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1 Introduction 
The concept of integrable structures has been a 

contentious issue in mathematics for the last three 

decades. The focus includes but not limited into 

mechanics, dynamics, mathematics, algebra, 

physics, evaluation, and geometry. 

Many partial differential equations, which are still 

studied due to their significance in physics and 

mathematics, have relations with the geometry of 

surfaces embedded in 3D space [1]. This has long 

been known that there is a relationship between 

surfaces in Euclidean three-space with a constant 

negative Gaussian curvature, the SineGordon 

Formula, and Bäcklund transformations that are 

applicable to the equation given [2]. Furthermore, 

including pseudo spherical surfaces, the main 

Bäcklund transformation for something like the 

SineGordon Formula appears to have been a normal 

linear structure (pss) [3-5]. 

The Yang-Mills (YM) behavior is one of the key 

components of the standard model, which has been 

phenomenological very popular up to this point. A 

Yang-Mills field adds to the curvature of space-time 

in the same way as every other field does, according 

to General Relativity. There are some physically 

important circumstances in which gravitational 

fields are exceptionally strong, and the impact of 

curvature on the propagation of matter fields, as 

well as the Yang-Mills fields' back-reaction, cannot 

be overlooked [6]. 

Once Yang-Mills concept was proposed in the mid-

twentieth century, it was understood that the 

quantum model of the Maxwell system, known as 

Quantum Electrodynamics (QED), provided a 

detailed explanation of the quantum structure of 

electro_magnetic fields and forces. The issue of 

whether or not the nonabelian analog was needed to 

represent other natural forces, especially the weak 

force, which is concerned with certain types of 

radioactivity, and the powerful or nuclear force, 

which is concerned with the mixing of protons and 

neutrons around nuclei, among other things, arose. 

Yang-Mills theories, which describe fundamental 

laws of interactions, are central to primary particle 

physics.Topological solitons such as instantons, 

monopoles, vortices, calorons, and merons played 

important roles in the study of non-perturbative 

properties, duality structures, and quark con 

nements, among other aspects, in these theories. 

Since the weak and nuclear forces are unrelated to 

long-range fields or particles of low mass [7-9]. The 

masslessness of classical Yang-Mills waves was a 

major impediment to applying Yang-Mills theory to 

them. In the 1960s and 1970s, these obstacles to 

physical applications of non-abelian gauge theory 

were overcome. 

The self-dual Yang-Mills equations (SDYM) are 

well-known for having a large number of integrable 

systems. The Painleve equations and classical 

soliton equations in 1+1 dimensions are finite-

dimensional Lie algebra reductions of the SDYM 

equations (LG). It is important to use infinite 

dimensional algebras to minimize the SDYM 

equations [10-12]. 

Anti-self-dual Yang-Mills(ASDYM) equation, on 

the other side, has a close relationship with lower-

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.57 Gharib. M. Gharib, Rania Saadeh

E-ISSN: 2224-2880 540 Volume 20, 2021



dimensional integrable equations such as 

KdV,Toda,and Painlev equations, and so on [18, 

21]. Any soliton solution towards these equations 

has energy densities that are local on hyper - plane 

over all three dimensions, allowing them to be 

viewed as space-time domain walls. Even so, the 

integrability of those kind of solitons systems is 

dependent on the presence of infinite quantities and 

undefined infinite transformations. 

The objective of this research is to propose and 

exact solutions to the canonical reduction of 4D 

SDYM theory to 2D sinh-poisson (SP) equation. T 

he section is structured as follows. Section 2 

establishes the relationship in between SP equation 

and pss. Sections 3 and 4 look at the canonical 

reduction of 4D SDYM to the above equation. In 

addition, the travelling wave solution for the SP 

equation and the gauge potential Aµ are obtained. 

Section 5 concludes with certain assumptions. 

 

 

2 Description of Pseudo-Spherical 

Surface by Sinh-Poisson Equation 
The definition of pss first appeared in geometry in 

the far past. That was a watershed point in the 

history of mathematics. A pss is the final element in 

the visual representation of non-Euclidean 

hyperbolic geometry, according to Klingenberg 

[13]. Pss was realized to have a close relationship 

with many theorems, such as theory of solitons, 

nets, attractors, a lot of nonlinear evolution 

equations (NLEEs) of mechanics, BTs, and other 

advanced approaches in mathematics [14-16]. For a 

long time, mathematical physics has studied the 

relationship between geometry and nonlinear partial 

differential equations (NLPDEs). For example, the 

classic Liouville equation indicates minimum 

surfaces in space E3, while the sine Gordon 

equation is identical to the geometry of pss, or 

surfaces with a negative Gaussian curvature [17,18].  

