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Abstract: - This paper is a continuation of a series of papers devoted to the numerical solution of integral 
equations using local interpolation splines. The main focus is given to the use of splines of the fourth order of 
approximation. The features of the application of the polynomial and non-polynomial splines of the fourth 
order of approximation to the solution of Volterra integral equation of the second kind are discussed. In 
addition to local splines of the Lagrangian type, integro-differential splines are also used to construct 
computational schemes. The comparison of the solutions obtained by different methods is carried out. The 
results of the numerical experiments are presented. 
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1 Introduction 
A new approach of the development of numerical 
solutions of the integral equations are often 
connected with the application of interpolation. The 
well-known methods of solving Volterra integral 
equations of the second kind include, first of all, the 
trapezium method and the Simpson method. The 
trapezium method is quite simple to use. This 
should be attributed to the advantages of this 
method. As it is known, when verifying the result of 
a solution, several different methods are often used. 
Therefore, it is advisable to apply several different 
methods to solve the same equation.  It should be 
noted that different types of splines are quite often 
used when solving interpolation problems. Let us 
briefly recall one of the main reasons for their 
widespread use. 
    Let 𝑃𝑛 be the interpolation polynomial that solves 
the Lagrange interpolation problem when we use the 
values of the Runge function 𝑓 =

1

1+25 𝑥2 in the 
equidistant nodes in the interval [−1,1] including 
the ends. As it is known (the fact was established by 
Runge in 1901), the following relation is true: 

|| 𝑓 − 𝑃𝑛 ||  →  ∞    when    𝑛 →  +∞. 

Thus, the sequence of interpolation polynomials 𝑃𝑛 
does not tend to the Runge function when 𝑛 tends to 
infinity. Thus, when solving various problems of 
mathematical physics, splines are widely used. It 

should be mentioned that papers [1]-[7] are among a 
variety of papers about numerical methods in 
solving the Volterra integral equations. In [1], the 
authors discuss the super convergence of the 
“interpolated” collocation solutions for weak 
singular Volterra integral equations of the second 
kind. In paper [2], the 6th order Runge-Kutta with a 
seven stage method for finding the numerical 
solution of the Volterra integro-differential equation 
is considered. In paper [2], the integral term in the 
Volterra integro-differential equation was 
approximated using the Lagrange interpolation 
numerical method.  In paper [3], a numerical 
solution of the important weak singular type of the 
Volterra-Fredholm integral equations is provided. In 
[3], a new computational method based on the 
special B-spline tight framelets is presented and 
used to the numerical scheme. In paper [4], the 
numerical solution to a class of weak singular 
Volterra integral equations is discussed. In paper 
[4], the fractional Lagrange interpolation is applied 
to deal with the singularity of the solution, and 
efficient fractional collocation boundary value 
methods are developed. In paper [5], the method of 
radial basis functions is used for solving the 
Volterra integral equation. A new collocation 
technique for numerical solution of Fredholm, 
Volterra and mixed Volterra-Fredholm integral 
equations of the second kind was introduced in 
paper [6]. In paper [7], the quadratic rule for the 
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numerical solution of linear and nonlinear two-
dimensional Fredholm integral equations based on 
spline quasi-interpolant was studied.  
The use of local polynomial and non-polynomial 
splines allows us to construct new methods for 
solving the Volterra integral equation of the second 
kind. Paper [9] discusses the use of the polynomial 
and non-polynomial splines of the third order of 
approximation. These splines have shown good 
numerical stability and are suitable for constructing 
solutions on both a uniform and non-uniform mesh 
of nodes. 
    In this paper, the local spline approximations [8] 
are used to construct calculation formulas for 
solving the Volterra integral equation. Here we use 
both the polynomial and non-polynomial 
splines of the fourth order of approximation. 
Section 2 discusses the properties of the local 
polynomial, polynomial-trigonometrical splines and 
the integro-differential splines of the fourth order of 
approximation. Section 3 considers the use of the 
construction of the solution of the integral equation, 
of not only the polynomial and non-polynomial 
local splines of the Lagrangian type, but also the 
integro-differential splines of the fourth order of 
approximation. As a result, the integro-differential 
splines give a smaller error, but in this case it is 
assumed that the values of the integrals over the grid 
intervals are known. Нere a modification of the 
Simpson method is also proposed, where the spline 
approximations are applied. 
 
 
2 Problem Formulation 
Let {𝑥𝑗} be the set of nodes on the interval [𝑎, 𝑏]. 
Suppose that the system of functions 𝜑𝑖(𝑥)  forms 
a Chebyshev system. We define the basic splines on 
the interval [𝑥𝑗, 𝑥𝑗+1] ⊂ [𝑎, 𝑏], solving the system of 
equations (following Professor S.G. Mikhlin, we 
refer to this system as the fundamental relations) 

∑ 𝜑𝑖(𝑥𝑘)𝑤𝑘(𝑥) = 𝜑𝑖(𝑥)

𝑘𝑗𝑚

𝑘=𝑘𝑗0

,                  (1) 

𝑥 ∊ [𝑥𝑗, 𝑥𝑗+1], 𝑖 = 0, … , 𝑚. 

Here 𝑘𝑗𝑚 − 𝑘𝑗0 = 𝑚 + 1. 
    We consider that the determinant of this system is 
different from zero. With a different choice of 
functions 𝜑𝑖(𝑥) and integer  𝑘𝑗0 , 𝑘𝑗𝑚, we obtain 
basic splines suitable for approximation at the 
beginning of the interval [𝑎, 𝑏], in the middle of the 

interval or at the end of the interval [𝑎, 𝑏]. In the 
case of a polynomial system 𝑥𝑖, fundamental system 
(1) has the form 

∑ 𝑥𝑘
𝑖 𝑤𝑘(𝑥) = 𝑥𝑖

𝑘𝑗𝑚

𝑘=𝑘𝑗0

, 𝑖 = 0, … , 𝑚,

𝑥 ∊ [𝑥𝑗, 𝑥𝑗+1]. 

In this paper we focus on the splines of the fourth 
order of approximation. Therefore, in our case, we 
consider 𝑚 = 3. Thus, there are four equations and 
four unknown basis functions 𝑤𝑘(𝑥).  
    Let us highlight the important special cases. 
Suppose that the support of the basis spline occupies 
the interval [𝑥𝑗−3, 𝑥𝑗+1].  The splines 𝑤𝑗 suitable for 
approximation near the left end of the interval  [𝑎, 𝑏] 
can be obtained when 𝑘𝑗0 = 𝑗, 𝑘𝑗𝑚 = 𝑗 + 3. In this 
case, the condition 𝑗 = 0, … , 𝑛 − 3, must be 
satisfied. Suppose that the support of the spline 
occupies the interval [𝑥𝑗−2, 𝑥𝑗+2]. Splines 𝑤𝑗 
suitable for approximation in the middle of the 
interval  [𝑎, 𝑏] can be obtained when 𝑘𝑗0 = 𝑗 − 1, 
𝑘𝑗𝑚 = 𝑗 + 2. In this case, the condition 𝑗 =

1, … , 𝑛 − 2, must be satisfied. Suppose that the 
support of the spline occupies the interval [𝑥𝑗−1, 
𝑥𝑗+3]. Splines 𝑤𝑗 suitable for approximation near 
the right end of the interval  [𝑎, 𝑏] can be obtained 
when 𝑘𝑗0 = 𝑗 − 2, 𝑘𝑗𝑚 = 𝑗 + 1. In this case, the 
condition 𝑗 = 2, … , 𝑛 − 1, must be satisfied.  
In the next sub-section, we will take a closer look at 
cubic polynomial splines. 
 
