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Abstract: - The known algorithms for synthesizing irreducible polynomials have a significant drawback: their 
computational complexity, as a rule, exceeds the quadratic one. Moreover, consequently, as a consequence, the 
construction of large-degree polynomials can be implemented only on computing systems with very high 
performance. The proposed algorithm is base on the use of so-called fiducial grids (ladders). At each rung of 
the ladder, simple recurrent modular computations are performers. The purpose of the calculations is to test the 
irreducibility of polynomials over Galois fields of arbitrary characteristics. The number of testing steps 
coincides with the degree of the synthesized polynomials. Upon completion of testing, the polynomial is 
classifieds as either irreducible or composite. If the degree of the synthesized polynomials is small (no more 
than two dozen), the formation of a set of tested polynomials is carried out using the exhaustive search method. 
For large values of the degree, the test polynomials are generating by statistical modeling. The developed 
algorithm allows one to synthesize binary irreducible polynomials up to 2Kbit on personal computers of 
average performance. 
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1 Introduction 

Irreducible polynomials (IP) wide used in various 
fields of mathematics, information technology, a 
modern theory of information transmission, in the 
synthesis of noise-like code sequences, in the theory 
of error-correcting coding, cryptography and other 
branches of science, and technology [1-10]. Despite 
the great demand, the synthesis of IP is still a rather 
complex problem, and, as noted in [11], "finding 
irreducible polynomials is still obscured. 
Cryptographic services of highly developed 
countries have worked on finding polynomials of 
the highest possible degree, but they hardly cover 
their results in the open press". The main problem is 
that known algorithms for the synthesis of IPs are, 
as a rule, inherent more than quadratic 
computational complexity. From this, it follows that 
the costs of computing resources required for their 
construction increase significantly with an increase 
in the degree of IP. 

Irreducible polynomials can represent in two 
forms. The first of these is the so-called polynomial 
form, which we will call the algebraic form: 
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and the second is the vector form, which is a set of 
polynomial coefficients, including zero coefficients 

k  of the absent monomials of series (1): 

 1 1 0n n kf −=      . (2) 

The polynomial f  is dual to the original 
polynomial f , formed by the polynomial inversion 
in algebraic form (1) or coefficients in vector form 
(2).  For example, the vector form of the dual 
polynomial is: 

 0 1 1k n nf −=      .  
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Expressions (1) and (2) are natural forms of 
writing IP, widely used, for example, in positional 
number systems, in which the most significant digits 
locate on the left side of the number. 

Recall some basic parameters that characterize 
polynomials. One is the polynomial degree an equal 
maximum degree of monomial with a nonzero 
coefficient included in the polynomial. A 
polynomial degree is denoted deg( ( ))f x  — for an 
algebraic and deg( )f  — for a vector form.  The 
second most important parameter of the IP is its 
order, also called the period or exponent — this is 
the smallest natural number m  at which it turns out 
to be the divisor of the binomial 1mx − , which is 
displayed as follows: 

 ( ) 1mf x x −| . (3) 

 The order of the polynomial denotes as 
ord( ( ))f x  or ord( )f  for algebraic and vector 
forms, respectively. Thus, for example, since a first-
degree polynomial x  equal to 10 in vector notation, 
divisibility (3) for a vector image of polynomials 
can represent by the formula: 

 [ ](10) 1 1(0) 1m mf f− = −| | ,  

where [ ]

times

(0) 00 00m

m

= . 

 Finally, we distinguish between primitive 
polynomials (PrP) and irreducible polynomials that 
are not primitive. For convenience, the latter will be 
called simple irreducible polynomials (SIP). The 
primitive IP are those with the maximum order 

, maxnL , defined by the relation 

 , max 1n
nL р= − , (4) 

where is p  – a prime number characteristic of the 
Galois field ( )GF p  generated by an IP f . 
 The concept of a primitive polynomial can define 
differently. For example, an IP is a PrP if and only if 
the sequence of degrees of the generating element 
 =  forms modulo f  is a m − sequence. 
 The formula by which the number ( )pM n  of 
irreducible polynomials over the field ( )GF p  is as 
follows 

  
/1( ) ( ) n k

p
k n

M n k p
n

=  ,  

where ( )k — the Möbius function is defined as 
follows: 
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TABLE I.         MÖBIUS FUNCTION 

k    k    k    k    

1 1 9 0 17 -1 25 0 
2 -1 10 1 18 0 26 1 
3 -1 11 -1 19 -1 27 0 
4 0 12 0 20 0 28 0 
5 -1 13 -1 21 1 29 -1 
6 1 14 1 22 1 30 -1 
7 -1 15 1 23 -1 31 -1 
8 0 16 0 24 0 32 0 

Calculating the number of irreducible 
polynomials over the field ( )GF p  for several 

( )pM n  of values n  is summarized in Table II. 

