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Abstract: Corresponding to each group Γ, a mixed graph G = (Γ, E,E′) called C-graph is assigned, such

that the vertex set of G is the group itself. Two types of adjacency relations, that is, one way and two

way communication is defined for vertices, to get a clear idea of the underlying group structure. An

effort to answer the question, ‘Is there any relation between the order of an element in the group and

degrees of the corresponding vertex in the C-graph’, by proposing a mathematical formula connecting

them is made. Established an upper bound for the total number of edges in a C-graph G. For a vertex z

in G, the concept Connector Edge CEz is defined, which convey some structural properties of the group

Γ. The Connector Edge Set is defined for both a vertex z and the whole C-graph G, and is denoted as

C E z and C E G respectively. Proposed the result, C E G = E if and only if |Γ| = 2n, n ∈ N. Finally, the

properties of G, which the Connector Edge Set C E G carry out are discussed.

Key-Words: C-graph, Group, Mixed graph, Connector Edge, Connector Edge Set

Received: March 30, 2021. Revised: October 5, 2021. Accepted: October 20, 2021. Published: November 3, 2021. 

1 Introduction

Combining different branches of Mathematics

and advancing applications of one to the other is

a vast area for research [Eg : Topological graph

theory, Algebraic topology, Algebraic graph the-

ory and so on]. The main objective of this paper

is, the study of such an interconnection. As the

title suggests, the study is between Graph the-

ory and Group theory, and method of study is,

represent every group by a corresponding graph

structure called C-graph, and then discuss the al-

gebraic properties of the group by corresponding

graph representation.

The key point which is going to differentiate

the C-graph from existing graphs on groups is,

it is a Mixed graph [infact no mixed graph is

defined for an algebraic structure] and it gives

more transparency for the relation between the el-

ements of the group, as in the way a mixed graph

interpret the communication between nodes or

vertices by characterizing the edges as directed

and undirected.

At the same time, both directed as well as

undirected edges are dealt with simultaneously

here. Thus, before entering into the definition

and properties of C-graph, it is better to go

through some of the existing graphs on Algebraic

structures. The next section summerizes such

studies.

2 Graphs on Algebraic

structures
Cayley graph[1] is a significant graphical repre-

sentation of groups introduced by A.Cayley in

1878 for the purpose of constructing a pictorial

representation of finite groups. For each generat-

ing set S of a finite group G, there is a directed

graph representing the group in terms of the gen-

erators in S and called it as Cayley graph of G

with respect to S. Bretto[2] in 2007 pointed out

some of the limitations of Cayley graph such as it

is regular always and do not give much informa-
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tion about the group and so on, and then defined

G-graph as a solution for this according to him.

Also, he presented an algorithm for the construc-

tion of G-graphs from groups.

Neumann [3] in 1976 defined Commuting-

graph of a group, as a graph with vertex set the

group itself and two vertices g, h are joined by an

undirected edge if and only if they do not com-

mute as elements of G. Beck[4], in 1988 intro-

duced the idea of a Zero divisor graph of a com-

mutative ring R with identity, in which he make

two vertices x, y adjacent if and only if xy = 0.

Abdollahi[5] et.al. assigned the Non commut-

ing graph to an arbitrary non abelian group, the

graph is obtained by taking elements not in cen-

ter of the group and make two elements adjacent

if they do not commute. Kelarev and Quinn [6]

defined Directed power graph Pow(S) of a semi-

group S as a graph with vertex set S itself and for

two distinct elements u, v of S if v is a power of u,

then (u, v) is a directed edge. Divisibility graph

and Annhilator graph of a semigroup S are also

defined by Kelarev and Quinn[7]. The Divisibility

graph Div(S) has vertex set S and edges (u, v),

where u ̸= v and u divides v. The Annhilator

graph Ann(S) of S with 0, has vertex set S and

edge set {(u, v) ∈ S × S : uv = 0, u ̸= v}.
Chakrabarty[8] et.al. investigated the Undi-

rected power graph of a semigroup S, where the

graph have vertex set S and two distinct elements

a and b of S are adjacent if and only if one is a

positive power of the other. Also, they observed

that power graph is connected for any finite group

and is complete if and only if the group is cyclic

of order 1 or pm, where p is a prime.

Redmond[9] in 2002 defined zero divisor graph

corresponding to a non commutative ring in four

different ways. Among them one is a directed

graph and others are undirected in nature. The

total graph of a commutative ring R was intro-

duced by Anderson and Badawi[10][11] in 2008,

as a graph with vertex set R and two distinct ver-

tices x and y of R, are adjacent only if x + y ∈
Z(R).