2.1 Cubic Polynomial Splines   
At first, we recall the features of the approximation 
of the functions with the splines near the right end 
of the interval [𝑎, 𝑏], near the left end of the interval 
[𝑎, 𝑏], and at the middle of the interval. As an 
example, we write out the formula for the basis 
spline, which is used to approximate in the middle 
of the interval  [𝑎, 𝑏]. The formula of the basis 
spline 𝜔𝑗

𝑀(𝑥) can be written as follows: 

𝜔𝑗
𝑀(𝑥) =

(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗+2)(𝑥 − 𝑥𝑗+3)

(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗+2)(𝑥𝑗 − 𝑥𝑗+3)
, 

𝑥 ∈ [𝑥𝑗+1, 𝑥𝑗+2], 

𝜔𝑗
𝑀(𝑥) =

(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗−1)(𝑥 − 𝑥𝑗+2)

(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗−1)(𝑥𝑗 − 𝑥𝑗+2)
, 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

𝜔𝑗
𝑀(𝑥) =

(𝑥 − 𝑥𝑗−1)(𝑥 − 𝑥𝑗−2)(𝑥 − 𝑥𝑗+1)

(𝑥𝑗 − 𝑥𝑗−1)(𝑥𝑗 − 𝑥𝑗−2)(𝑥𝑗 − 𝑥𝑗+1)
, 
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𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗], 

𝜔𝑗
𝑀(𝑥) =

(𝑥 − 𝑥𝑗−1)(𝑥 − 𝑥𝑗−2)(𝑥 − 𝑥𝑗−3)

(𝑥𝑗 − 𝑥𝑗−1)(𝑥𝑗 − 𝑥𝑗−2)(𝑥𝑗 − 𝑥𝑗−3)
, 

𝑥 ∈ [𝑥𝑗−2, 𝑥𝑗−1], 

 

          𝜔𝑗
𝑀(𝑥) = 0, 𝑥 ∉ [𝑥𝑗−2, 𝑥𝑗+2]. 

Now we write out the formulas of the basis splines 
that form the continuous polynomial approximation 
in the interval 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]  ⊂ [𝑎, 𝑏]. The 
continuous polynomial approximation 𝑈𝑗

𝑅(𝑥) near 
the left end of the interval [𝑎, 𝑏] uses the right basis 
spline 𝜔𝑗

𝑅(𝑥) of the form: 

𝜔𝑗
𝑅(𝑥) =

(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗+2)(𝑥 − 𝑥𝑗+3)

(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗+2)(𝑥𝑗 − 𝑥𝑗+3)
, 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

𝜔𝑗+1
𝑅 (𝑥) =

(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+2)(𝑥 − 𝑥𝑗+3)

(𝑥𝑗+1 − 𝑥𝑗)(𝑥𝑗+1 − 𝑥𝑗+2)(𝑥𝑗+1 − 𝑥𝑗+3)
, 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

𝜔𝑗+2
𝑅 (𝑥) =

(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗+3)

(𝑥𝑗+2 − 𝑥𝑗)(𝑥𝑗+2 − 𝑥𝑗+1)(𝑥𝑗+2 − 𝑥𝑗+3)
, 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

𝜔𝑗+3
𝑅 (𝑥) =

(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗+2)

(𝑥𝑗+3 − 𝑥𝑗)(𝑥𝑗+3 − 𝑥𝑗+1)(𝑥𝑗+3 − 𝑥𝑗+2)
, 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 

 
The approximation with these basis splines can 

be written in the form: 
 
𝑈𝑗

𝑅(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗
𝑅(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1

𝑅 (𝑥) +

  𝑢(𝑥𝑗+2)𝜔𝑗+2
𝑅 (𝑥) +   𝑢(𝑥𝑗+3)𝜔𝑗+3

𝑅 (𝑥).       

The continuous polynomial approximation 𝑈𝑗
𝐿(𝑥) 

near the right end of the interval [𝑎, 𝑏] uses the left 
basis spline 𝜔𝑗

𝐿(𝑥) of the form: 

𝜔𝑗−2
𝐿 (𝑥) =

(𝑥 − 𝑥𝑗−1)(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1)

(𝑥𝑗−2 − 𝑥𝑗−1)(𝑥𝑗−2 − 𝑥𝑗)(𝑥𝑗−2 − 𝑥𝑗+1)
, 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

𝜔𝑗−1
𝐿 (𝑥) =

(𝑥 − 𝑥𝑗−2)(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1)

(𝑥𝑗−1 − 𝑥𝑗−2)(𝑥𝑗−1 − 𝑥𝑗)(𝑥𝑗−1 − 𝑥𝑗+1)
, 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

𝜔𝑗
𝐿(𝑥) =

(𝑥 − 𝑥𝑗−2)(𝑥 − 𝑥𝑗−1)(𝑥 − 𝑥𝑗+1)

(𝑥𝑗 − 𝑥𝑗−2)(𝑥𝑗 − 𝑥𝑗−1)(𝑥𝑗 − 𝑥𝑗+1)
, 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

𝜔𝑗+1
𝐿 (𝑥) =

(𝑥 − 𝑥𝑗−2)(𝑥 − 𝑥𝑗−1)(𝑥 − 𝑥𝑗)

(𝑥𝑗+1 − 𝑥𝑗−2)(𝑥𝑗+1 − 𝑥𝑗−1)(𝑥𝑗+1 − 𝑥𝑗)
, 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 

The approximation on the [𝑥𝑗, 𝑥𝑗+1] with these 
basis splines can be written in the form: 

 

𝑈𝑗
𝐿(𝑥) = 𝑢(𝑥𝑗−2)𝜔𝑗−2

𝐿 (𝑥) + 𝑢(𝑥𝑗−1)𝜔𝑗−1
𝐿 (𝑥) +

  𝑢(𝑥𝑗)𝜔𝑗
𝐿(𝑥) +   𝑢(𝑥𝑗+1)𝜔𝑗+1

𝐿 (𝑥).                           

The continuous polynomial approximation 𝑈𝑗
𝑀(𝑥) 

in the middle of the interval [𝑎, 𝑏] uses the middle 
basis spline 𝜔𝑗

𝑀(𝑥) of the form: 

𝜔𝑗−1
𝑀 (𝑥) =

(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗+2)

(𝑥𝑗−1 − 𝑥𝑗)(𝑥𝑗−1 − 𝑥𝑗+1)(𝑥𝑗−1 − 𝑥𝑗+2)
, 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

𝜔𝑗
𝑀(𝑥) =

(𝑥 − 𝑥𝑗−1)(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗+2)

(𝑥𝑗 − 𝑥𝑗−1)(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗+2)
, 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

𝜔𝑗+1
𝑀 (𝑥) =

(𝑥 − 𝑥𝑗−1)(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+2)

(𝑥𝑗+1 − 𝑥𝑗−1)(𝑥𝑗+1 − 𝑥𝑗)(𝑥𝑗+1 − 𝑥𝑗+2)
, 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 

𝜔𝑗+2
𝑀 (𝑥) =

(𝑥 − 𝑥𝑗−1)(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1)

(𝑥𝑗+2 − 𝑥𝑗−1)(𝑥𝑗+2 − 𝑥𝑗)(𝑥𝑗+2 − 𝑥𝑗+1)
, 

𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]. 

