\) and \(r \in \mathbb{R}\), let \(f \in \mathcal{A}\) be in the family \(\mathcal{G}_{\Sigma}(\delta, \gamma, \lambda, \tau, r)\). Then

\[|a_2| \leq \frac{e^\delta |br| \sqrt{2|br|}}{\sqrt{|\varphi(\delta, \gamma, \lambda, \tau)b - 2p|}}, \quad |a_3| \leq \frac{e^{2\tau} |br|}{\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)] + \frac{e^{2\tau} b^2}{a^2}},\]

where

\[\varphi(\delta, \gamma, \lambda, \tau) = (1 - \delta)(\gamma + 2)(4\tau + \gamma - 1) + 2\delta (2\tau (3\lambda - 1) + 2\lambda(\lambda - 2) + 1)\]

Proof Let \(f \in \mathcal{G}_{\Sigma}(\delta, \gamma, \lambda, \tau, r)\). Then there are two analytic functions \(u, v : U \rightarrow U\) given by

\[u(z) = u_1 z + u_2 z^2 + u_3 z^3 + \cdots \quad (z \in U)\]

and

\[v(w) = v_1 w + v_2 w^2 + v_3 w^3 + \cdots \quad (w \in U),\]

with \(u(0) = v(0) = 0, |u(z)| < 1, |v(w)| < 1, z, w \in U\) such that

\[(1 - \delta) \frac{z^{1-\gamma} (B_{\gamma} f(z))' + \delta z (B_{\gamma} f(z))'}{(B_{\gamma} f(z))^{1-\gamma}} = \Pi(r, u(z)) + 1 - a\]

and

\[(1 - \delta) \frac{w^{1-\gamma} (B_{\gamma} g(w))' + \delta w (B_{\gamma} g(w))'}{(B_{\gamma} g(w))^{1-\gamma}} = \Pi(r, v(w)) + 1 - a\]

Or, equivalently

\[(1 - \delta) \frac{z^{1-\gamma} (B_{\gamma} f(z))' + \delta z (B_{\gamma} f(z))'}{(B_{\gamma} f(z))^{1-\gamma}} = 1 + h_1(r) + h_2(r)u(z) + h_3(r)u^2(z) + \cdots \quad (8)\]

and

\[(1 - \delta) \frac{w^{1-\gamma} (B_{\gamma} g(w))' + \delta w (B_{\gamma} g(w))'}{(B_{\gamma} g(w))^{1-\gamma}} = 1 + h_1(r) + h_2(r)v(w) + h_3(r)v^2(w) + \cdots \quad (9)\]

Combining \((3), (7), (8)\) and \((9)\) yields

\[(1 - \delta) \frac{z^{1-\gamma} (B_{\gamma} f(z))' + \delta z (B_{\gamma} f(z))'}{(B_{\gamma} f(z))^{1-\gamma}} = 1 + h_2(r)u_1 z + \left[h_2(r)u_2 + h_3(r)u_1^2 \right] z^2 + \cdots \quad (10)\]

and

\[(1 - \delta) \frac{w^{1-\gamma} (B_{\gamma} g(w))' + \delta w (B_{\gamma} g(w))'}{(B_{\gamma} g(w))^{1-\gamma}} = 1 + h_2(r)v_1 w + \left[h_2(r)v_2 + h_3(r)v_1^2 \right] w^2 + \cdots \quad (11)\]

It is quite well-known that if \(|u(z)| < 1\) and \(|v(w)| < 1, z, w \in U, then

\[|u_i| \leq 1 \quad \text{and} \quad |v_i| \leq 1 \text{ for all } i \in \mathbb{N}. \quad (12)\]

Comparing the corresponding coefficients in \((10)\) and \((11)\), after simplifying, we have

\[[(1 - \delta)(\gamma + 1) + \delta(2\lambda - 1)] e^{-\tau} a_2 = h_2(r)u_1, \quad (13)\]

\[2\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)] e^{-2\tau} a_3 + \left\{ \frac{1}{2} (1 - \delta)(\gamma + 2)(\gamma - 1) + \delta(2\lambda(\lambda - 2) + 1) \right\} e^{-2\tau} a_2^2 = h_2(r)u_2 + h_3(r)u_1^2, \quad (14)\]

\[- [(1 - \delta)(\gamma + 1) + \delta(2\lambda - 1)] e^{-\tau} a_2 = h_2(r)v_1 \quad (15)\]
In view of (17) and (18), we get from (21)
and (19) that
\[u_1 = -v_1 \]
(17)
and
\[2\theta^2 e^{-2\tau} a_2^2 = h_2^2(r)(u_1^2 + v_1^2). \]
(18)
If we add (14) to (16), we find that
\[\phi(\delta, \gamma, \lambda, \tau)e^{-2\tau} a_2^2 = h_2(r)(u_2 + v_2) + h_3(r)(u_2^2 + v_2^2), \]
where \(\phi(\delta, \gamma, \lambda, \tau) \) is given by (3).