Smarandache and Vasantha[12] in 2009, de-

fined the identity graph for a semigroup S, in

which the vertex set is the semigroup itself and

two distinct vertices x and y are adjacent if and

only if xy is the identity in S. Then these graphs

are extednded to commutative rings, groups and

multigroups also by different authors[12][13][14].

Erfanian and Tolue[15] in 2012 associated a Rel-

ative non nil-n graph with a group G which is

not a nil-n group. The vertex set of this graph

is G\zn(G) and two distinct vertices x and y are

adjacent if [x, y] /∈ zn−1(G), where zn(G) is the

nth term of the upper central series of G.

Niroomand[16] in 2017 introduced the Non ex-

terior square graph corresponding to non cyclic

groups, in which two distinct vertices x, y ∈
G\Ẑ(G) join by an edge if x ∧ y ̸= 1. Akbari

et.al[17][18][19] in 2017 defined enhanced power

graph of groups as a graph with vertex set G it-

self and two distinct vertices x and y of G are

adjacent if they are in the same cyclic subgroups.

In 2019, Banerjee[20][21] assigned a new graph on

finite group and named it as Coprime graph, with

vertex set as the group itself and two distinct ver-

tices x and y of the graph are adjacent only if the

gcd of orders of x and y is either 1 or a prime.

So far discussed papers and their continued

works are focusing on the investigation of al-

gebraic structure of the group using associated

group. Now, more innovative results are being

proposed by different researchers on this field all

around the world. In our paper, a mixed graphi-

cal representation of groups called C-graph is in-

troduced and studied some of its properties.

3 Basic definitions
Mixed graph is a graph containing oriented as

well as unoriented set of edges. That is, a

mixed graph G = (V,E,E′) is a graph contain-
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ing un-oriented E, as well as oriented E′, set

of edges. Two mixed graphs G1 and G2 are

isomorphic[22], if there is a one-one correspon-

dence between their vertex set which preserves

adjacency. That is, there exist a one-one and onto

function f : V (G1) −→ V (G2) such that for any

two vertices u and v ofG1, there exist two vertices

f(u) and f(v) in G2, with the property that, if

there is a directed edge from u to v or a directed

edge from v to u, then there is a directed edge

from f(u) to f(v) or a directed edge from f(v) to

f(u) respectively. Also, if u and v are connected

by an undirected edge then so are f(u) and f(v).

A group in which every non identity element is of

order 2 is called a Boolean group or Abelian 2-

group. That is, every element in a Boolean group

is self inverse and every Boolean group is abelian.

Throughout this paper, Γ is a group and G is

a graph. Zn is the set of all possible remainders

when an integer is divided by n. Here, we use

Zn for the group (Zn,+n). For an element a in

Γ, o(a) is the order of a. The identity element of

the group is denoted by i.

4 Structure and Properties of

C-graph of a group

In this section, a new graphical representation

called C-graph of a group is introduced. The ‘C

’in this name is for ‘cyclic subgroup’, since, the

adjacency of vertices in the graph depends on the

cyclic subgroups of the corresponding elements of

the group. C-graph has a close connection with

the power graph, or rather, a modification of the

power graph, as in a way the communication be-

tween the vertices of the graph is more clarified.

For a group Γ, in the directed power graph, for

x, y ∈ Γ, if ⟨x⟩ = ⟨y⟩, there are two different di-

rected edges x −→ y and y −→ x. Also, in the

undirected power graph, there is an undirected

edge between x and y for all the three cases,

⟨x⟩ ⊂ ⟨y⟩, ⟨x⟩ ⊃ ⟨y⟩ and ⟨x⟩ = ⟨y⟩ [24]. Thus

identification of the relation between elements of

the group by merely looking these corresponding

graphs is not explicit.

In order to analyse the pattern of communi-

cation between nodes, that is to find which two

nodes have two way communication and which

two nodes have only one way communication, we

attempt to define the C-graph for a group. The

C-graph so defined is a mixed graph, that is, a

graph with both directed and undirected edges.

4.1 Definitions

Definition 4.1. For a group Γ, the C-graph

G = (Γ, E,E′) is the graph with vertex set

V (G) = Γ and for x, y ∈ Γ, x ̸= y,

If ⟨x⟩ ⊂ ⟨y⟩, then there is a directed edge from

x to y

If ⟨x⟩ = ⟨y⟩, then there is an undirected edge

between x and y.

where E is the set of undirected edges and E′ is

the set of directed edges of G.

Note 4.1. In the C-graph G of the group Γ, for

any two vertices x and y, if there is a directed

edge from x to y, then it is denoted as x −→ y.