A scalar differential equation (DE)                                  

𝑓(𝑥, 𝑡, 𝐺, 𝐺𝑥, … , 𝐺𝑥𝑛𝑡𝑚) = 0 , 𝐺𝑥𝑛𝑡𝑚 =
𝜕𝑛+𝑚 𝑢

𝜕 𝜕𝑡𝑚  ,    

(1)                                                           

Consequently, if F (x, t, G, 𝐺𝑥, ... , 𝐺𝑥𝑛𝑡𝑚 ) = 0 

describe pss with associated one-forms ɣi (2). A 

solution G(x, t) of F (x, t, G, 𝐺𝑥,..., 𝐺𝑥𝑛𝑡𝑚 ) = 0 is 

 I-generic if(ɣ3 ∧ ɣ2)(𝐺(ɣ, 𝑡))  ≠ 0; II-generic if 

(ɣ1 ∧ ɣ3)(G(ɣ, t)) ≠ 0; and III-generic if (ɣ1 ∧ 

ɣ2)(G(x, t)) ≠ 0. 

The smooth functions fij, 1 ≤ i ≤ 3, 1 ≤ j ≤ 2, 

depending on G(x, t) and its derivatives, one-forms 

[5] 

ɣ𝑖 = 𝑓𝑖1𝑑𝑥 +  𝑓𝑖2𝑑𝑡 ,       1 ≤ 𝑖 ≤ 3 ,                      (2)                                                              

The constant Gaussian curvature = -1, that is 

𝑑ɣ1 = ɣ3 Λ ɣ2 , 𝑑ɣ2 = ɣ1 Λ ɣ3  , 𝑑ɣ3 =  ɣ1 Λ ɣ2 . 
(3)                                       

It is equivalent to say that the NLEE for G(x, t) is 

necessary and sufficient for the integrality of the 

linear system [18] 

dφ =∝ φ , φ = (φ1
φ2

) , α =
1

2
 (

ɣ2 ɣ1 − ɣ3

ɣ1 + ɣ3 −ɣ2
)(4)                                                   

Where d denotes exterior differentiation, then 

α = (

𝑓21

2
𝑑𝑥 +

𝑓22

2
 𝑑𝑡 

(𝑓11−𝑓31)

2
𝑓𝑥 +

(𝑓12−𝑓32)

2
𝑑𝑡

(𝑓11−𝑓31)

2
𝑓𝑥 +

(𝑓12−𝑓32)

2
𝑑𝑡 −

𝑓21

2
𝑑𝑥 +

𝑓22

2
 𝑑𝑡

) =

𝐻𝑑𝑥 + 𝐿𝑑𝑡 ,                                                                
(5) 

Eqs. (4) , (5), we comes  

𝜑𝑥 = 𝐻𝜑 ,   𝜑𝑡 = 𝐿𝜑 , 

 

where H and L are two 2 × 2 null-trace matrices 

𝐻 = (

𝑓21

2

𝑓11−𝑓31

2
𝑓11+𝑓31

2
−

𝑓21

2

) ,                                         

(7)                                                                                        

𝐿 = (

𝑓22

2

𝑓12−𝑓32

2
𝑓12+𝑓32

2
−

𝑓22

2

) .                                          

(8)                                                                                             

 

Now 

𝑑2𝜑 = 𝑑 α φ − α Λ 𝑑φ = (𝑑α − α Λ α)𝜑 ,  
which 

Θ ≡ 𝑑α − α Λ α = 0 ,                                             
(9)     

or in component form 

  

𝑓12,𝑥 − 𝑓11 ,𝑡 = 𝑓31𝑓22 − 𝑓21𝑓32 ,                           
(10)                                                                                

 𝑓22,𝑥 − 𝑓21 ,𝑡 = 𝑓11𝑓32 − 𝑓12𝑓31 ,                         
(11)                                                                                    

 𝑓32,𝑥 − 𝑓31 ,𝑡 = 𝑓11𝑓22 − 𝑓21𝑓12 ,                          
(12)                                                                              
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The SP equation describe pss as well. The equation 

has many physical applications [2,4]. 