Substituting the value of \(u_1^2 + v_1^2 \) from (18) in the right hand side of (19), we deduce that
\[a_2^2 = \frac{e^{2\tau} h_3^2(r)(u_2 + v_2)}{h_2^2(r)\phi(\delta, \gamma, \lambda, \tau) - 2h_3(r)\theta^2}. \]
(20)

Further computations using (3), (12) and (20), we obtain
\[|a_2| \leq \frac{e^{\tau} |br| \sqrt{2|br|}}{\sqrt{|\phi(\delta, \gamma, \lambda, \tau)b - 2\theta^2|^{1/2}|br| - 2qa^2^2|}.} \]

Next, if we subtract (16) from (14), we can easily see that
\[2\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)] e^{-2\tau} (a_3 - a_2^2) = h_2(r)(u_2 - v_2) + h_3(r)(u_2^2 - v_2^2). \]
(21)
In view of (17) and (18), we get from (21)
\[a_3 = \frac{e^{2\tau} h_2(r)(u_2 - v_2)}{2\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)] + e^{2\tau} h_3^2(r)(u_1^2 + v_1^2).} \]

Thus applying (3), we obtain
\[|a_3| \leq \frac{e^{2\tau} |br|}{\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)] + e^{2\theta^2} \theta^2}. \]

This completes the proof of Theorem 2.1.

In the next theorem, we discuss the Fekete-Szegő problem for the family \(G_{\Sigma}(\delta, \gamma, \lambda, \tau, r) \).

Theorem 2.2. For \(0 \leq \delta \leq 1, \gamma \geq 0, \lambda \geq 1, 0 < \tau \leq 1 \) and \(r, \mu \in \mathbb{R} \), let \(f \in A \) be in the family \(G_{\Sigma}(\delta, \gamma, \lambda, \tau, r) \). Then
\[|a_3 - \mu a_2^2| \leq \frac{e^{2\tau} |br|}{\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)]}; \]
\[2\tau |br| |\psi(\mu, r)|; \]
\[2\tau |br| |\psi(\mu, r)|; \]
After some computations, we obtain
\[|a_3 - \mu a_2^2| \leq \frac{e^{2\tau} |br|}{\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)]}. \]

Proof. It follows from (20) and (21) that
\[a_3 - \mu a_2^2 = \frac{e^{2\tau} h_2(r)(u_2 - v_2)}{2\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)]} + (1 - \mu) a_2^2 \]
\[= \frac{2\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)]}{2\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)]} + \psi(\mu, r) + \frac{e^{2\tau}}{2\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)]} v_2, \]
where
\[\psi(\mu, r) = \frac{e^{2\tau} h_2(r)(1 - \mu)}{h_2^2(r)\phi(\delta, \gamma, \lambda, \tau) - 2h_3(r)\theta^2}. \]

According to (3), we find that
\[|a_3 - \mu a_2^2| \leq \frac{e^{2\tau} |br|}{\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)]}; \]
\[2\tau |br| |\psi(\mu, r)|; \]
\[2\tau |br| |\psi(\mu, r)|; \]
After some computations, we obtain
\[|a_3 - \mu a_2^2| \leq \frac{e^{2\tau} |br|}{\tau [(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)]}. \]
Putting $\mu = 1$ in Theorem 2, we obtain the following result:

Corollary 2.1. For $0 \leq \delta \leq 1$, $\gamma \geq 0$, $\lambda \geq 1$, $0 < \tau \leq 1$ and $r \in \mathbb{R}$, let $f \in \mathcal{A}$ be in the family $\mathcal{G}_2(\delta, \gamma, \lambda, \tau, r)$. Then
\[
|a_2 - a_3| \leq e^{2\tau |br|} \frac{(1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)}{\tau (1 - \delta)(\gamma + 2) + \delta(3\lambda - 1)}.
\]

3 Conclusion

The fact that we can find many unique and effective uses of a large variety of interesting functions and specific polynomial in Geometric Function Theory provided the primary inspiration for our analysis in this article. The primary objective was to create a new family $\mathcal{G}_2(\delta, \gamma, \lambda, \tau, r)$ of normalized analytic and bi-univalent function defined by Borel distribution and also using the Horadam polynomial $h_n(r)$, which are given by the recurrence relation [3] and generating function $P(r, z)$ in [4]. We generate Taylor-Maclaurin coefficient inequalities for functions belonging to this newly introduced bi-univalent function family $\mathcal{G}_2(\delta, \gamma, \lambda, \tau, r)$ and viewed the famous Fekete-Szegő problem.

References:

Contribution of individual authors to the creation of a scientific article

ghostwriting policy

S. R. Swamy - conceptualization, methodology, formal analysis.

Alina Alb Lupas - writing—review and editing, supervision, funding acquisition.

Abbas Kareem Wanas - software, validation, data curation, writing—original draft preparation, project administration.

J. Nirmala - investigation, resources, visualization.

All authors have read and agreed to the published version of the manuscript.

Sources of funding for research

presented in a scientific article or scientific article itself

Report potential sources of funding if there is any

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en_US