Also, if there is an undirected edge between x and

y, then denote it as xy.

4.2 Observations

Consider x, y ∈ Γ, if either ⟨x⟩ ⊆ ⟨y⟩ or ⟨y⟩ ⊆ ⟨x⟩
in Γ, then we can say that ⟨x⟩ and ⟨y⟩ are com-

parable and so are the elements x and y.

In this context, for any two comparable elements

x and y of a group Γ,

if ⟨x⟩ ⊂ ⟨y⟩, then ⟨x⟩ is weaker and ⟨y⟩ is stronger
cyclic subgroups.

If ⟨x⟩ = ⟨y⟩, then the two cyclic subgroups are

equal in strengh.

Thus, for any two comparable elements x and

y of Γ, the element which generates weaker cyclic

subgroup is the weaker element and the other is

stronger. So, the power of generating more ele-

ments of the group is considered as a measure of

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.61 Sinu N. Vijayan,  Anjaly Kishore

E-ISSN: 2224-2880 571 Volume 20, 2021



strength for comparable elements.

Now, let us check how the comparability of

elements of the group Γ reflects in the corre-

sponding C-graph G. Any two elements x and

y are comparable in the group Γ if and only if

there is an edge between x and y in the C-graph

G. Explicitly, there are two cases here.

For x, y ∈ Γ,

x −→ y if and only if x is weaker and y is stronger

in Γ.

xy in G if and only if x and y are equal in strength

in Γ.

We summerize the above discussion as a chart in

the Appendix.

Since G is a mixed graph, for a vertex x there

are three types of degrees namely Degree, In-

degree, and Outdegree. The first one is con-

tributed by undirected edges and the other two

by directed edges.

Degree : It is the number of undirected

edges incident with x and is denoted by deg(x).

Indegree : It is the number of directed edges

with x as their terminal vertex and is denoted by

deg−(x).

Outdegree : It is the number of directed edges

with x as their initial vertex and is denoted by

deg+(x).

Example 4.1. Given below are the C-graphs of

the groups Γ1 = S3 and Γ2 = Z8

ρ0 ρ1

ρ2

µ1µ2

µ3

Fig.1 C-graph G(S3)

0 1

2

3

45

6

7

Fig.2 C-graph G2(Z8)

4.3 Properties of Degrees and Order

of an element

The main objective of this section is to discuss the

problem, ‘Is there any relation between the order

of an element in the group and degrees of the cor-

responding vertex in the C-graph?’. A method is

constructed to obtain the order of each element

in the group from the corresponding C-graph.

Remark 4.1. For the C-graph G = (Γ, E,E′) of

a finite group Γ with identity i.

1. deg(i) = deg−(i) = 0.

2. deg+(x) = |Γ| − 1 if and only if x = i.

Proposition 4.1. For any prime p, the C-graph

G of the finite group Zp has the following prop-

erties.

1. G contains a complete subgraph with p− 1

vertices all of its edges are undirected.

2. G consists of only p − 1 directed edges,

all of it are of the form (0, t) where t =

1, 2, 3, . . . , p− 1.

3. deg(0) = deg−(0) = 0, deg+(0) = p− 1.

4. deg(x) = p− 1, if x ̸= 0.

5. deg−(x) = 1, deg+(x) = 0, if x ̸= 0.
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Proof. 1. Since p is a prime number, the in-

tegers t, such that 1 ≤ t ≤ p − 1, gener-

ates Zp. That is, ⟨1⟩ = ⟨2⟩ = ⟨3⟩ = . . . =

⟨p− 1⟩ = Zp. Which means in the C-graph

G of Zp, there is an undirected edge be-

tween any pair of vertices other than 0. So,

the vertices 1,2,. . .,p−1 induces a complete

subgraph of G.

2. ⟨0⟩ = {0} is a subgroup of all the other

cyclic subgroups. So, in the C-graph G

there are p− 1 directed edges from the ver-

tex 0. These are the only directed edges of

G, since all the other cyclic subgroups are

equal.

3. Clear from (1) and (2) of the remark 4.1.

4. (4) and (5) are obvious from the (1) and (2)

of the same proposition.

Theorem 4.1. Let Γ be a finite group and

G = (Γ, E,E′) the C-graph of Γ. Then, for

any a in Γ, the order of a, o(a) can be di-

rectly deduced from the C-graph G. In partic-

ular, o(a) = deg(a) + deg−(a) + 1.