The approximation on the [𝑥𝑗, 𝑥𝑗+1] with these 
basis splines can be written in the form: 

 

𝑈𝑗
𝑀(𝑥) = 𝑢(𝑥𝑗−1)𝜔𝑗−1

𝑀 (𝑥) + 𝑢(𝑥𝑗)𝜔𝑗
𝑀(𝑥) +

  𝑢(𝑥𝑗+1)𝜔𝑗+1
𝑀 (𝑥) +   𝑢(𝑥𝑗+2)𝜔𝑗+2

𝑀 (𝑥).           
The approximation properties of these basis splines 
are well known. Let us denote ∥ 𝑢(𝛼) ∥[𝑐,𝑑]=

max
[𝑐,𝑑]

|𝑢(𝛼)(𝑥)|. The following theorem can be easily 

proved (see also [8]). 

Theorem 1. Let 𝑢 ∈ С4[𝑎, 𝑏]. 𝑥𝑗 = 𝑎 + 𝑗ℎ, 𝑗 =

0, 1, … , 𝑛, ℎ =
𝑏−𝑎

𝑛
, 𝑛 ≥ 3. To approximate the 

function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1], with the left and right 
splines, the following inequalities are valid: 

|𝑢(𝑥) − 𝑈𝑗
𝐿(𝑥)| ≤ 𝐾ℎ4 ∥ 𝑢(4) ∥[𝑥𝑗−2, 𝑥𝑗+1], 𝐾 = 1. 

|𝑢(𝑥) − 𝑈𝑗
𝑅(𝑥)| ≤ 𝐾ℎ4 ∥ 𝑢(4) ∥[𝑥𝑗, 𝑥𝑗+3],  𝐾 = 1. 

To approximate the function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 
with the middle splines, the following inequality is 
valid: 
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|𝑢(𝑥) − 𝑈𝑗
𝑀(𝑥)| ≤ 𝐾ℎ4 ∥ 𝑢(4) ∥[𝑥𝑗−1,𝑥𝑗+2],  

𝐾 = 0.5625. 

Proof. It is easy to notice that 𝑈𝑗
𝑅 is an interpolation 

polynomial, and 𝑥𝑗, 𝑥𝑗+1, 𝑥𝑗+2, 𝑥𝑗+3 are the 
interpolation nodes, and 

 𝑈𝑗
𝑅(𝑥𝑗) = 𝑢(𝑥𝑗),  𝑈𝑗

𝑅(𝑥𝑗+1) = 𝑢(𝑥𝑗+1), 

𝑈𝑗
𝑅(𝑥𝑗+2) = 𝑢(𝑥𝑗+2), 𝑈𝑗

𝑅(𝑥𝑗+3) = 𝑢(𝑥𝑗+3).  

Using the remainder term we get 

𝑢(𝑥) − 𝑈𝑗
𝑅(𝑥) =

𝑢(4)(𝜏)

4!
(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1)(𝑥 −

𝑥𝑗+2)(𝑥 − 𝑥𝑗+3), 𝜏 ∈ [𝑥𝑗, 𝑥𝑗+3]  .   

We can use 𝑥 = 𝑥𝑗 + 𝑡 ℎ, 𝑡 ∈ [0,1]. It can be easily 
calculated that 

max
𝑡∈[0,1]

|𝑡(𝑡 − 1)(𝑡 − 2)(𝑡 − 3)| = 1. 

It follows that on the uniform grid with step ℎ 

max
𝑥∈[𝑥𝑗,𝑥𝑗+3]

|𝑢(𝑥) − 𝑈𝑗
𝑅(𝑥)| ≤ ℎ4 max

[𝑥𝑗,𝑥𝑗+3]
|𝑢(4)|. 

Thus, we obtain that 𝐾 = 1. 
Earlier in paper [8] quadratic splines were 
considered. 
 
2.2 Cubic and Quadratic Polynomial Splines 

The function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], can be 
approximated with the left or the right polynomial 
splines as follows. The left quadratic polynomial 
spline (see [8]) can be written in the form: 

𝑈𝑗
𝐿(𝑥) = 𝑢(𝑥𝑗−1)𝜔𝑗−1

𝐿 (𝑥) + 𝑢(𝑥𝑗)𝜔𝑗
𝐿(𝑥) 

+𝑢(𝑥𝑗+1)𝜔𝑗+1
𝐿 (𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1],                    (2) 

where 

𝜔𝑗−1
𝐿 (𝑥) =

(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1)

(𝑥𝑗−1 − 𝑥𝑗)(𝑥𝑗−1 − 𝑥𝑗+1)
, 

𝜔𝑗
𝐿(𝑥) =

(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗−1)

(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗−1)
, 

𝜔𝑗+1
𝐿 (𝑥) =

(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗−1)

(𝑥𝑗+1 − 𝑥𝑗)(𝑥𝑗+1 − 𝑥𝑗−1)
. 

The function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], can be 
approximated by the right polynomial spline (see [8, 
9]) using the form: 

𝑈𝑗
𝑅(𝑥) = 𝑢(𝑥𝑗)𝜔𝑗

𝑅(𝑥) + 𝑢(𝑥𝑗+1)𝜔𝑗+1
𝑅 (𝑥) +

  𝑢(𝑥𝑗+2)𝜔𝑗+2
𝑅 (𝑥),   𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1],                      (3) 

where 

𝜔𝑗
𝑅(𝑥) =

(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗+2)

(𝑥𝑗 − 𝑥𝑗+1)(𝑥𝑗 − 𝑥𝑗+2)
, 

𝜔𝑗+1
𝑅 (𝑥) =

(𝑥 − 𝑥𝑗+2)(𝑥 − 𝑥𝑗)

(𝑥𝑗+1 − 𝑥𝑗+2)(𝑥𝑗+1 − 𝑥𝑗)
, 

𝜔𝑗+2
𝑅 (𝑥) =

(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗)

(𝑥𝑗+2 − 𝑥𝑗+1)(𝑥𝑗+2 − 𝑥𝑗)
. 

The approximation properties of these basic splines 
are well studied. The following theorem was proved 
in [8]. 

Theorem 2. Let 𝑢 ∈ С3[𝑎, 𝑏]. To approximate the 
function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], by spline (2), the 
following inequality is valid: 

|𝑢(𝑥) − 𝑈𝑗
𝐿(𝑥)| ≤ 𝐾ℎ3 ∥ 𝑢′′′ ∥[𝑥𝑗−1,𝑥𝑗+1]. 

To approximate the function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], 
by spline (3), the following inequality is valid: 

|𝑢(𝑥) − 𝑈𝑗
𝑅(𝑥)| ≤ 𝐾ℎ3 ∥ 𝑢′′′ ∥[𝑥𝑗,𝑥𝑗+2]. 

Proof. It is easy to notice that 𝑈𝑗
𝑅 is an interpolation 

polynomial of the third degree, and 𝑥𝑗, 𝑥𝑗+1 are the 
interpolation nodes, 𝑈𝑗

𝑅(𝑥𝑗) = 𝑢(𝑥𝑗), 𝑈𝑗
𝑅(𝑥𝑗+1) =

𝑢(𝑥𝑗+1), 𝑈𝑗
𝑅(𝑥𝑗+2) = 𝑢(𝑥𝑗+2). Using the remainder 

term we get 

𝑢(𝑥) − 𝑈𝑗
𝑅(𝑥) 

=
𝑢′′′(𝜏)

3!
(𝑥 − 𝑥𝑗)(𝑥 − 𝑥𝑗+1)(𝑥 − 𝑥𝑗+2). 

It follows that 

|𝑢(𝑥) − 𝑈𝑗
𝑅(𝑥)| ≤ 0.0625ℎ3 max

[𝑥𝑗,𝑥𝑗+2]
|𝑢′′′|. 