 

 Example: Let a differentiable surface 𝑀2,   

 

The SP equation 
ɣ1 = 𝐺𝑥𝑑𝑥 ,  

ɣ2 = 𝜂 𝑑𝑥 +
1

𝜂
 cosh 𝐺 𝑑𝑡 ,                                      

(13)                                                                                       

ɣ3 =
1

𝜂
 sinh 𝐺  𝑑𝑡,  

Hence M2is a pss iff G satisfies the SP equation 

Gxt = sinh G.                                                         
(14) 

 

 

3 Reducing "SDYM" Equations to 

"SP" Equation 
The SDYM equations are particularly significant in 

their own right, with wide range of applicable issues 

in science of math besides physics. SDYM 

equations is being used in gauge principle and 

classical quantum theory, and they're used to 

efficiently analyze four-manifolds [19, 20]. The 

SDYM equations are important in analyzing of 

integrable systems, as well as in plenty other aspects 

of math and physics. The master integrable scheme 

is another name for SDYM equations. 

SDYM include a feature for developing and 

categorizing a large number of integrable structures, 

as well as a geometrical framework for analyzing 

them. Furthermore, an integrable equation considers 

comprehensive solution achieved by resolving 

related linear problems using the inversed scattering 

transformation [21-34]. 

The equations of SDYM are a set of 4D paired with 

2nd  order partial differential equations (PDEs) for 

Lie algebras defined gauge potential functions 

 Aµ
ls (µ = 0, 1, 2, 3), which are notoriously 

difficult to solve in general. 

*F = λ F,                                        (15)    

 for some constant λ, *F  is the dual two-

form of F .  [1-3] ,the SDYM equation 

𝐹01 = 𝐹23 , 𝐹02 =  𝐹31 , 𝐹03 = 𝐹12 ,                       
(16) 

where 𝐹 =
1

2
   𝐹µ𝜈 

𝑑𝑥µ 𝑑𝑥𝜈. Introduce the 

null coordinates 𝑦 , 𝑦̅ , 𝑧 , 𝑧̅ Eq . (16) i s  cast 

into 
𝐹𝑦𝑧 = 0 , 𝐹𝑦𝑧̅̅̅̅ = 0  , 𝐹𝑦𝑦̅ +  𝐹𝑧𝑧̅ = 0 ,                   
(17) 

where 

𝑦 =
1

√2
 (𝑥1 + 𝑖𝑥2), 𝑦̅  =

1

√2
 (𝑥1 + 𝑖𝑥2),   

 𝑧 =
1

√2
 (𝑥0 + 𝑖𝑥3), 𝑧̅  =

1

√2
 (𝑥0 + 𝑖𝑥3).          

(18) 

It is verified that Eq. (16) is the 

compatibility of the following isospectral 

problem: 

(𝜕𝑦 + 𝜉𝜕𝑧̅)𝑣 = (𝐸𝑦 + 𝜉𝐸𝑧̅)𝑣, (𝜕𝑧 + 𝜉𝜕𝑦̅)  

𝑣 = (𝐸𝑧 + 𝜉𝐸𝑦)𝑣,                                            

(19) 

where 
𝐸 = 𝐸𝜇𝑑𝑥𝜇 =  𝐸𝑦 𝑑𝑦 + 𝐸𝑦𝑑𝑦̅ + 𝐸𝑧𝑑𝑧 +

 𝐸𝑧̅ 𝑑𝑧̅  ξ .      
We see that 

𝐸𝑦𝑧 − 𝐸𝑧𝑦 − [𝐸𝑦, 𝐸𝑧] = 0 ,    

𝐸𝑦𝑦 + 𝐸𝑧𝑧̅ − 𝐸𝑧̅𝑧 − 𝐸𝑦𝑦 − [𝐸𝑦, 𝐸𝑦] −

[𝐸𝑧, 𝐸𝑧̅] = 0 ,                                                 

(20)            

𝐸𝑦𝑧̅̅̅̅ − 𝐸𝑧𝑦̅̅̅̅ − [𝐸𝑦, 𝐸𝑧̅] = 0 ,  

where  

Eµν = ∂µEν , Fµν = ∂µEν − ∂ν Eµ − [Eµ, Eν ]  

and 

𝐸0 =
1

√2
(𝐸𝑧 + 𝐸𝑧̅), 𝐸1 =

1

√2
(𝐸𝑦 + 𝐸𝑦̅),  

𝐸2 =
𝑖

√2
(𝐸𝑦 + 𝐸𝑦̅), 𝐸3 =

−𝑖

√2
(𝐸𝑧 + 𝐸𝑧̅)       