Proof. Since C-graph is constructed by using the

subset relation of cyclic subgroups of each ele-

ment, it is possible to deduce the order of ele-

ments from the graph itself. For an element a of

Γ, define

X = {x ∈ Γ : x −→ a is a directed

edge in G, x ̸= a}
Y = {y ∈ Γ : ya is an undirected

edge in G, y ̸= a}
B = ⟨a⟩ − {a} .

Let b ∈ B ⇒ b = am, b ̸= a, m ∈ N.

⇒ ⟨b⟩ = {bn : n ∈ N} = {(am)n : n ∈ N}
⊆ ⟨a⟩ .

⇒ ⟨b⟩ ⊆ ⟨a⟩ .
⇒ either ⟨b⟩ ⊂ ⟨a⟩ or ⟨b⟩ = ⟨a⟩ .

This means either b −→ a is a directed edge or

ba is an undirected edge in G. Thus, b ∈ X or

b ∈ Y . That is, b ∈ X ∪ Y and hence

B ⊂ X ∪ Y. (1)

Suppose

c ∈ X ∪ Y ⇒ c ∈ X or c ∈ Y.

⇒ c −→ a is a directed edge

or ca is an undirected edge.

⇒ ⟨c⟩ ⊂ ⟨a⟩ or ⟨c⟩ = ⟨a⟩ .
⇒ ⟨c⟩ ⊆ ⟨a⟩ and c ̸= a.

⇒ c ∈ (⟨a⟩ − {a}) =⇒ c ∈ B.
and hence

X ∪ Y ⊂ B. (2)

Thus from (1) and (2)

B = X ∪ Y. (3)

Suppose that

d ∈ X ∩ Y ⇒ d ∈ X and d ∈ Y.

⇒ Both directed and undirected

edges exist between d and a.
which is not possible. Therefore,

X ∩ Y = ∅. (4)

That is, B is the disjoint union of X and Y .

Therefore,

|B| = |X|+ |Y |
⇒ |⟨a⟩ − 1| = deg−(a) + deg(a).

⇒ |⟨a⟩| = deg(a) + deg−(a) + 1.

⇒ o(a) = deg(a) + deg−(a) + 1.

Illustration 4.1. Let Γ1 = S3, then from the C-

graph G1 of Γ1 in Fig 1

o(ρ0) = 0 + 0 + 1 = 1

o(ρ1) = 1 + 1 + 1 = 3

o(ρ2) = 1 + 1 + 1 = 3

o(µ1) = 0 + 1 + 1 = 2

o(µ2) = 0 + 1 + 1 = 2

o(µ3) = 0 + 1 + 1 = 2

Illustration 4.2. Let Γ2 = Z8, then from the
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C-graph G2 of Γ2 in Fig 2

o(0) = 0 + 0 + 1 = 1

o(1) = 3 + 4 + 1 = 8

o(2) = 1 + 2 + 1 = 4

o(3) = 3 + 4 + 1 = 8

o(4) = 0 + 1 + 1 = 2

o(5) = 3 + 4 + 1 = 8

o(6) = 1 + 2 + 1 = 4

o(7) = 3 + 4 + 1 = 8

Corollary 4.1. Let Γ be a finite group and G

be its C-graph. For an a ∈ Γ, o(a) = p, a prime

if and only if deg−(a) = 1 in G. That is, only

one directed edge pointed towards a and which is

from the identity. In that case, the order of such

an element a is deg(a) + 2.

Proof. For an element a in Γ to be of prime order

it is necessary and sufficient that, for any b ∈ Γ

with ⟨b⟩ ⊂ ⟨a⟩ =⇒ b = i. Thus, the only di-

rected edge pointing towards a is from i, which

implies deg−(a) = 1. Now, from Theorem 4.1,

o(a) = deg(a) + 2.

Corollary 4.2. Two groups having isomorphic

C-graphs have the same numbers of elements

of equal order. Thus, isomorphism between C-

graphs preserves order property.

Proof. From Theorem 4.1, it is clear that order

of each element a in the group can be deduced

from the corresponding C-graph by the formula

o(a) = deg(a) + deg−(a) + 1. So, the proof is

clear.

For a mixed graph, total number of edges can

be determined using the below formula.

Lemma 4.1. [22] Let Vm = {v1, v2, . . . , vm} be

the vertex set of mixed graph Gm = (V,E, Ē).

The total number of edges Em in the mixed graph

Gm is given by

|Em| = 1

2

∑
v∈Vm

deg(v) +
∑
v∈Vm

deg−(v). or

|Em| = 1

2

∑
v∈Vm

deg(v) +
∑
v∈Vm

deg+(v).

From Lemma 4.1, the total number of directed

edges and undirected edges of the C-graph can be

deduced as follows.