Thus, 𝐾 = 0.0625. 

The statements for 𝑈𝑗
𝐿(𝑥) can be proved similarly. 

The Theorem is proved.  

Note. Theorem 1 and Theorem 2 give estimates of 
the approximation errors when quadratic and cubic 
splines are used. These estimates are asymptotic 
ones.   The following question may be asked: Can 
the use of cubic splines always give a smaller 
approximation error in absolute value than the use 
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of quadratic splines? In general, the answer to this 
question is negative. Consider an approximation 
using the interpolation polynomials 𝑃𝑛 for the 
Runge function 𝑓(𝑥) =

1

1+25 𝑥2 on the interval [-1, 
1] at equidistant nodes. The estimation of the error 
approximation when the quadratic splines were used 
includes the third derivative of the function, while 
the estimation of the error approximation when the 
cubic splines were used, includes the fourth 
derivative of the function. Fig. 1 shows the graph of 
the third derivative of the Runge function, and Fig. 
2 shows the graph of the fourth derivative of the 
Runge function on the interval [−1, 1]. It is easy to 
choose step ℎ of the uniform grid of nodes, in a 
way, that the approximation of the Runge function 
with the quadratic splines will give a smaller error 
in absolute value than the approximation with the 
right cubic splines (last column in Table 1). Table 1 
shows the errors of the approximations with the 
quadratic polynomial splines, the middle and the 
right cubic polynomial splines. 
 

Table 1. The errors of the approximation with the 
quadratic polynomial splines, middle cubic 

polynomial splines, right cubic polynomial splines, 
ℎ = 0.2 

Function 
Quadratic 
polynomial 
splines  

Middle 
Cubic 
polynomial 
splines 

Right cubic 
polynomial 
splines 

1

1 + 25 𝑥2
 

0.0889 0.0200 0.162 

sin(5𝑥) 0.0606 0.0215 0.0373 

Fig.3 shows the graph of the error of approximation 
of the Runge function with quadratic splines when 
the grid step ℎ =  0.2 was used.  

 
Fig.1: The graph of the third derivative of the Runge 
function on the interval [−1, 1] 

 

 
Fig.2: The graph of the fourth derivative of the 
Runge function on the interval [−1, 1] 

 

 
Fig.3: The graph of the error of approximation when 
the quadratic polynomial splines were used for the 
approximation of the Runge function with the grid 
step ℎ =  0.2. 

Fig. 4. shows the graph of the error of 
approximation of the function sin(5𝑥) with the right 
cubic splines when the grid step ℎ =  0.2 was used. 
Fig. 5. shows the graph of the error of 
approximation of the function sin(5𝑥) with the 
middle cubic splines when the grid step ℎ =  0.2 
was used. 

 

Fig.4:  The graph of the approximation error when 
the right cubic polynomial splines were used for the 
approximation of the function sin(5𝑥),  ℎ =  0.2. 

Fig. 6. shows the graph of the error of 
approximation the absolute value of the Runge 
function with the right cubic splines with the grid 
step ℎ =  0.2. Fig. 7. shows the graph of the error of 
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approximation of the Runge function with the 
middle cubic splines with the grid step ℎ =  0.2.  

 
Fig.5:  The graph of the approximation error when 
the middle cubic splines were used for the 
approximation of the function sin(5𝑥) with the grid 
step ℎ =  0.2. 

 

Fig.6:  The graph of the approximation error in the 
absolute value when the right cubic polynomial 
splines were used for the approximation of the 
Runge function with the grid step ℎ =  0.2. 

 

Fig.7:. The graph of the approximation error when 
the middle cubic polynomial splines were used for 
the approximation of the Runge function with the 
grid step ℎ =  0.2. 
 
2.2 Non-polynomial Splines 
Let us now take 𝜑1(𝑥) = 1, 𝜑2(𝑥) = 𝑥, 𝜑3(𝑥) =
sin (𝑥), 𝜑4(𝑥) = cos(𝑥). The system of equations 
for determining the non-polynomial basis functions 
𝑤𝑗(𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1],  takes the form:  

∑ 𝑤𝑘(𝑥) = 1

𝑘𝑗𝑚

𝑘=𝑘𝑗0

,  

∑ 𝑥𝑘𝑤𝑘(𝑥) = 𝑥,

𝑘𝑗𝑚

𝑘=𝑘𝑗0

 

∑ cos(𝑥𝑘) 𝑤𝑘(𝑥) = cos (𝑥),

𝑘𝑗𝑚

𝑘=𝑘𝑗0

 

∑ sin(𝑥𝑘) 𝑤𝑘(𝑥) = sin(𝑥) .

𝑘𝑗𝑚

𝑘=𝑘𝑗0

 

 
Let us take 𝑘𝑗0 = 𝑗 − 1, 𝑘𝑗𝑚 = 𝑗 + 2. In this case we 
obtain (when 𝑥 = 𝑥𝑗 + 𝑡ℎ,  𝑡 ∈ [0, 1], 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]): 
 
𝑤𝑗(𝑥𝑗 + 𝑡ℎ) = ((1 − 𝑡) sin(3ℎ) + (1 + 𝑡) sin(ℎ) 

+2sin (ℎ(𝑡 − 2)) + (𝑡 − 2)sin(2ℎ) 
+ sin(ℎ(1 + 𝑡)) − 3 sin(ℎ(𝑡 − 1)))/ 

(5sin (ℎ) + sin (3ℎ) − 4sin (2ℎ)) , 
 
𝑤𝑗+1(𝑥𝑗 + 𝑡ℎ) = (𝑡 sin(3ℎ) + (2 − 𝑡) sin(ℎ)

+ 3 sin(𝑡ℎ) − sin(𝑡ℎ − 2ℎ) 
−(𝑡 + 1)sin(2ℎ) − 2 sin(ℎ + 𝑡ℎ))/ 
(5 sin(ℎ) + sin(3ℎ) − 4 sin(2ℎ)), 

 
𝑤𝑗+2(𝑥𝑗 + 𝑡ℎ) = (sin(ℎ + 𝑡ℎ) + sin(𝑡ℎ − ℎ) 

−2 sin(𝑡ℎ) − 𝑡 sin(2ℎ) + 2𝑡sin (ℎ))/(5 sin(ℎ) 
+sin(3ℎ) − 4sin(2ℎ)), 

 
 𝑤𝑗−1(𝑥𝑗 + 𝑡ℎ) =  (− sin(𝑡ℎ − 2ℎ) − sin(𝑡ℎ) 

+2 sin(𝑡ℎ − ℎ) + (2 − 2𝑡) sin(ℎ) 
+(𝑡 − 1) sin(2ℎ))/ 

(5 sin(ℎ) + sin(3ℎ) − 4 sin(2ℎ)). 
 

These splines are useful in the middle of the interval 
[𝑎, 𝑏]. Fig. 8 shows the graph of the error of 
approximation of the function sin(5𝑥) with the 
middle non-polynomial splines with the grid step 
ℎ =  0.2.  

 

Fig.8:  The graph of the approximation error when 
the middle non-polynomial splines were used for the 
approximation of the function sin(5𝑥) with the grid 
step ℎ =  0.2. 
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Table 2 shows the errors of the approximations with 
the middle cubic polynomial splines, the middle 
non-polynomial splines, and the right non-
polynomial splines. 
 