(21)  

In the end of this section, we discuss reduction of 

the SDYM equations to integrable PDE, many 

integrable equations are reductions of the SDYM 

,As this application, a good NLEE could be 

obtained in the following example: 

 

3.1 The SP Equation 

Suppose that 𝐸𝜇
′  𝑠   which 𝐸𝑦 = 0, then the 

equation (19) becomes 

𝜕𝑥𝑣 = (𝐸𝑦 + 𝜉𝐸𝑧̅)𝑣, 𝜕𝑡𝑣 = − 
1

𝜉
 𝐸𝑧𝑣            

(22)  

 The   𝐸𝜇
′    s are skew-Hermitian. Then  the 

parameterization 

Ey =  (

−ik

2
0

0
ik

2

) , Ez = (
0

−m + m

2
−m + m

2
0

) ,  
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 Ez̅ =  (
0

i

2
i

2
0

) ,                                                       

(23) 

where k, m.n are real functions. And SDYM 

equivalent to 
𝜕𝑛

𝜕𝑥
= 𝑚𝑘 ,

𝜕𝑚

𝜕𝑥
= 𝑛𝑘 ,

𝜕𝑘

𝜕𝑡
= 𝑚.                            

(24) 

It follows from the fi two equations of (20) that 

n2 − m2 is independent of x. We choose n2 − m2 

= 1 and introduce the paramertization m = sinh 

G, n = cosh G. this gives 𝑘 =
𝜕𝑢

𝜕𝑥
 The third 

equation in (20) then becomes the SP equation 

(14). 

 

 

4 Exact Solutions of SP Equation and 

the SDYM Equations 
The problem [3], with  Gaussian curvature 

 =  -1 on M 2  take 

α = (

𝜂

2
𝑑𝑥 + 𝐸𝑑𝑡 𝑞𝑑𝑥 + 𝐵𝑑𝑡

𝑟𝑑𝑥 + 𝐶𝑑𝑡 −
𝜂

2
𝑑𝑥 − 𝐸𝑑𝑡 

) = 𝐻𝑑𝑥 + 𝐿𝑑𝑡 ,       

(25)                                              

where H and L are two 2 × 2 null-trace 

matrices 

𝐻 = (

𝜂

2
𝑞

𝑟 −
𝜂

2

) ,                                               (26)   

𝐿 = (
𝐸 𝐵
𝐶 −𝐸

) ,                                                      

(27) 

Here η is a parameter, independent of x 

and t, q and r are functions of x and t. 

The equations (10) - (12) become, 

𝐸𝑥 = 𝑞𝐶 − 𝑟𝐵 ,   

𝑞𝑡 = −2𝐸𝑞 − 𝐵𝑥 + 𝜂𝐵 = 0 ,                              

(28) 

𝐶𝑥 = 𝑟𝑡 + 2𝐸𝑟 − 𝜂𝐶 ,   

and Tenenblat [5] obtained equations (28) 

directly from the structure equations (25).  By 

suitably choosing r, E, B and C in (28), we 

shall obtain various NLEEs which q must 

satisfy.  From equations (4)-(6), we obtain the 

following scattering problem 

𝜑1𝑥 =  
𝜂

2
 𝜑1 + 𝑞𝜑2 ,                                                                                                                            

𝜑2𝑥 =  𝑟𝜑1 + 
𝜂

2
𝜑2 ,                                               

(29) 

𝜑1𝑡 = 𝐸𝜑1 + 𝐵𝜑2,   

𝜑2𝑡 = 𝐶𝜑1 + 𝐸𝜑2,                                                

(30)   

Konno and Wadati [14] introduced the function              

Γ =
𝜑1

𝜑2
 ,                                                                  

(31) 

where the function Γ determines geodesic 

coordinates on the pss determined by Gt = F 

(G, Gx, ...,𝐺𝑥𝑘) (𝐺𝑥𝑘= 𝜕𝑘G/𝜕𝑥𝑘) [15].  Then 

equations (29), (30) are reduced to the 

Riccati equations: 
𝜕Γ

𝜕𝑥
= 𝜂Γ − 𝑟Γ2 + 𝑞,                                                

(32) 
𝜕Γ

𝜕𝑡
= 2𝐸Γ − 𝐶Γ2 + 𝐵,                                            

(33) 

Our procedure in the following is that we 

construct a transformation Γ′ satisfying the 

same equation as (32) with a potential 

𝑢′where 

𝑢′ = 𝑢 + 𝑓(Γ , 𝜂),                                     

(34) 