Theorem 4.2. Let Γ be a finite group and G =

(Γ, E,E′) be the C-graph of Γ. Then

1. |E| = 1
2

∑
x∈Γ deg(x).

2. |E′| =
∑

x∈Γ deg
−(x) =

∑
x∈G deg+(x).

Theorem 4.3. Let Γ be a group with n elements

and G the C-graph of Γ. Then, the total number

of edges in G is |E|+ |E′| ≤
∑

x∈Γ o(x)− n, and

the equality holds for Boolean groups only.

Proof. We have from Theorem 4.1,

o(x) = deg(x) + deg−(x) + 1 ∀x ∈ Γ.

Now, sum up over all the elements of Γ, we get∑
x∈Γ o(x) =

∑
x∈Γ deg(x) +

∑
x∈Γ deg

−(x) + n.

That is,∑
x∈Γ deg(x) +

∑
x∈Γ deg

−(x) =
∑

x∈Γ o(x)− n

From Theorem 4.2,

Total number of edges in G

= |E|+ |E′| .
= 1

2

∑
x∈Γ deg(x) +

∑
x∈Γ deg

−(x).

≤
∑

x∈Γ deg(x) +
∑

x∈Γ deg
−(x).

=
∑

x∈Γ o(x)− n.

Thus, |E|+ |E′| ≤
∑

x∈Γ o(x)− n.

Suppose that for a group Γ,

|E|+ |E′| =
∑

x∈Γ o(x)− n

That is,
1
2

∑
x∈Γ deg(x) +

∑
x∈Γ deg

−(x)

=
∑

x∈Γ deg(x) +
∑

x∈Γ deg
−(x)

1
2

∑
x∈Γ deg(x) =

∑
x∈Γ deg(x)

1
2

∑
x∈Γ deg(x) = 0∑
x∈Γ deg(x) = 0

deg(x) = 0 ∀x ∈ Γ
That is, there is no undirected edge in the C-

graph G of the given group Γ. This means, no

two distinct elements of the group Γ, generates

same cyclic subgroup.

Claim : x = x−1 ∀x ∈ Γ.
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Suppose, ∃ an x ∈ Γ such that x−1 = y ̸= x, then

⟨x⟩ =
〈
x−1

〉
= ⟨y⟩. that is, ⟨x⟩ = ⟨y⟩, x ̸= y,

which is a contradiction. Therefore, x = x−1

∀x ∈ Γ.

=⇒ x2 = i ∀x ∈ Γ

=⇒ ⟨x⟩ = {i, x} ∀x ∈ Γ.

Thus, Γ is a Boolean group.

Example 4.2. For Γ = V , the klien-4-group [ex-

ample of a Boolean group], the C-graph G of V

is a directed tree as below.

e a

bc

Fig.3 C-graph G(V )

Total number of edges of G(V )

=
∑

x∈V o(x)− 4

= o(e) + o(a) + o(b) + o(c)− 4

= 1 + 2 + 2 + 2− 4

= 3

5 Connector Edge
In the C-graph G of a group Γ, the concept of

Connector Edge for a vertex is introduced to

study the group structure using the graph the-

ory.

Definition 5.1. Let z be a vertex in the C-graph

G = (Γ, E,E′) of a group Γ. Then z is said to

have a Connector Edge in G, if there exist two

distinct vertices x and y both different from z and

an undirected edge w connecting x and y such

that z −→ x and z −→ y are two directed edges

in G. Here w is said to be a Connector Edge of

the vertex z, and is denoted w = CEz. Also, z

is said to be a Common Neighbour Pointing

Towards (CoNPT ) the vertices x and y, and is

denoted by z = CoNPTxy.

Example 5.1. Consider Γ = Q8 =

{1,−1, i,−i, j,−j, k,−k}, the quartenion group,

then G(Q8) is given below.

1 -1

i

−i

j−j

k

−k

Fig.4 C-graph G(Q8)

Here, the edge −ii is a Connector Edge of the

vertex -1. That is, −ii = CE−1 and −1 =

CoNPT−ii

Similarly, −ii = CE1 and 1 = CoNPT−ii

−jj = CE1 and 1 = CoNPT−jj

−jj = CE−1 and −1 = CoNPT−jj

−kk = CE1 and 1 = CoNPT−kk

−kk = CE−1 and −1 = CoNPT−kk

Note 5.1. 1. A vertex z in the C-graph G,

may have more than one Connector Edges.

For example, for G(Q8) in example 5.1 −ii,

−jj, −kk are Connector Edges of the ver-

tex -1.

2. The notation w = CEz means, the edge w

is one of the Connector Edges of the vertex

z. That is, this is not a unique notation.