Table 2. The errors of the approximation with the 
middle cubic polynomial splines, middle non-

polynomial splines, ℎ = 0.2 

Function Middle Cubic 
polynomial 
splines 

Middle non-
polynomial 
splines 

Right non-
polynomial 
splines 

1

1 + 25 𝑥2 0.0200 0.0197 0.161 

sin(5𝑥) 0.0215 0.0207 0.0372 
 

As it is known, the integro-differential splines (see [9]) 
can provide a smaller approximation error. Let 𝝋𝟎 =
𝟏, 𝝋𝟏 = 𝒙, 𝝋𝟐 = 𝒙𝟐, 𝝋𝟑 = 𝒙𝟑. We obtain the basic 
splines from the approximation relations  

φ𝑖(𝑥𝑗)𝑤𝑗(𝑥) + φ𝑖(𝑥𝑗+1)𝑤𝑗+1(𝑥) +

  ∫ φ𝑖(𝑡)𝑑𝑡
𝑥𝑗+1

𝑥𝑗
𝑤𝑗

<0,1>(𝑥) +   φ𝑖(𝑥𝑗−1)𝑤𝑗−1(𝑥) =

φ𝑖(𝑥),  𝑖 = 0, 1, 2, 3. 

On the interval [𝑥𝑗, 𝑥𝑗+1], we construct the 
polynomial approximation in the form:  

𝑈𝑗
𝐼𝑃𝑜𝑙(𝑥) = 𝑢(𝑥𝑗)𝑤𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝑤𝑗+1(𝑥) +

  ∫ 𝑢(𝑡)𝑑𝑡
𝑥𝑗+1

𝑥𝑗
𝑤𝑗

<0,1>(𝑥) +   𝑢(𝑥𝑗−1)𝑤𝑗−1(𝑥).   

Considering that 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], ℎ = 𝑥𝑗+1 − 𝑥𝑗, 𝑡 ∈

[0,1], it is easy to see that the basis functions can be 
written in the form 

𝑤𝑗(𝑥𝑗 + 𝑡ℎ) =
(𝑡 − 1)(8𝑡 − 3)(𝑡 + 1)

3
, 

𝑤𝑗+1(𝑥𝑗 + 𝑡ℎ) =
𝑡(10𝑡 − 7)(𝑡 + 1)

6
, 

𝑤𝑗
<0,1>(𝑥𝑗 + 𝑡ℎ) =

4𝑡(𝑡 − 1)(𝑡 + 1)

ℎ
 , 

𝑤𝑗−1(𝑥𝑗 + 𝑡ℎ) =
𝑡(2𝑡 − 1)(𝑡 − 1)

6
 . 

Similarly, we can construct a non-polynomial 
approximation using integro-differential 
polynomial-trigonometric splines. Let φ0 = 1, φ1 =
𝑥, φ2 = sin(𝑥) , φ3 = cos(𝑥). On the interval 

[𝑥𝑗, 𝑥𝑗+1], we construct the polynomial 
approximation in the form  

𝑈𝑗
𝐼𝑡𝑟𝑖𝑔(𝑥) = 𝑢(𝑥𝑗)𝑤𝑗(𝑥) + 𝑢(𝑥𝑗+1)𝑤𝑗+1(𝑥) +

  ∫ 𝑢(𝑥)𝑑𝑥
𝑥𝑗+1

𝑥𝑗
𝑤𝑗

<0,1>(𝑥) +   𝑢(𝑥𝑗−1)𝑤𝑗−1(𝑥).   

Considering that 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], ℎ = 𝑥𝑗+1 − 𝑥𝑗, 𝑡 ∈

[0, 1], it is easy to see that the basis functions can be 
written in the form: 

𝑤𝑗(𝑥𝑗 + 𝑡ℎ) = (2 + 2𝑡 + 4 cos (𝑡ℎ)     
+ cos(2ℎ) (2 − 2𝑡) + ℎ sin(ℎ + 𝑡ℎ) 

+ sin(2ℎ) (ℎ − 2𝑡ℎ) + 3ℎ sin(𝑡ℎ − ℎ) 
−4 cos(𝑡ℎ − ℎ) − 4cos (ℎ))/(6 − 8cos (ℎ) 

+2 cos(2ℎ) − 2ℎ sin(ℎ) + ℎ sin(2ℎ)), 

 

𝑤𝑗+1(𝑥𝑗 + 𝑡ℎ) = −((ℎ − 2𝑡ℎ)sin(ℎ) 
+ cos(ℎ) (2 + 4𝑡) − 2cos (𝑡ℎ − ℎ) 

−ℎ sin(𝑡ℎ + ℎ) + 3ℎ sin(𝑡ℎ) + 2cos (𝑡ℎ) 
−2𝑡 cos(2ℎ) − 2𝑡 − 2)/(2 cos(2ℎ) − 

−2ℎ sin(ℎ) + ℎ sin(2ℎ) − 8 cos(ℎ) + 6), 

𝑤𝑗
<0,1>(𝑥𝑗 + 𝑡ℎ) =  

2 𝑡 sin(ℎ) − 2 sin(𝑡ℎ)

ℎ sin(ℎ) − 2 + 2 cos(ℎ)
. 

Table 3 shows the errors of the approximations with 
the polynomial integro-differential splines, and non-
polynomial integro-differential splines. 

Table 3. The errors of the approximation with the 
polynomial integro-differential splines, and non-
polynomial integro-differential splines, ℎ = 0.2 

Function 
Polynomial 
integro-
differential 
splines   

Non-
polynomial 
integro-
differential 
splines 

1

1 + 25 𝑥2
 

0.0184 0.0183 

sin(5𝑥) 0.00307 0.00295 
 

Fig. 9 shows the graph of the error of approximation 
of the Runge function with the integro-differential 
polynomial splines with the grid step 𝒉 =  𝟎. 𝟐. Fig. 
10 shows the graph of the error of approximation of 
the Runge function with the integro-differential non-
polynomial splines with the grid step 𝒉 =  𝟎. 𝟐. 
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Fig.9:  The graph of the approximation error when 
the integro-differential polynomial splines were 
used for the approximation of the Runge function 
with the grid step ℎ =  0.2. 

 

 
Fig.10:  The graph of the approximation error when 
the integro-differential trigonometrical-polynomial 
splines were used for the approximation of the 
Runge function with the grid step ℎ =  0.2. 

 
Next, we apply spline approximations to solve the 
Volterra integral equations of the second kind. 

 

 

3 Problem Solution of the Volterra 

Integral Equation 
Let 𝑛 be an integer, and 𝑎, 𝑏 be real. Suppose that a 
grid of nodes {𝑥𝑗} with step ℎ =

𝑏−𝑎

𝑛
, is constructed 

on the interval [𝑎, 𝑏]. Thus, 𝑥𝑗 = 𝑎 + 𝑗ℎ, 𝑗 =

0, … , 𝑛. Let us consider the numerical solution of the 
Volterra equation of the second kind. The linear 
Volterra equation of the second kind has the form: 

𝑢(𝑥) + ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥)
𝑥

𝑎
,   𝑥, 𝑠 ∈ [𝑎, 𝑏], 

where ƒ is a given function, 𝐾, 𝑓 are continues 
functions and 𝑢(𝑥) is an unknown function that 
needs to be obtained. 

3.1 The Numerical Solution 
Let us consider the numerical solution of the 

Volterra equation of the second kind using splines 
of the fourth order of approximation. We 
approximate the function 𝑢(𝑥) with fourth-order 
splines. In this case, after discarding the 
approximation error, we obtain the approximate 
values of the solution to the integral equation. Let us 
denote them by 𝑢̃(𝑥𝑘). First, we have to solve a 

system of linear algebraic equations, then we 
successively determine the approximate values of 
the unknowns 𝑢̃(𝑥𝑘). 