TABLE II.         THE NUMBER OF IP SMALL DEGREE 

n  M  n  M  
1 2 17 7’710 
2 1 18 14’532 
3 2 19 27’594 
4 3 20 52’377 
5 6 21 99’858 
6 9 22 190’557 
7 18 23 364’722 
8 30 24 698’870 
9 56 25 1’342’176 

10 99 26 2’580’795 
11 186 27 4’971’008 
12 335 28 9’586’395 
13 630 29 18’512’790 
14 1’161 30 35’790’267 
15 2’182 31 69’273’666 
16 4’080 32 134’215’680 

From a cursory overview of Table II, it follows 
that starting at  2n =  practically ( 1) 2 ( )M n M n+  . 
That is means that an increase in the degree of IP by 
one leads to a doubling of irreducible polynomials. 
As the degree of polynomials grows, so do the 
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resources (machine time, memory size, etc.) spent 
on checking them for irreducibility. Therefore, a 
formal estimate of the resources required to 
implement a computational algorithm, called 
computational complexity, is usually used. The 
computational complexity ( )O   of the known IP 
synthesis methods [12-14], as a rule, is not less than 
quadratic; that is, it takes place 2( )O n .  

The main goal of this study is to develop a new 
algorithm for the synthesis of irreducible 
polynomials over Galois fields of arbitrary 
characteristics, the efficiency of which exceeds the 
efficiency of the known algorithms for the synthesis 
of IP. 

2 Conceptual Framework for 
Synthesis of Binary Irreducible 
Polynomials 

Below are some simple, often prominent, or well-
known statements, formulated as the axioms (for 
brevity, we will denote them kA , where k  — are 
natural numbers), obtained mainly from empirical 
facts and greatly facilitating calculating the IP. 

 1.A  Vector forms of IP are framed on the left 
and right by units, i.e., 

 
1 2 11 1n n n kf − −=     ,  

 (2) 0,1GFk  = .  

 2.A  The weight of the set of internal coefficients 
k  of a polynomial nf  must be an odd number, 

since otherwise nf  is divisible without a remainder 
by a polynomial of the first degree 1 11f =  and, 
thus, the polynomial under test turns out to be 
reducible. 

 3.A  The order nL  of the irreducible polynomial 

nf  coincides with the order of the (2 )nGF  field’s 
element 10 =  generated by the IP. 

 4.A  The order nL  of the IP nf  is a divisor of 

the maximum order , maxnL , i.e. 

 , maxn nL L| . (5) 

5.A  A necessary condition for the irreducibility 
of a binary polynomial nf  is the comparison 

 ( )
[2 1]1 0 1(mod )

n

nf
−

 ,  2n  . (6) 

However, not for all n  is mandatory conditions for 
the irreducibility of the tested polynomials (TP). 

Let us illustrate the application of the above 
axioms to solve the problem of synthesizing IP in 
the range of degrees from 2 to 4. Polynomials 

0 1f =  and  1 10,11f =  belong to the subclass of 
degenerate PrPs. First, we will write the general 
form of the polynomial of the second degree as 

2 11 1f =  ,  1 0,1  . The only variant of the value 

of the coefficient 1  in 2f , preserving the condition 

of the axiom 2A , is 1 1 = . In this case, the 

polynomial 2 111f =  turns out to be PrP. Next, let 
us turn to the general form of 3-degree polynomials 

3 2 11 1f =   . There are four variants of binary 

internal coefficients  2 1 00, 01,10,11  = . Still, 
only for two of them, namely  2 1 01,10  = , the 
axiom 2A  conditions are satisfied. Therefore, the 
permissible values of the coefficients generate the 
polynomials (1)

3 1011f =  and (2)
3 1101f = , which 

are PrP.   
 Furthermore, finally, consider the procedure for 
the synthesis of 4-degree IPs, the general form of 
which is 4 3 2 11 1f =    . Only such combinations of 

internal coefficients  3 2 1 001, 010,100,111   =   
have an odd weight. Let us check the divisibility of 
all four polynomials by IP of degree two 2 111f = . 

The first polynomial (1)
4 10011f =  from the 

collection is not divisible without a remainder by 
2f  and therefore turns out to be irreducible. The 

polynomial (3)
4 11001f =  dual to the polynomial 

(1)
4f  is also irreducible. Both polynomials (1)

4f  and 
(3)
4f  are primitive, as seen using the axioms 3A  

and 4A . The polynomial (2)
4 10101f =  is reducible 

since it is divisible by the polynomial 2f  without 

remainder. The remaining polynomial (4)
4 11111f =  

is irreducible as it belongs to a subset of SIPs 
( )(4)

4(ord 5)f = . Thus, the considered methods for 
synthesizing binary IP can be easily generalized to 
the synthesis of polynomials of small degrees 
irreducible over a field of odd characteristics 3p  . 
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 The described technology for the synthesis of 
binary IPs has limitations on the n − degree of 
polynomials. So, if, 28n  , the volume of 
computations increases so much that the PC’s 
resources may be insufficient to determine the entire 
set of irreducible polynomials nf . In particular, if 

32n = , it will be necessary to test for the 
irreducibility of all odd (by weight) polynomials. 
The upper estimate of the number is about a billion. 
Moreover, considering that testing polynomials of 
32-degrees for reduced to checking the divisibility 
of these polynomials by all IPs in the range of 
degrees from 2 to 16, it becomes evident that 
determining the complete set of IPs 32f  requires 
computational tools of very high performance. 