3. For any two distinct vertices x and y in

G, there may have more than one Common

Neighbour Pointing Towards x and y. For

example, -1 and 1 are Common Neighbour

Pointing Towards −i and i.

4. The notation z = CoNPTxy means the

vertex z is one of the Common Neighbour

Pointing Towards x and y. That is, this is

not a unique notation.
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Now, let us think about the basic prop-

erties of the group that are carried out by the

Connector Edges of the corresponding C-graph.

A Connector Edge for a vertex z in the C-graph

G of a group Γ, ensures the presence of two dis-

tinct vertices x and y distinct from z and two

directed edges z −→ x and z −→ y and an undi-

rected edge xy in G. Thus, a vertex z of the

C-graph has a Connector Edge implies there are

two distinct elements x and y in the correspond-

ing group which generates the same cyclic sub-

group H = ⟨x⟩ = ⟨y⟩, properly containing the

element z.

Definition 5.2. For a vertex z in the C-graph

G, define the set C E z = {w ∈ E : w = CEz},
and is called the Connector Edge Set or CE

Set of the vertex z. That is, C E z is the collec-

tion of all Connector Edges of the vertex z in the

C-graph G of the group Γ.

Example 5.2. For G(Q8) in example 5.1, C E 1 =

{−ii,−jj,−kk} = C E −1.

Remark 5.1. Every undirected edge of the

group Γ in a C-graph G is a Connector Edge of

the vertex i, where i is the vertex correspond-

ing to the identity element of the group, that is

C E i = E.

Definition 5.3. For the C-graph G = (Γ, E,E′)

of the group Γ, define Γ0 = {z ∈ Γ : C E z = ∅}.
That is, Γ0 is the set of vertices with empty

CE Set.

Example 5.3. For G(Q8) in example 5.1, Γ0 =

{i,−i, j,−j, k,−k}.

Definition 5.4. For any two distinct vertices x

and y of the C-graph G of the group Γ, if xy

is an undirected edge in G, then define the set

C ON PT xy = {z ∈ Γ : z = CoNPTxy, z ̸= i}
and is called CoNPT Set of x and y.

Example 5.4. In G(Q8) of example 5.1,

C ON PT −ii = {1,−1} = C ON PT −jj =

C ON PT −kk.

Note 5.2. [1] A cyclic group with only one gen-

erator can have at most 2 elements.

Theorem 5.1. Let G be the C-graph of the

group Γ with |Γ| ≥ 2 and z ∈ Γ, z ̸= i. Sup-

pose that z ∈ Γ0. Then the following occurs.

1. If Γ is cyclic, then z is a generator of Γ

2. If Γ is noncyclic, then ⟨z⟩ is a maximal

cyclic subgroup of Γ.

Proof. 1. Let the group Γ is cyclic. By using

Note 5.2 and the assumption |Γ| ≥ 2, we

have Γ has atleast two distinct generators

x and y. Now, consider the given z ∈ Γ0,

then C E z = ∅. Suppose that, z is not a

generator of Γ, then ⟨z⟩ ⊂ ⟨x⟩ = ⟨y⟩. Thus,
in the C-graph G, z −→ x and z −→ y are

two directed edges and xy is an undirected

edge, which implies xy is a Connector Edge

of the vertex z. That is, xy ∈ C E z, which

is a contradiction to the fact that C E z = ∅.
Therefore, z is a generator of Γ.

2. Let Γ is noncyclic and consider the given

z ∈ Γ0, then C E z = ∅. Suppose that

x ∈ Γ be such that ⟨z⟩ ⊂ ⟨x⟩, then clearly

⟨z⟩ ⊂
〈
x−1

〉
, but ⟨x⟩ =

〈
x−1

〉
and x ̸= x−1

(since if x = x−1, then o(x) = 2 =⇒
o(z) = 1 =⇒ z = i, a contradiction), which

implies z −→ x and z −→ x−1 are two di-

rected edges and xx−1 is an undirected edge

in G, this makes xx−1 a Connector Edge of

the vertex z. It is a contradiction to the

fact that C E z = ∅. Thus ⟨z⟩ is a maximal

cyclic subgroup of Γ.

Definition 5.5. For the C-graph G of the group

Γ, define the set C E G = {w ∈ E : w =

CEz for some z ∈ Γ, z ̸= i}. That is, C E G is the

collection of those undirected edges of G which

are Connector Edges of atleast one non identity
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vertex in G, and is called the Connector Edge

Set or CE Set of the C-graph G.

Example 5.5. In G(Q8) of example 5.1, C E Q8
=

{−ii,−jj,−kk}.