In the case of a grid consisting of four nodes, the 
system of equations has the form: 

𝑢̃(𝑥0) = 𝑓(𝑥0), 

𝑢̃(𝑥1) + 𝑢̃(𝑥0) ∫ 𝐾(𝑥1, 𝑠) 𝜔0
𝑅(𝑠)𝑑𝑠 +

𝑥1

𝑥0

 

+𝑢̃(𝑥1) ∫ 𝐾(𝑥1, 𝑠) 𝜔1
𝑅(𝑠)𝑑𝑠

𝑥1

𝑥0

 

+𝑢̃(𝑥2) ∫ 𝐾(𝑥1, 𝑠) 𝜔2
𝑅(𝑠)𝑑𝑠

𝑥1

𝑥0

 

+𝑢̃(𝑥3) ∫ 𝐾(𝑥1, 𝑠) 𝜔3
𝑅(𝑠)𝑑𝑠 = 𝑓(𝑥1),

𝑥1

𝑥0

 

𝑢̃(𝑥2) + 𝑢̃(𝑥0) ∫ 𝐾(𝑥2, 𝑠) 𝜔0
𝑅(𝑠)𝑑𝑠 +

𝑥1

𝑥0

 

+𝑢̃(𝑥1) ∫ 𝐾(𝑥2, 𝑠) 𝜔1
𝑅(𝑠)𝑑𝑠

𝑥1

𝑥0

 

+𝑢̃(𝑥2) ∫ 𝐾(𝑥2, 𝑠) 𝜔2
𝑅(𝑠)𝑑𝑠

𝑥1

𝑥0

 

+𝑢̃(𝑥3) ∫ 𝐾(𝑥2, 𝑠) 𝜔3
𝑅(𝑠)𝑑𝑠 +

𝑥2

𝑥1

 

+ 𝑢̃(𝑥0) ∫ 𝐾(𝑥2, 𝑠) 𝜔0
𝑀(𝑠)𝑑𝑠 +

𝑥2

𝑥1

 

+𝑢̃(𝑥1) ∫ 𝐾(𝑥2, 𝑠) 𝜔1
𝑀(𝑠)𝑑𝑠

𝑥2

𝑥1

 

+𝑢̃(𝑥2) ∫ 𝐾(𝑥2, 𝑠) 𝜔2
𝑀(𝑠)𝑑𝑠

𝑥2

𝑥1

 

+𝑢̃(𝑥3) ∫ 𝐾(𝑥2, 𝑠) 𝜔3
𝑀(𝑠)𝑑𝑠 = 𝑓(𝑥2)

𝑥2

𝑥1

 , 

𝑢̃(𝑥3) + 𝑢̃(𝑥0) ∫ 𝐾(𝑥3, 𝑠) 𝜔0
𝑅(𝑠)𝑑𝑠 +

𝑥1

𝑥0

 

+𝑢̃(𝑥1) ∫ 𝐾(𝑥3, 𝑠) 𝜔1
𝑅(𝑠)𝑑𝑠

𝑥1

𝑥0
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+𝑢̃(𝑥2) ∫ 𝐾(𝑥3, 𝑠) 𝜔2
𝑅(𝑠)𝑑𝑠

𝑥1

𝑥0

 

+𝑢̃(𝑥3) ∫ 𝐾(𝑥3, 𝑠) 𝜔3
𝑅(𝑠)𝑑𝑠

𝑥2

𝑥1

 

+𝑢̃(𝑥0) ∫ 𝐾(𝑥3, 𝑠) 𝜔0
𝑀(𝑠)𝑑𝑠 +

𝑥2

𝑥1

 

+𝑢̃(𝑥1) ∫ 𝐾(𝑥3, 𝑠) 𝜔1
𝑀(𝑠)𝑑𝑠

𝑥2

𝑥1

 

+𝑢̃(𝑥2) ∫ 𝐾(𝑥3, 𝑠) 𝜔2
𝑀(𝑠)𝑑𝑠

𝑥2

𝑥1

 

+𝑢̃(𝑥3) ∫ 𝐾(𝑥3, 𝑠) 𝜔3
𝑀(𝑠)𝑑𝑠

𝑥2

𝑥1

 

+𝑢̃(𝑥0) ∫ 𝐾(𝑥3, 𝑠) 𝜔0
𝐿(𝑠)𝑑𝑠 +

𝑥3

𝑥2

 

+𝑢̃(𝑥1) ∫ 𝐾(𝑥3, 𝑠) 𝜔1
𝐿(𝑠)𝑑𝑠

𝑥3

𝑥2

 

+𝑢̃(𝑥2) ∫ 𝐾(𝑥3, 𝑠) 𝜔2
𝐿(𝑠)𝑑𝑠

𝑥3

𝑥2

 

+𝑢̃(𝑥3) ∫ 𝐾(𝑥3, 𝑠) 𝜔3
𝐿(𝑠)𝑑𝑠 = 𝑓(𝑥3).

𝑥3

𝑥2

 

The advantages of the proposed method include the 
ability to calculate the exact integral 
∫ 𝐾(𝑥, 𝑠) 𝜔0

𝑅(𝑠)𝑑𝑠
𝑥𝑖+1

𝑥𝑖
 (without error). However, in 

case of difficulties with calculating the integral, we 
can apply a quadrature formula that provides the 
order of approximation 𝑚, 𝑚 ≥ 4. 

3.2 Numerical Examples 
Problem 1. Now we take the equation from paper 
[6]: 

𝑢(𝑥) = exp(−𝑥) + 𝑥 exp(𝑥)

− ∫ exp(𝑥 + 𝑡) 𝑢(𝑡)𝑑𝑡
𝑥

0

, 𝑥 ∈ [0, 1]. 

The exact solution of the integral equation is 𝑢(𝑥) =
exp(−𝑥). Figs. 11 and 12 show the errors of the 
solution of Problem 1 with cubic polynomial splines 
when 𝑛 = 32, 64, Digits=18.  
 

 
Fig.11: The error of the solution of Problem 1 with 
cubic polynomial splines when 𝑛 = 32 
 

 
Fig.12: The error of the solution of Problem 1 with 
the cubic polynomial splines when n = 64 
 

 
Fig.13: The error of the solution of problem 1 with 
the non-polynomial splines when n = 32 

 
Figs. 13 and 14 show the errors of the solution of 
Problem 1 with non-polynomial splines when 𝑛 =
32, 64 (Digits=25). 

 

 
Fig.14: The error of the solution of Problem 1 with 
the non-polynomial splines when n = 64 
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Note that the trapezoidal method for this problem 
will give an exact result (see Fig. 15). 

 

 

Fig.15: The error of the solution of Problem 1 with 
the non-polynomial splines when n = 32 
 

Problem 2. We take the equation 

𝑢(𝑥) = 𝑔(𝑥) − ∫ (𝑥 − 𝑡)cos(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡,
𝑥

0

 

      x ∈ [0, 1]. 
The exact solution of the equation is  𝑢(𝑥) =

2 cos(√3𝑥 + 1) /3. The function 𝑔(𝑥) is as 
follows: 

𝑔(𝑥) =
2

3
cos(√3𝑥 + 1) −

√3

3
𝑥 cos(𝑥) sin(1) 

+
2

3
cos(𝑥)cos(1) −

1

3
𝑥 sin(𝑥) cos(1) 

−
√3

3
sin(𝑥) sin(1) −

2

3
cos(√3 𝑥) cos(1) 

+
2

3
sin(√3 𝑥)sin(1). 