For any solution G(x, t) of the SP equation 

(14), the matrices H and L are 

𝐻 =  (

𝜂

2

𝑢𝑥

2
𝑢𝑥

2
−

𝜂

2

)                                                      

(35) 

𝐿 =  (

1

2
(

cosh 𝑢

𝜂
) −

1

2
[

sinh 𝑢

𝜂
]

1

2
[

sinh 𝑢

𝜂
] −

1

2
(

cosh 𝑢

𝜂
)

)                             

(36) 

the above matrices H, L satisfy the equation 

(28). Then equation (32) becomes 
𝜕Γ

𝜕𝑥
=  𝜂Γ +

1

2
 𝑢𝑥 (1 − Γ2).                                  

(37) 

If we choose Γ′ and 𝑢  ́ as  

Γ′ =
1

Γ
 ,                                                      (38) 𝑢′ =

 −𝑢 + 4 tanh−1 Γ ,                                         (39) 

then Γ′ and 𝑢′ satisfies equation (37). 

Substitute G = G0  into the matrices H and L 

in (35) and (36), then by (6) we have 
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𝑑𝜑 = 𝜑𝑥𝑑𝑥 + 𝜑𝑡𝑑𝑑𝑡 = 𝐻𝜑𝑑𝑝,                  

(40) 

Where 

𝐻 = (

𝜂

2
0

0 −
𝜂

2

) ,                                                      

(41) 

𝑝 = 𝑥 + 𝑘𝑡 , 𝑘 =
− cosh 𝑢0

𝜂2  ,                                       

(42) 

The solution of equation (40) is 

𝜑 = 𝑒𝜌𝑃𝜑0 = (𝐼 +  𝜌𝑃 +
𝜌2𝑝2

2!
+

𝜌3𝑝3

3!
+) 𝜑0 ,     (43)   

where ∅
0  

is a constant column vector. The 

solution of equation (43) is 

𝜑 (
cosh

𝜂

2
𝜌 + sinh

𝜂

2
𝜌 0

0 cosh
𝜂

2
𝜌 − sinh

𝜂

2
𝜌

)  

𝜑0 ,                                                                        

(44) 

Now, we choose 𝜑0 = (1,1)𝑇 in (44), then 
we have 

𝜑 = (

𝜂𝜌

𝑒2

𝜂𝜌

𝑒2

) .                                                    

(45) 

Substitute  (45) into (39), then by (31), we 

obtain the new solutions of the SP equation 

(14) 

𝑢′ = 𝑢0 + 4 tanh−1(𝑒𝜂𝜌)  𝜌 = 𝑥 −
cosh 𝑢0

𝜂2 𝑡        

(46) 

Consequently we obtain the gauge potential 

Eµ as follows: 

𝐸𝑦̅ = 0 ,  

𝐸𝑦 = (
𝜂 𝑖 csch(𝜂𝜌) 0

0 −𝜂 𝑖 csch(𝜂𝜌)
) ,   

𝐸𝑧 = (
0

𝑎

2
𝑎

2
0

)  ,   𝐸𝑧̅ = (
0

𝑖

2
𝑖

2
0

) ,                           

(47) 

Where 

𝑎 =  − sinh[ −𝑢0 + 4 tanh−1(𝑒𝜂𝜌)] +

𝑖 cosh
 .

[−𝑢0 + 4 tanh−1(𝑒𝜂𝜌)]   

5  Conclusions 
Since the fundamental laws of quantum 

mechanics, gravity, electromagnetism, and 

elementary particle interactions are all clarified 

in the manner of partial differential equations 

(PDEs), science has produced a great success in 

physics in which partial differential equations 

contribute significantly. In exchange, advances 

in physics include immense opportunities, 

motivation, and obstacles, all of which have 

fueled research in partial differential equations. 

We will hope to discover a relationship between 

the SP equation and the pss in this paper. The 

SDYM equations are fundamental in many 

fields of mathematics and physics, as well as in 

the field of integrable systems. The reality that 

indeed SDYM equations are the compatible 

scenario of a relevant linear problem, which 

accepts enormous flexibility if the involved 

gauge algebra(LG) is random, implies that they 

are a valuable source of integrable models.The 

SDYM equations are finite-dimensional gauge 

algebra reductions of the classic soliton 

equations in 1+1 dimensions. Our study shows 

how the SDTM equations can be reduced to SP 

equations that explain pss and precise solutions. 
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