3 Linear-logarithm Algorithm for 
Testing Polynoms on Irreducibility 

Let us introduce (Table III) for the TP auxiliary 
numerical parameters. 

TABLE III.         AUXILIARY NUMERIC PARAMETERS 

r  1 2 3 4 5 6 7 8 … 

rt  1 3 7 15 31 63 127 255 … 

Let's "link" them with the so-called fiducial grid 
(Fig. 1), consisting of a set of parallel straight lines 
(grid steps). Thus, the total number of steps on the 
ladder coincides with the degree of the polynomial 
tested for irreducibility nf . 

1 2 3 4 5 6 7 8r

| | | | | | | |
 

Fig. 1.  Fiducial grid of the IP synthesis algorithm 

Table III, the following designations are adopted: 
r  — number of the step of the fiducial grid; rt  —  
the degree of the binary polynomial rCV , let's call it 
the Coordinate Vector, the left bit of which is 1, and 
the rest filled with zeros, that is 

 100...0
r

r
t

CV = .  

Thus, rt  is the size (length) of the zero vector of 
the polynomial rCV . The number of zero bits of the 
polynomial rCV  determined by the formula (4), i.e., 

2 1r
rt = − . 

Let us rewrite expression (6), presenting it in the 
following form 

 ( ) , max10 1(mod )nL

nf . (7) 

The left component of comparison (7) is the 
coordinate vector 

 
2 1 bit

100 0
n

nCV
−

= . (8) 

In turn, the corresponding binary vector , maxnL  

consists exclusively of 2 1n −  ones. We call this 
vector a Unit Vector, as the antipode of the zero 
vector (that is, a vector initialized with ones), and 
denote 

 2 1 bit

11 1
n

nUV
−

= . (9) 

Let us illustrate relations (6) and (7) with a 
numerical example, choosing the tested one of the 
IP of the fourth degree. Let (1)

4 10011f =  a priori is 
PrP. However, first, let us write out the coordinate 
vector 

 4
15 bit

100 0CV = . (10) 

 Dividing the right-hand side of (10) by (1)
4f , we 

get (1)
4

4( ) 1
f

Res CV = , where it denoted 

( ) (mod )bRes a a b=  — the residue of the number 

a  modulo b . Therefore, according to 5A , (1)
4f — 

is an irreducible polynomial. Moreover, we arrive at 
the same result of the SIP variant (3)

4 11111f =  
since (3)

4
4( )

f
Res CV  is the same as (1)

4
4( )

f
Res CV  

equals 1. 
 Let us turn to an alternative option, choosing TP 

4 10101f = . Then, the analyzed polynomial 

44( ) 1000 1fRes CV =  , it follows that 4f  — 
reducible (i.e., composite) polynomial. 
 The order (length) of the coordinate vectors 

,nCV  according to (8), increases exponentially with 
the degree of the polynomials nf . Moreover, as a 
consequence, already at 30n  , it becomes 
practically impossible to use axiom A5 on standard 
PCs since the comparison (6) is associated with an 
insurmountably large expenditure of computer time. 
However, this problem, which we will call the 
nightmare of large numbers, can be circumvented 
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by applying the testing polynomials proposed 
below, called the linear-logarithmic algorithm. 
 Let us display the fiducial grid (Fig. 1) 
corresponding to the polynomial nf  by a vector [ ]1 n  
containing n  units, i.e., [ ]

bit

11 111 n

n

= . Each thr −

unit in [ ]1 n  symbolizes the thr −  step of the 
fiducial grid. Can establish the law of changing the 
orders of the zero digits of the vectors  by analyzing 
the data in Table 3, namely: 

 12 1r rt t −=  + ,    0 0t = ,    1,r n= . (11) 

Let us introduce some notations. First, let 
( )r r fRes CV=S  — the residue of the coordinate 

vector rCV  by modulo a polynomial f . Relations 
(11) form the fundamental basis of the proposed 
algorithm for testing binary polynomials on 
irreducibility, which reduce to a sequence of simple 
recurrent computations 

1( )r r k fRes s−= S S ,  1=  0r rs −S ,  0 1=S ,  1,r n= , 

or else 

 
2

1( 0)r r fRes −=S S ,  0 1=S ,  1,r n= . (12) 

When the index r  have reached the last rung of 
the fiducial ladder n  and if at the same time 1n =S , 
then this will mean, in following 5A , the fulfillment 
of the necessary conditions for the irreducibility of 
TP. 

 Let us compare the methods of testing 
polynomials for irreducibility using formulas (6) 
and (12). Suppose that the n − degree of TP is 30. 
According to (6), a number should forms consisting 
of 1, to the right of which more than a billion zeros 
should place. Then we should calculate the 
remainder of this enormous number modulo 30f . A 
billion zeros with the left unit yet admit the 
possibility of perception. However, if n  equal to 
several thousand, we are already dealing with 
nightmarishly large numbers. At the same time, by 
recurrent calculations using formula (12), the 
solution of the problem of classifying TP of interest 
to us is achieved in just n  steps. The number of 
stages of recurrent computation is linearly related to 
the degree of the tested polynomial. In turn, n  it is a 
number close to the logarithm of the number of 
zeros in (6) modulo 2. The combination of the last 
two words, separated by recursion, led to the name 

of the developed algorithm for the synthesis of 
irreducible polynomials.  