Fig. 16 shows the errors of the solution of Problem 
2 with the cubic polynomial splines when 𝑛 = 32. 

 
Fig.16: The error of the solution of Problem 2 with 
the polynomial splines when n = 32 
 

 

3.2 Simpson Quadrature Rule Application 
Now consider the results of applying the Simpson 
quadrature rule to the solution of the Volterra 
integral equation. We will construct the solution on 
a uniform grid of nodes. We denote 

𝑆(𝑥, 𝑗) =
𝑥𝑗+1 − 𝑥𝑗−1

6
(𝐾(𝑥, 𝑥𝑗−1)𝑢𝑗−1 

+4𝐾(𝑥, 𝑥𝑗)𝑢𝑗 + 𝐾(𝑥, 𝑥𝑗+1)𝑢𝑗+1) . 

In the beginning, as always, we have 

𝑢(𝑥0) = 𝑓(𝑥0). 

Further we will use a cubic interpolation spline at 
the nodes 𝑥0, 𝑥2, 𝑥3, 𝑥4 in the equation 

𝑢(𝑥1) + ∫ 𝐾(𝑥1, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥1) 
𝑥1

0

. 

We use the cubic interpolation of the form: 

𝑈1
𝑅(𝑥) = 𝑢(𝑦𝑗)𝜔𝑗

𝑅(𝑥) + 𝑢(𝑦𝑗+1)𝜔𝑗+1
𝑅 (𝑥) 

+  𝑢(𝑦𝑗+2)𝜔𝑗+2
𝑅 (𝑥) +   𝑢(𝑦𝑗+3)𝜔𝑗+3

𝑅 (𝑥) , 

𝜔𝑗
𝑅(𝑥) =

(𝑥 − 𝑦𝑗+1)(𝑥 − 𝑦𝑗+2)(𝑥 − 𝑦𝑗+3)

(𝑦𝑗 − 𝑦𝑗+1)(𝑦𝑗 − 𝑦𝑗+2)(𝑦𝑗 − 𝑦𝑗+3)
, 

𝑥 ∈ [𝑦𝑗, 𝑦𝑗+1], 

𝜔𝑗+1
𝑅 (𝑥) =

(𝑥 − 𝑦𝑗)(𝑥 − 𝑦𝑗+2)(𝑥 − 𝑦𝑗+3)

(𝑦𝑗+1 − 𝑦𝑗)(𝑦𝑗+1 − 𝑦𝑗+2)(𝑦𝑗+1 − 𝑦𝑗+3)
, 

𝑥 ∈ [𝑦𝑗, 𝑦𝑗+1], 

𝜔𝑗+2
𝑅 (𝑥) =

(𝑥 − 𝑦𝑗)(𝑥 − 𝑦𝑗+1)(𝑥 − 𝑦𝑗+3)

(𝑦𝑗+2 − 𝑦𝑗)(𝑦𝑗+2 − 𝑦𝑗+1)(𝑦𝑗+2 − 𝑦𝑗+3)
, 

𝑥 ∈ [𝑦𝑗, 𝑦𝑗+1], 

𝜔𝑗+3
𝑅 (𝑥)

=
(𝑥 − 𝑦𝑗)(𝑥 − 𝑦𝑗+1)(𝑥 − 𝑦𝑗+2)

(𝑦𝑗+3 − 𝑦𝑗)(𝑦𝑗+3 − 𝑦𝑗+1)(𝑦𝑗+3 − 𝑦𝑗+2)
 . 

𝑥 ∈ [𝑦𝑗, 𝑦𝑗+1]. 

In this case, we take 𝑦𝑗 =  𝑥0, 𝑦𝑗+1 =  𝑥2, 𝑦𝑗+2 =

 𝑥3, 𝑦𝑗+3 =  𝑥4. Thus, we will apply the relation  
 

𝑉(𝑥) = 𝑢(𝑦0)𝜔0
𝑅(𝑥) + 𝑢(𝑦2)𝜔2

𝑅(𝑥)

+   𝑢(𝑦3)𝜔3
𝑅(𝑥) +   𝑢(𝑦4)𝜔4

𝑅(𝑥) 
on the interval [𝑥0, 𝑥2]. We have now 
 
𝑉(𝑥1) = 𝑢(𝑦0)𝜔0

𝑅(𝑥1) + 𝑢(𝑦2)𝜔2
𝑅(𝑥1)

+   𝑢(𝑦3)𝜔3
𝑅(𝑥1) +   𝑢(𝑦4)𝜔4

𝑅(𝑥1). 
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In the following equations, we apply Simpson’s 
rule: 

𝑢(𝑥2) + ∫ 𝐾(𝑥1, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥2),
𝑥2

0

 

𝑢(𝑥3) + ∫ 𝐾(𝑥3, 𝑠)𝑢(𝑠)𝑑𝑠
𝑥1

0

+ ∫ 𝐾(𝑥3, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥3)
𝑥3

𝑥1

, 

𝑢(𝑥4) + ∫ 𝐾(𝑥4, 𝑠)𝑢(𝑠)𝑑𝑠
𝑥2

0

+ ∫ 𝐾(𝑥4, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥4).
𝑥4

𝑥2

  

Therefore to obtain a solution at the points 𝑥𝑗 , 𝑗 =

1, 2, 3, 4, we will have to solve the system of 
equations: 

𝑢0 = 𝑓(𝑥0), 

𝑢1 + 𝑉(𝑥1) =  𝑓(𝑥1), 

𝑢2 + 𝑆(𝑥2, 1) =  𝑓(𝑥2), 

𝑢3 + 𝑉(𝑥3) + 𝑆(𝑥3, 2) =  𝑓(𝑥3), 

𝑢4 + 𝑆(𝑥4, 1) + 𝑆(𝑥4, 3) =  𝑓(𝑥4). 

Further, the next value of 𝑢𝑗 is obtained by solving 
equations for odd 𝑗 of the form 

𝑢𝑗 + 𝑉(𝑥𝑗) + ∑ 𝑆(𝑥𝑗, 2𝑘)

[𝑗/2]

𝑘=1

=  𝑓(𝑥𝑗). 

Here [𝑚/2] computes the integer quotient of 𝑚 
divided by 2.  

And for even 𝑗 we solve equations of the form 

𝑢𝑗 + ∑ 𝑆(𝑥𝑗, 2𝑘 − 1)

𝑗/2

𝑘=1

=  𝑓(𝑥𝑗). 

Figure 17 shows the error in solving the Volterra 
equation of Problem 1 by the proposed method. 
Thus, the application of the Simson formula gives a 
very good result if, in addition, on one grid interval, 
splines of the fourth order of approximation are 
used.  

 

 

Fig.17: The graph of the error in solving the 
Volterra equation of Problem 1 when the Simpson 
method was used (32 nodes) 

A different approach to the construction of 
calculation formulas can be also applied. We can 
use the Newton-Cotes formula: 

𝑊3(𝑥) =
(𝑥3 − 𝑥0)

8
( 𝐾(𝑥, 𝑥0)𝑢0 + 3𝐾(𝑥, 𝑥1)𝑢1

+ 3𝐾(𝑥, 𝑥2)𝑢2 + 𝐾(𝑥, 𝑥3)𝑢3) 

and the spline interpolation: 

𝑉1(𝑥) = ∫ 𝐾(𝑥, 𝑠)(𝑢0𝑤0(𝑠) + 𝑢1𝑤1(𝑠)
𝑥1

𝑥0

+ 𝑢2𝑤2(𝑠) + 𝑢3𝑤3(𝑠))𝑑𝑠. 