Note 5.3. C E G = ∪z∈ΓC E z

Theorem 5.2. [1] The order of an element of a

finite group divides the order of the group.

Theorem 5.3. (Cauchy’s theorem)[1] Let Γ be a

finite group and let p divides |Γ|. Then Γ has an

element of order p and, consequently, a subgroup

of order p.

Theorem 5.4. For a finite group Γ and C-graph

G = (Γ, E,E′), C E G = E if and only if |Γ| = 2n,

n ∈ N

Proof. Suppose that C E G = E

Case 1 : E = ∅, then for any x, y ∈ Γ, ⟨x⟩ = ⟨y⟩
=⇒ x = y.

But ∀x ∈ Γ, ⟨x⟩ =
〈
x−1

〉
=⇒ x = x−1, ∀x ∈ Γ.

That is, o(x) = 2 ∀x ∈ Γ =⇒ 2 divides |Γ|, by
Theorem 5.2. Thus |Γ| = 2k for some k ∈ N.
Now, suppose that p ̸= 2 is a prime number di-

viding |Γ|, then by Theorem 5.3, there is an ele-

ment y in Γ of order p, which is a contradiction,

since order of every element in Γ is 2. Therefore,

|Γ| = 2n for some n ∈ N.
Case 2 : E ̸= ∅, then C E G ̸= ∅. First we prove

that 2 divides |Γ|. For this what we need is to

show that there is at least one element in Γ of

order 2. Now C E G ̸= ∅ =⇒ ∃ some x, y ∈ Γ such

that xy ∈ C E G. Then by the definition of the

set C E G, ∃ some z1 ∈ Γ such that z1 −→ x and

z1 −→ y are two directed edges in G. For this

z1, if z1 = z−1
1 , then o(z1) = 2. If z1 ̸= z−1

1 , but

⟨z1⟩ =
〈
z−1
1

〉
=⇒ z1z

−1
1 ∈ E = C E G. There-

fore, ∃ some z2 ∈ Γ such that z2 −→ z1 and

z2 −→ z−1
1 are two directed edges. By continuing

this and using the fact that the group Γ is finite,

we will get a zm ∈ Γ, such that zm −→ zm−1

andzm −→ zm−1
−1 are two directed edges and

zm = z−1
m . ie, o(zm) = 2. Thus 2 divides |Γ| =⇒

|Γ| = 2k for some k ∈ N. Suppose p ̸= 2 is a

prime dividing |Γ|, then by Theorem 5.3, there is

an element a ∈ Γ such that o(a) = p ̸= 2.

Now, ⟨a⟩ =
〈
a−1

〉
and a ̸= a−1, since o(a) ̸= 2.

ie, aa−1 ∈ E = C E G. Thus ∃ z ∈ Γ, z ̸= i such

that z −→ a and z −→ a−1 are two directed edges

in G.

=⇒ ⟨z⟩ ⊂ ⟨a⟩ and ⟨z⟩ ⊂
〈
a−1

〉
.

=⇒ o(z) divides o(a) and o(z) ̸= o(a).

=⇒ o(z) = 1, since o(a) = p, a prime.

=⇒ z = i, which is a contradiction.

Therefore,

the only prime number dividing |Γ| is 2.
Hence, |Γ| = 2n, n ∈ N.
Conversely, Suppose that |Γ| = 2n, n ∈ N.
If E = ∅, then there is nothing to prove.

Suppose that E ̸= ∅. We already have, C E G ⊂
E, so it is enough to prove that E ⊂ C E G. Let

xy ∈ E which implies ⟨x⟩ = ⟨y⟩ ⊆ Γ and x ̸= y.

Therefore, |⟨x⟩| = |⟨y⟩| = 2m, 2 ≤ m ≤ n (since,

if m = 1, |⟨x⟩| = |⟨y⟩| = 2 =⇒ ⟨x⟩ = {i, x} =

{i, y} = ⟨y⟩ =⇒ x = y).

ie, |⟨x⟩| = |⟨y⟩| ≥ 22 = 4. Thus ∃ at least

one z ∈ ⟨x⟩ = ⟨y⟩ other than x, y and i with

⟨z⟩ ⊂ ⟨x⟩ = ⟨y⟩, which implies z −→ x and

z −→ y are two directed edges and xy is an undi-

rected edge in G. That is, xy is a Connector Edge

of z ̸= i in G. Hence, xy ∈ C E G =⇒ E ⊂ C E G.

Thus, C E G = E.

Theorem 5.5. For a group Γ and C-graph G =

(Γ, E,E′), C E G = ∅ if and only if every non iden-

tity element of Γ is of prime order.