Let us give the sequence of residues (12) a 
simple interpretation. According to the expression 
(11) associated with the values listed in the second 
row of Table 3, the coordinate vector rCV  
corresponding to the r − step of the fiducial grid can 
be written in the form 

 
2

1 1 10 0r r r rCV CV CV CV− − −=  = , (13) 

which, based on formula (10), can be represented by 
a binary vector 

 
1 1

1 12 1 bit 2 1 bit 2 1 bit

100 00 100 00100 000
r r

r r r

CV CV

rCV
− −

− −− − −

= = . (14) 

Calculating the remainders modulo f  from the 
components of equality (14), we arrive at the 
estimate  

 

  
1 1

1 1

( ) ( 0)

( 0) ,
r r f r r f

r r f

Res CV Res CV CV

Res

− −

− −

= = =

=

S

S S
                                                     (15) 

coinciding with the estimate (12). 
We will illustrate the algorithm (15) with a 

numerical example, choosing for testing an a priori 
irreducible polynomial of the 12-degree  

(1)
12 1000000001111f = . The values rS  of the vector 

rCV  residues modulo (1)
12f  summarize in Table IV. 

TABLE IV.         THE SEQUENCE OF RESIDUES 
GENERATED BY THE POLYNOMIAL (1)

12f   

1

2

3

4

5

6

10;

1000;

10000000;

1111000;

101010011110;

110101111101;

=

=

=

=

=

=

S

S

S

S

S

S

 

7

8

9

10

11

12

110101111110;

110101110100

110111111100;

110100000100;

11111100010;

.

=

=

=

=

=

= 1

S

S

S

S

S

S

 

The fact that residue 12S  equal to 1 is evidence 
of the fulfillment of at least the necessary conditions 
for the irreducibility of the polynomial (1)

12f .  
The following helps construct an algorithm for 

the synthesis of IPs.  
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Statement 1. The residue of the coordinate 
vector rCV  modulo IP nf  of the degree n  reaches 
unity only at r n= ; otherwise, when r n  

(mod ) 1r nCV f  . 

 In other words, if vector rCV  on the modulus nf  
at the inner rung of the staircase reaches a value 
equal to one, then this will mean that nf  is a 
composite polynomial.  
 Let us validate statement 1 on numerical 
examples. In particular, if the degree of IP is a 
binary-rational number, i.e., 2 mn = , where is m  a 
natural number, then the maximum order , maxnL  of 

the polynomial nf  possessed by PrP can be 
represented by the product of binomials 

1 2 4
, max

/2

2 1 (2 1)(2 1)(2 1)

(2 1) (2 1).

n
n

k n

L = − = + + +

+ +
 (16) 

The order nL  of an IP nf  that is not primitive 
determines by the product of a particular set of 
binomials in decomposition (16) that make up the 
set of prime divisors (factors) of a number , maxnL . 
Let us refer to Table III. The bottom row of Table 
III contains numbers 2 1r

rt = −  that coincide with 
the maximum order of the r − degree polynomials 
f . There is no such subset of binomials in (16), the 

product of which could be equal to the binomial rt . 
Furthermore, if the unit residue of the coordinate 
vector rCV  modulo nf  appears on step r  of the 

fiducial grid. In that case, nf  is a composite 
polynomial, and the degree of one polynomial of the 
factors coincides with r .   

To confirm the formulated conclusion, consider a 
numerical example. Let a polynomial

10 11101000001f =  be givens. Then, the sequence 

of residues generated by the polynomial 10f  is 
presente in Table V. 

TABLE V.         THE SEQUENCE OF RESIDUES 
GENERATED BY THE POLYNOMIAL 10f   

1

2

3

4

10;

1000;

10000000;

100110100;

=

=

=

=

S

S

S

S

 

5

6

7

8

1110010;

1110000110;

1001001011;

1.

=

=

=

=

S

S

S

S

 

Based on the data in Table V, we arrive at the 
following result: the polynomial 10f  is composite, 
and the degree of one of them is 8, and the second, 
of course, is 2 (i. e. 2 111)f = . Thus, the polynomial 

8f  can also turn out to be composite, which, if 
necessary, can be refined by independent testing.  

4 Synthesis of Irreducible 
Polynomials of Small Degrees 

We will classify as small the n − degrees of 
polynomials nf  not exceeding 64. Let us divide the 

polynomials of small degrees into two groups, 
including in the first of them polynomials whose 
degrees belong to the interval [2-32], and in the 
second – [33-64]. Analytical estimates of the 
number ( )M n  of IP of small degrees of the first 
group are given above in Table II. 