The traditional approach is to apply the Simpson 
formula. We will also use it: 

∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠 ≈ 𝑆𝑗(𝑥),
𝑥𝑗+1

𝑥𝑗−1

 

where 

𝑆𝑗(𝑥) =
𝑥𝑗+1 − 𝑥𝑗−1

6
(𝐾(𝑥, 𝑥𝑗−1)𝑢𝑗−1 + 4𝐾(𝑥, 𝑥𝑗)𝑢𝑗

+ 𝐾(𝑥, 𝑥𝑗+1)𝑢𝑗+1). 

First, we need to define the values of the 𝑢1, 𝑢2,
𝑢3 , 𝑢4. Denote 

𝑊3(𝑥) =
𝑥3 − 𝑥0

8
(𝐾(𝑥, 𝑥0)𝑢0 + 3𝐾(𝑥, 𝑥1)𝑢1

+ 3𝐾(𝑥, 𝑥2)𝑢2 + 𝐾(𝑥, 𝑥3)𝑢3) 
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Using  
𝑢0 = 𝑓(𝑥0), 

and solving the system of equations 

𝑢1 + 𝑉1(𝑥1) = 𝑓(𝑥1), 

𝑢2 + 𝑆1(𝑥2) = 𝑓(𝑥2), 

𝑢3 + 𝑊3(𝑥3) = 𝑓(𝑥3), 

𝑢4 + 𝑆1(𝑥4)+𝑆3(𝑥4) = 𝑓(𝑥4), 

we obtain 𝑢1, 𝑢2. 𝑢3 , 𝑢4. Now, applying the 
Simpson rule, we are able to successively find the 
values of 𝑢𝑗, 𝑗 = 5, … , 𝑛. Further, the next value of 
𝑢𝑗 is obtained by solving equations for odd 𝑗 of the 
form 

𝑢𝑗 + 𝑊(𝑥𝑗) + ∑ 𝑆(𝑥𝑗, 2𝑘)

[𝑗/2]

𝑘=1

=  𝑓(𝑥𝑗). 

Here [𝑚/2] computes the integer quotient of 𝑚 
divided by 2. And for even 𝑗 we solve equations of 
the form: 

𝑢𝑗 + ∑ 𝑆(𝑥𝑗, 2𝑘 − 1)

𝑗/2

𝑘=1

=  𝑓(𝑥𝑗).  

In Fig.18 the errors of the solution are shown on the 
interval [0,1] when the Simpson method and the 
Newton-Cotes were used (32 nodes). In Fig.19 the 
errors of the solution are shown on the interval 
[𝑥5,1] when 32 nodes were used. 
 

Fig.18: The graph of the error in solving the 
Volterra equation of Problem 1 when the Simpson 
method and the Newton-Cotes were used (32 nodes) 

 

Fig.19: The graph of the error in solving the 
Volterra equation of Problem 1 when the Simpson 
and the Newton-Cotes were used (32 nodes) 

Figures 20-21 show the results of solving Problem 1 
when the Simpson method and the Newton-Cotes 
were used. In Fig.20 the errors of the solution are 
shown on the interval [0,1] when 64 nodes were 
used. In Fig.20 the errors of the solution are shown 
on the interval [𝑢5,1] when 64 nodes were used. 

 

 
Fig.20: The graph of the error in solving the 
Volterra equation of Problem 1 when the Simpson 
method and the Newton-Cotes were used (64 nodes) 

 
Fig.21: The graph of the error in solving the 
Volterra equation of problem 1 when the Simpson 
method and the Newton-Cotes were used (64 nodes) 

Using the left and right integro-differential 
polynomial splines we can construct the numerical 
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scheme to solve the Volterra equation of the second 
kind. 

Denote 

 𝑊(𝑥, 𝑗) = ∑ 𝑢𝑗+𝑘 ∫ 𝐾(𝑥, 𝑠)𝑤𝑗+𝑘
𝑅 (𝑠)𝑑𝑠 +

𝑥𝑗+1

𝑥𝑗

2
𝑘=0

∫ 𝑢(𝑠)𝑑𝑠 ∫ 𝐾(𝑥, 𝑠)𝑤𝑗
𝑅<1,2>(𝑠)𝑑𝑠

𝑥𝑗+1

𝑥𝑗
,

𝑥𝑗+2

𝑥𝑗+1
 

𝑊1(𝑥, 𝑗)

= ∑ 𝑢𝑗+𝑘 ∫ 𝐾(𝑥, 𝑠)𝑤𝑗+𝑘
𝐿 (𝑠)𝑑𝑠

𝑥𝑗+1

𝑥𝑗

1

𝑘=−1

+ ∫ 𝑢(𝑠)𝑑𝑠 ∫ 𝐾(𝑥, 𝑠)𝑤𝑗
𝐿<0,1>(𝑠)𝑑𝑠

𝑥𝑗+1

𝑥𝑗

.
𝑥𝑗+1

𝑥𝑗

 

As usual we have     𝑢(𝑥0) = 𝑓(𝑥0). Next, we have 
the system of equations 

𝑢(𝑥1) + ∫ 𝐾(𝑥1, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥1),
𝑥1

0

 

𝑢(𝑥2) + ∫ 𝐾(𝑥2, 𝑠)𝑢(𝑠)𝑑𝑠
𝑥1

0

+ ∫ 𝐾(𝑥2, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥2)
𝑥2

𝑥1

.   

Using the right and the left polynomial splines, we 
obtain 

∫ 𝐾(𝑥1, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑊(𝑥1, 0).
𝑥1

0

 

∫ 𝐾(𝑥2, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑊1(𝑥2, 1).
𝑥2

𝑥1

 

Thus, we have to solve the system of equations in 
order to obtain 𝑢(𝑥1) , 𝑢(𝑥2): 

𝑢(𝑥1) + 𝑊(𝑥1, 0) = 𝑓(𝑥1),   

𝑢(𝑥2) + 𝑊(𝑥2, 0) + 𝑊1(𝑥2, 1) = 𝑓(𝑥2).   

Next we can obtain 𝑢(𝑥𝑗), 𝑗 = 3, … , 𝑛 − 1, solving 
the equations 

𝑢(𝑥𝑗) + 𝑊(𝑥2, 0) + ∑ 𝑊1(𝑥𝑗, 𝑘)

𝑗−1

𝑘=1

= 𝑓(𝑥𝑗) , 

 𝑗 = 3, … , 𝑛 − 1. 

Figs. 22 and 23 show the graph of the error of 
Problem 1 when the integro-differential polynomial 
splines were used.  

 
Fig.22: The error of the solution of Problem 1 
(Digits = 25, 32 nodes) 

 
Fig.23: The error of the solution of Problem 1  
(Digits = 25, 32 nodes) 

 
 

Comparing the results of numerical experiments for 
Problem 1 shown in Figs. 11-14 and Figs. 22-23, we 
see that the integro-differential splines give a 
smaller error. 
 
 
4 Conclusion 
This paper considered the use of polynomial and 
non-polynomial splines of the fourth order of 
approximation. The results of the numerical 
experiments have shown the correspondence of 
theoretical estimates to practical experiments and 
numerical stability of the proposed methods with the 
Polynomial-trigonometrical splines gave less error, 
but more signs in the mantissa are required for the 
calculations.  
  In some cases, the values of the integrals can be 
known. In this case, the integro-differential splines 
can be applied. The integro-differential splines 
allow us to get a smaller error both when 
approximating and when solving integral equations.   
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   The application of the integro-differential splines 
will continue to be investigated in details in the next 
papers. 
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