Proof. Suppose that C E G = ∅, then C E z = ∅
∀z ∈ Γ.

case 1 : Γ is cyclic, then by theorem 5.1 z is a gen-

erator of Γ, ∀z ∈ Γ. That is, every non identity

element of Γ is a generator of Γ. Thus, Γ ∼= Zp,

for some prime p. This implies, every non iden-
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tity element of Γ is of prime order.

case 2 : Γ is non cyclic, then by theorem 5.1 ⟨z⟩ is
a maximal cyclic subgroup of Γ ∀z ∈ Γ. Suppose,

∃z ∈ Γ, z ̸= i such that o(z) = n, a composite

number. Let d be a prime such that, d|n, then
there exist an element y ∈ Γ such that o(y) = d

and ⟨y⟩ ⊂ ⟨z⟩, which is a contradiction, since ⟨y⟩
is maximal. Therefore, o(z) is prime. That is,

every non identity element of Γ is of prime order.

Conversely, suppose that every non identity ele-

ment of Γ is of prime order. Let xy ∈ C E G =⇒
∃z ∈ Γ such that z ̸= i, ⟨x⟩ = ⟨y⟩, ⟨z⟩ ⊂ ⟨x⟩ and
⟨z⟩ ⊂ ⟨y⟩. This means o(z) divides o(x), which is

a contradiction. Hence, C E G = ∅.

Theorem 5.6. For a cyclic group Γ and C-graph

G, the following are true

1. If Γ is of prime order, then C E G = ∅.

2. If |Γ| is a composite number and Γ has k

generators, then |C E G| ≥ k(k−1)
2 .

Proof. Consider a cyclic group Γ

1. Let |Γ| = p, a prime, then Γ ∼= Zp =⇒
o(x) = p ∀x ∈ Γ, x ̸= i. Therefore, by The-

orem 5.5, C E G = ∅.

2. Suppose that |Γ| = n, a composite number.

Let X = {x1, x2, . . . , xk} are k generators

of Γ. Let p be a prime dividing n, then

Theorem 5.3 assures the existence of an el-

ement x ̸= i in Γ with o(x) = p. Clearly

x ∈ Γ−X. For any i, j = 1, 2, . . . , k, i ̸= j,

xixj is an undirected edge in G and also

⟨x⟩ ⊂ ⟨xi⟩ and ⟨x⟩ ⊂ ⟨xj⟩.
=⇒ x −→ xi and x −→ xj are two

directed edges in G.

=⇒ xixj ∈ C E G.

ie, corresponding to any two distinct ele-

ments in X, there is a member of C E G.

Thus, |C E G| ≥ kC2 =
k(k−1)

2 .

6 Discussion
The problem proposed in this paper is to con-

struct a new graph, corresponding to groups,

which ensures more clarity in the communica-

tion channel between the vertices, by assuring

uniqueness in the definition from the existing

graphical representations of groups. We defined

it as a mixed graph, so that the one way and

two way communication between the vertices,

gives clarity in the graphical representation of

the group, which is the main objective of this re-

search. Since, every element of the group should

be studied further, the vertex set of the graph is

fixed as the group itself. Now, the main ques-

tion which we dealt in the early stage of this con-

struction is ‘What is the key role of an element in

the group which distinguishes it from other ele-

ments?’. In a group theoretical view, it can be the

order of each element, or more clearly, it can be

the set of all elements generated by an element.

This character of an element in the group is the

base for adjacency relation between the vertices

of the graph proposed here. Then, the structural

properties of the group are analysed using graph

theory with some examples. More properties can

be studied in this manner, which will be the scope

of future work.

7 Conclusion
C-graph is a mixed graphical representation of

groups, which gives emphasis on the property of

an element to generate other elements. The di-

rected edges to all the non identity elements from

the identity, reflect the universality of the identity

element. Order of every element in a finite group

can be easily deduced from the C-graph itself.

By using this, it is possible to find out elements

of prime order in a finite group. The Connector

Edges defined for each vertex carries certain prop-

erties of the corresponding vertex such as whether

it is a generator of the group or not. The Con-

nector Edges mainly depends on the order of the
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group and in particularly order of each element

in the group. More specifically, every undirected

edge is a Connector Edge of at least one non iden-

tity element, only if cardinality of the group is 2n

for some n ∈ N .
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8 Appendix

Chart showing identification of comparable elements in a group Γ from the

corresponding C-graph G.

For vertices x, y in G

an edge connecting x and y in G no edge connecting x and y in G

x and y are comparable in Γ x and y are not comparable in Γ

x −→ y xy

x is weaker and y is stronger x and y are equal in strength
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