We call singular (exceptional) IPs whose degrees 
are: (a) prime numbers, (b) powers of primes, or (c) 
the product of two different primes. Singular IRs of 
minor degrees of the first group highlight by 
shading in Table VI and for the second group — in 
Table VII.  

TABLE VI.         DEGREES OF POLYNOMIALS OF THE 
FIRST GROUP  

 2 3 4 5 6 7 8 

9 10 11 12 13 14 15 16 

17 18 19 20 21 22 23 24 

25 26 27 28 29 30 31 32 

TABLE VII.         DEGREES OF POLYNOMIALS OF 
THE SECOND GROUP  

33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 

49 50 51 52 53 54 55 56 

57 58 59 60 61 62 63 64 

Based on computer calculations for singular 
polynomials, empirically established the following 
position 

Theorem 1. A singular polynomial nf  of degree 
n  is irreducible if and only if the residue nS  of the 

coordinate vector nCV  corresponding to the thn −  
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step of the fiducial grid is equal to 1. I.e., the 
identity provides 1n S  (necessary condition), and 
for any values of r n , the residue rS  cannot be 
equal to 1 (sufficient condition). 

Let us support Theorem 1 with numerical 
examples. But first, consider testing a polynomial 
15-degrees (1)

15 1010011011000111f = , a priori 
irreducible (Table VIII).  

TABLE VIII.         THE SEQUENCE OF RESIDUES 
GENERATED BY THE POLYNOMIAL (1)

15f  

1

2

3

4

5

6

7

8

10;

1000;

10000000;

10011011000111;

111111111000;

100011110011101;

100000011001001;

10110111011;

=

=

=

=

=

=

=

=

S

S

S

S

S

S

S

S

 

9

10

11

12

13

14

15

1101010110100;

100010100100011;

11110100001101;

101110110101000;

10001100101111;

11011101000110;

.

=

=

=

=

=

=

= 1

S

S

S

S

S

S

S

 

Since the necessary and sufficient conditions of 
Theorem 1 are satisfied, this means that the 
polynomial (1)

15f  is irreducible. Consider further a 

polynomial (2)
15 1010100101000011f = . Calculating 

the residue of the coordinate vectors 15CV  modulo 
(2)

15f , and we obtain Table IX. 

TABLE IX.         THE SEQUENCE OF RESIDUES 
GENERATED BY THE POLYNOMIAL (2)

15f  

1

2

3

4

5

10;

1000;

10000000;

10100101000011;

1.

=

=

=

=

=

S

S

S

S

S

 

 The five-element second and third columns of 
deductions in Table IX repeat the elements of the 
first column and omit them. Therefore, the sufficient 
conditions of Theorem 1 for the polynomial (2)

15f  
are not satisfied since the sequence of residues rS , 

1,15r = , contains three units. Therefore, these are 
deductions are 5S , 10S  and 15S . So, it means that 

the polynomial (2)
15f  is reducible.  

 Moreover, in the finale, if the TP (3)
15f  a priori 

reducible, for example, is formed by the product of 
two IPs, we obtain the remaining 15 1S . So that 

confirmed that (3)
15f  is a reducible polynomial, as it 

was initially predetermined.  
 Polynomials that are not singular, such as 
polynomials, the degrees of which indicate in the 
light cells of Tables VI and VII, have several 
specific features. First, both conditions (both 
necessary and sufficient) of Theorem 1 are 
necessary conditions for the irreducibility of non-
singular polynomials (NSP). And, secondly, a 
satisfactory condition for the irreducibility of the 
NSP, as established by computer simulation, is the 
absence of so-called excluding divisors (ED) for 
such polynomials. The excluding divisors will 
include those IPs that divide the test non-singular 
polynomial without a remainder. The set of 
excluding divisors of the tested degree polynomials 
denoted. The EDs of the NSP, contained in Tables 
VI and VII, give in Tables X and XI, respectively. 
Under the sign " = ", the second column left of 
Tables is products of prime factors of a number 
presented together with their multiplicities. 

TABLE X.         EXCLUSIVE DIVISORS OF NSP OF 
THE FIRST GROUP 

The degree of IP The degree of ED 
n  = 2 3 4 5 

12 22 3  +    

18 23 2   +   

20 22 5  +    

24 32 3  +  +  

28 22 7  +    

30 2 3 5   + +  + 

TABLE XI.       EXCLUSIVE DIVISORS OF  NSP OF 
THE SECOND GROUP 

The degree of IP The degree of ED 
n  = 2 3 4 5 6 7 8 9 

36 2 22 3  + +   +    
40 32 5  +  +      
42 2 3 7   + +    +   
44 22 11  +        
45 23 5   +       
48 42 3  +  +    +  
50 25 2     +     
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Continuation of Table XI 
The degree of IP The degree of ED 
n  = n  = n  = n  = n  = 
52 22 13  +        
54 33 2   +      + 
56 32 7  +  +      
60 22 3 5   + + + +     
63 23 7   +       

Based on the data in Tables X and XI, we come 
to generalizations, confirmed by the results of 
computer modeling: 

Statement 2. The sets of excluding divisors nd  

of non-singular polynomials nf  are defined by the 
expressions: 

1

1 1 21

1 1

1 2 1 2 1 2

, if , 2;

, if , 2;

, if , 2,

k
i k

i

k k
n

i i
i i

k k

p n p p k

d p n p k

p p p p n p p k

−

=

= =


 =  


 =  

    =  

 (17) 

where ip  is prime numbers, and 1
ip  — is a 

collection of irreducible polynomials of degree 1
ip . 

 Of course, the system (17) does not exhaust a 
small fraction of the various variants of the 
expansion of the n − degrees of the TP nf . Each of 

them has its own set of excluding divisors nd . 
However, for applications, for example, in 
cryptography, as a rule, it turns out that they are 
pretty enough. 

The following empirical established. 

Theorem 2. A non-singular polynomial nf  of 
n − degree is irreducible if and only if the only 
residue of the coordinate vector rCV  modulo nf  
one is the residue corresponding to the n − step of 
the fiducial grid. That is when the identity 1n S  
(necessary condition) ensures no excluding divisors 
for the tested polynomial (sufficient condition). 

Let us look at numerical examples. 

Example 1. Consider a non-singular polynomial 
(1)

18 1010011010110101011f = . The sequence of 

residues rS  of coordinate vectors rCV  modulo (1)
18f  

presents in Table XII. However, the lower half 

sequence residues repeat the upper half and, on this 
basis, are thrown out of Table. 

TABLE XII.         THE SEQUENCE OF RESIDUES 

GENERATED BY THE POLYNOMIAL (1)
18f  

1

2

3

4

5

6

7

8

9

10;
1000;
10000000;
1000000000000000;
10100100100011100;
100000011111111001;
110100000010110110;
1000111011011000;

=

=

=

=

=

=

=

=

= 1.

S

S

S

S

S

S

S

S

S

 

 As follows from Table XII, the necessary 
condition for the irreducibility of TP so not met. 
And this means that (1)

18f — a reducible polynomial. 

Example 2. Let (2)
18 1010011011010011011f = . 

The set of residues corresponding to the polynomial 
(2)

18f  summarizes in Table XIII.  

TABLE XIII.         The Sequence of Residues 
Generated by the Polynomial (2)

18f  

1

2

3

4

5

6

7

8

9

10;
1000;
10000000;
1000000000000000;
10111101110110100;
110110110010100001;
110100101100100011;
111011111010100011;
1111001100010000;

=

=

=

=

=

=

=

=

=

S

S

S

S

S

S

S

S

S

 

10

11

12

13

14

15

16

17

18

100111101101101011;
111011101101100;
1111001110010001;
101111101101101001;
10000110011010000;
111001111110110000;
10011000001001010;
111100100111000111;

.

=

=

=

=

=

=

=

=

= 1

S

S

S

S

S

S

S

S

S

 

Even though the necessary irreducibility 
conditions are satisfied, the polynomial is not free 
from the exclusive divisor .nd  Following Table 10, 
it turns out to be PrP of the 3-degree 1011f = . 
Therefore, (2)

18f  — a reducible polynomial.  
 And finally, let it be 

(3)
18 1101010111001011001f = . 

The set of residues formed on the fiducial grid by 
a polynomial  (3)

18f  presents in Table XIV. The 
polynomial (3)

18f  has no excluding divisors. 
Therefore, (3)

18f — an irreducible polynomial. 
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TABLE XIV.         THE SEQUENCE OF RESIDUES 
GENERATED BY THE POLYNOMIAL (3)

18f  

1

2

3

4

5

6

7

8

9

10;
1000;
10000000;
1000000000000000;
10111101110110100;
110110110010100001;
101010100101010001;
101110100000110110;
11000000101001100;

=

=

=

=

=

=

=

=

=

S

S

S

S

S

S

S

S

S

 

10

11

12

13

14

15

16

17

18

100111101101101111;
111110111000101001;
110001011011000101;
1011111011111110;
111000111010010110;
101000110101101011;
10010111110100;
110110101101010;

.

=

=

=

=

=

=

=

=

= 1

S

S

S

S

S

S

S

S

S

 

 And in the conclusion of this section, we 
formulate criteria for the irreducibility of 
polynomials nf  of even degrees n , all of whose 
digits contain ones. Such polynomials refer to above 
as "vectors of units". The following observations are 
apparent. 

 Theorem 3. A unit vector [ 1]1 n+  of ( 1)n + − order 
is an irreducible polynomial nf  of even degree n  if 

and only if , max( 1) nn L+ |  (necessary conditions), 

while /2,max( 1) nn L+ ł  (sufficient conditions). 
 The results of the application of Theorem 3 
illustrate in Tables XV and XVI. 

TABLE XV.         IRREDUCIBILITY TESTS FOR 
POLYNOMIALS [ 1]1 n+  OF EVEN DEGREES  

The first group of IPs of small degrees 
Deg NC SC Deg NC SC 

4 +  +  20 −   
6 −   22 +  −  
8 −   24 −   

10 +  +  26 −   
12 +  +  28 +  +  
14 −   30 +  −  
16 +  −  32 −   
18 +  +   

Shading in Tables XV and XVI, the degrees of 
polynomials [ 1]1 n+  are distinguished for which both 
necessary (NC) and sufficient (SC) conditions of 
irreducibility are satisfied. 

TABLE XVI.         IRREDUCIBILITY TESTS FOR 
POLYNOMIALS [ 1]1 n+  OF EVEN DEGREES  

The second group of IPs of small degrees 

Deg NC SC Deg NC SC 

34 −   50 −   

Continuation of Table XVI 

The second group of IPs of small degrees 

Deg NC SC Deg NC SC 

36 +  +  52 −   

38 −   54 −   

40 +  −  56 −   

42 +  +  58 −   

44 −   60 −   

46 +  −  62 −   

48 −   64 −   

5 Classification of IP of Binary-
Rational Degrees 

A to binary-rational (the term borrows from [15]), 
we mean polynomials whose degrees n  equals 2 k . 
Such IPs wide used in cryptography and other areas 
of discrete mathematics. The polynomials nf  under 
consideration belong to the group of singular IPs.  
Their synthesis bases on Theorem 1. The tested 
polynomial is irreducible if the residue of the 
coordinate vectors kCV  on modules nf   reach a unit 
value only at the last thn −  step of the fiducial grid. 
Singular polynomials of binary-rational degrees are 
free of only divisors. The listed properties of 
polynomials greatly simplify the procedure for their 
synthesis. However, the problem remains due to the 
significant expenditures of computer time in 
estimating the order of polynomials and, 
accordingly, classifying them into primitive (IP of 
maximum order) and simple irreducible (not 
primitive) polynomials. 

Let us supplement the axiomatic foundations of 
IP synthesis presented in Section 2 with several 
helpful information concerning polynomials of 
binary-rational degrees. Let us denote: 

1)  1, 1 2, , , ,n k mD d d d d=  — is a subset of 

prime divisors of maximal order , maxnL  PrP nf  
ordered in ascending order, excluding trivial 
divisors; 

2)   ,l nD =  — ordered subsets of composite 
divisors , maxnL  formed by combinations m  

elements of the subset 1,nD  by l , 2, 1,l m= −  
excluding the divisor , maxnL . The parameter m  is 
equal to the number of prime divisors , maxnL ; 
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3)  1, ,n n l nD D D=   — complete ordered set of 
divisors , maxnL  composed of elements of subsets 

1,nD  and ,l nD . 
Polynomials of binary-rational degrees have a 

remarkable property, the essence of which is as 
follows. Since n  — is an even number, the order of 

, maxnL  represented by the decomposition  

 ( ) ( )/2 /2
, max 2 1 2 1 2 1n n n

nL = − = −  + , (18) 

where / 2n  is also an even number, since by 
definition 2 kn = . 
 Based on the above property, it is easy to write 
down the expansion of a number , maxnL  for 
polynomials of binary-rational degrees. The 
decomposition chain of binomial (18) shows below 
using an example 32n = : 

32
32, max

16 16

8 8 16

4 4 8 16

2 2 4 8 16

1 2 4 8 16

2 1

(2 1) (2 1)
(2 1) (2 1) (2 1) (19)
(2 1) (2 1) (2 1) (2 1)
(2 1) (2 1) (2 1) (2 1) (2 1)
(2 1) (2 1) (2 1) (2 1) (2 1),

L = − =

= −  + =

= −  +  + =

= −  +  +  + =

= −  +  +  +  + =

= +  +  +  +  +

 
according to which the prime divisors, composed of 
the factors of the bottom row of expansion (19), 

 1,32 3, 5,17, 257, 65'537D = , (20) 

 The complete ordered set of maximal order 
32, maxL  divisors of 32-degree polynomials is as 

follows: 

 
22 1

k

kF = + ,  0, 4k = . (21) 

 The complete ordered set of maximal order 
divisors of 32-degree polynomials is as follows: 

32D = {3, 5, 15, 17, 51, 85, 255, 257, 771, 1'285, 3ˈ855, 

1ˈ285, 3ˈ855, 4ˈ369, 13ˈ107, 21ˈ845, 65ˈ535, 65ˈ537, 
196ˈ611, 327ˈ685, 983ˈ055, 1ˈ114ˈ129, 3ˈ342ˈ387, 
5ˈ570ˈ645, 16ˈ711ˈ935, 16ˈ843ˈ009, 50ˈ529ˈ027, 
84ˈ215ˈ045, 252ˈ645ˈ135, 286ˈ331ˈ153, 858ˈ993ˈ459, 
1ˈ431ˈ655ˈ765}.                                                      (22)                                             

 If nf  is the IP degree n  and set nD  contains the 

element d , which provides ( 1)d
nf x −| , then nf  is 

the SIP of order d , otherwise — PrP.  Thus, the 
generalized form of prime divisors, as follows from 
relations (20) and (21), can be represented as: 

 11,2 0
k

k

i
i

D F+

=
=  , (23) 

moreover, starting from 5k =  the Fermat number 
kF , they turn out to be composite [16, 17]. 

 The sequence of prime divisors (23) of binomial 
(18) provides the possibility of determining the 
complete set nD  of divisors of the maximum order 

, maxnL  of IP nf . The number of components nN  of 

the set nD , for binary-rational values n , is 
determined by the formula 

2log 1
2

1

log
2

n

n
k

n
N n

k

−

=

 
= = − 

 
 . 

 With growth n , the costs of computer time 
increase, associated with the classification of the 
tested polynomials (calculating their orders and 
assigning them either to SIP classes or PrP). 
However, these costs can reduce by taking into 
account the following empirically established. 

 Statement 3. The minimum order of IP of a 
binary-rational degree 2 kn =  exceeds the order of 
PrP degree 12 kn −= , i.e., 

 minord ( ) 2 1n
nf  − . (24) 

 In particular, based on inequality (24), the subset 
of divisors highlighted by the shading in sequence 
(22) can be excluded from the procedure for 
calculating the order of the tested polynomials 32f . 
 Suppose the degree of binary-rational 
polynomials does not exceed 16. Then, the synthesis 
of IP well relies on enumerating all possible variants 
of polynomials with their subsequent check for 
irreducibility. When 32n   a complete search, at 
least on a PC, becomes almost impossible to 
implement. The only way to form such polynomials 
is their stochastic modelling. As shown by the 
results of experimental verification, for the 
formation of one IP of the degree of 2 Kbit, the 
computer time spent on computers of average 
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productivity is about 2.5 hours, which is an entirely 
satisfactory result. 

6 Synthesis Over a Field of Odd 
Characteristics 

In this section, we solve the problem of IP synthesis 
over a Galois field of characteristic 3p  . For the 
numerical parameters associated with polynomials 
over ( )GF p , 3p  , we add one more index p . 

Let us refer to Table III. In its bottom line, the 
parameter rt  determines the number of zeros 
contained in the binary coordinate vector rCV , 
which corresponds to the r − steps of the fiducial 
grid. Thus, for the p − number system has 

, 1r
r pt p= −  and, for example, if 3p = , Table III is 

transformed into the following Table XVII. 

TABLE XVII.         NUMERICAL PARAMETERS OF 
THE FIDUCIAL GRID FOR CHARACTERISTICS 3p =  

r  1 2 3 4 5 6 7 8 … 
3r,t  2 8 26 80 242 728 2186 65600 … 

The approximation of the numerical sequence 
,r pt  has the form 

 ,3 1, 3 0,33 2, 0r rt t t−=  + = . (25) 

 Based on a comparison of expressions (11) - (13) 
and (25), we arrive at the following generalized 
relations 

, 1, 0,( 1), 0r p r p pt p t p t−=  + − = ; 
and 

   , 1, 0,
1

( 0...0) , 1p
r p r p f p

p

Res −

−

= =S S S .                                                     (26) 

 Let's look at numerical examples. First, let us 
choose as the testable polynomial (1)

5 102112f = , 
which is irreducible a priori over (3)GF . Then, 
using the recurrent formula (26), we calculate the 
sequence of residues modulo (1)

5f  and summarize it 
in Table XVIII. 

As an alternative, consider a polynomial (2)
5f  

that is not a priori irreducible. For example, suppose 
that (2)

5f  it forms by a modular product of two IPs 

over (3)GF . Let such 3 1121f =  and 2 112f =  
generating a composite polynomial 

3
(2)

5 1121 112 122222f =  = .  The polynomial (2)
5f  

corresponds to the residues given in Table XIX. 

TABLE XVIII.         THE SEQUENCE OF RESIDUES  
GENERATED BY THE POLYNOMIAL (1)

5f  

1

2

3

4

5

100;

2022;

22222;

12021;

1.

=

=

=

=

=

S

S

S

S

S

 

TABLE XIX.         THE SEQUENCE OF RESIDUES  
GENERATED BY THE POLYNOMIAL (2)

5f  

1

2

3

4

5

100;

22101;

22121;

11010;

11221.

=

=

=

=

=

S

S

S

S

S

 

Tables contents XVIII and XIX confirm the 
preliminary information regarding the polynomials 

(1)
5f  and (2)

5f . Finally, we note that the technology 
of IP over ( )GF p , 3p  , synthesis remains as 
simple as for binary polynomials. 

7 Conclusion 

The main result of the article is the 
development of a new algorithm for 
synthesizing irreducible polynomials in a wide 
range of degrees, reaching several Kbits. 
Unfortunately, the known algorithms for 
generating IPs have a significant drawback: 
their computational complexity is, as a rule, no 
less than quadratic. Moreover, it follows that an 
IP of large degrees is necessary to involve very 
high-performance computational resources. 

The proposed synthesis algorithm bases on 
the so-called fiducial grids (ladders), the 
number of steps coincides with the degree of 
the synthesized polynomials. At each rung of 
the ladder, most straightforward recurrent 
modular computations of the same type 
perform, after which the polynomial under test 
is uniquely classified either as irreducible or as 
composite. 
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