
1. Introduction
Control charting techniques are commonly used in process 
signal detection to improve the quality of manufacturing and 
service processes. In the past few years, increasing attention 
has been paid to the application of control charting techniques 
to various industries, such as healthcare, chemical, biological, 
agriculture, service, etc. However, the mean and standard 
deviation of some processes are highly correlated, this may 
cause the control charts to lead to erroneous conclusions. To 
circumvent this drawback, the coefficient of variation (CV) 
control chart is preferred to be used. The CV is very common 
and it is widely applied in various disciplines. For example, 
Babu and Sudha [1] applied the CV for reducing the speckle 
noise in ultrasound images. According to Karthik and 
Manjunath [2], the CV can be used to correct the unduly 
nonuniform distance between grid lines in noisy microarray 
images. Amelio [3] and Bakowshi et al. [4] presented the use 
of CV on sensory evaluation of virgin olive oil and injection 
pressure in a compression ignition engine, respectively. 
Additionally, the CV can be implemented to evaluate the 
global solar radiation in terms of time scale separation [5]. 

The first CV control chart was suggested by Kang et al 
[6]. Over the years, research works on CV chart have been 
extensively conducted to improve the sensitivity of the 
standard CV chart, in terms of the detection of small and 
moderate CV shifts, such as those by [7 – 10], etc. Besides, 
Yeong et al. [11] introduced a multivariate CV (MCV) chart 
to fill the research gap for multivariate process monitoring. 
Khaw et al. [12, 13] recommended the adaptive MCV and 
synthetic MCV charts to enhance the statistical performance 
of the standard MCV chart of Yeong et al. [11]. Chew and 
Khaw [14] presented the MCV chart by incorporating the 
variable sample size and sampling interval. Chew et al. [15] 
discussed the MCV chart with variable parameter. More 
recently, an exponentially weighted moving average 

(EWMA) chart for monitoring the MCV was presented by 
Giner-Bosch et al. [16] while Haq and Khoo [17] suggested 
the adaptive EWMA MCV chart. 

Note that the charts discussed in the preceding paragraph 
are used to monitor an infinite horizon process. In real-life 
scenarios, some of the production horizon processes are very 
short. The duration of a finite horizon process could be a few 
days or even less than a day. As industries are now moving 
towards specialization and diversification of products, as well 
as flexible manufacturing, the adoption of finite horizon 
processes has been increased [18]. Ladany [19] was a pioneer 
to present an economic optimization of a p-chart for a finite 
horizon process. Subsequently, research works to enhance the 
monitoring of a finite horizon process have received a lot 
attention, see [20 – 21]. In the context of MCV chart in a finite 
horizon process, Khatun et al. [22] and Chew et al. [23] 
implemented two one-sided Shewhart and run rules charts for 
monitoring the MCV, respectively. 

Meanwhile, the run rules scheme is continuously being 
investigated by many researchers. Tran et al. [24] used a run 
rules type control chart to monitor the ratio of two normal 
variables. Rakitzis [25] proposed the two-sided run rules 
control charts for monitoring exponential data. The proposed 
charts provided unbiased performances, as well as identify 
changes in the mean of a process from an exponential 
distribution. The runs rules median and t control charts were 
recommended by Tran [26, 27] for monitoring changes in the 
process mean. Shongwe et al. [28] proposed the Shewhart w-
of-w standard and improved runs rules for both one-sided and 
two-sided charts based on the unified run length derivations. 

Some quality practitioners prefer an intermediate chart 
for process monitoring due to its simplicity. In the context of 
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the finite horizon, it is suitable to implement an intermediate 
chart, instead of an advanced chart, with consideration of the 
cost and time efficiency. In the existing literature, only the 
Shewhart (SH) and run rules (RR) MCV charts are available. 
However, Chew et al. [23] only investigated the efficiency of 
2-of-3 and 3-of-4 run rules schemes. It is well documented
that the 4-of-5 runs rules scheme is more efficient than the 2-
of-3 and 3-of-4 run rules schemes in certain cases [29]. The
SH MCV chart can detect large process shifts quickly but it is
rather slow in the detection of small and moderate process
shifts. The statistical sensitivity of the SH MCV chart can be
enhanced by using supplementary run rules. This paper
proposes two one-sided 4-out-of-5 run rules MCV (called as

4,5RR MCV ) charts. The performance measures of the
proposed charts are derived using the Markov-chain approach. 
As it will be shown in Section 3, the 4,5RR MCV chart 
generally prevails over the existing 2-of-3 RR MCV, 3-of-4 
RR MCV, and SH MCV charts in the detection of small and 
moderate shifts, in terms of truncated average run length 
(TARL) criterion. 

The remainder sections are organized as follows: Section 
2 discusses the design of the two one-sided 4,5RR MCV charts. 
The derivations of the formulae and algorithms to compute the 
TARL values, by adopting the finite horizon Markov-chain 
method are also illustrated. Statistical comparisons among the 

4,5RR MCV , 3,4RR MCV , 2,3RR MCV and SH MCV charts 
are enumerated in Section 3. Lastly, the research findings and 
suggestions for future research are given in the last section. 

2. Two One-sided 4-out-of-5 Run Rules MCV
Charts for a Finite Horizon Process
Voinov and Nikulin [30] derived the population MCV

statistic as  
1

1 2T


 μ μ∑ , where  and  refer to the mean 
vector and covariance matrix, respectively. Note that   can 
be estimated by the sample MCV, ̂  when μ  and ∑  are 

unspecified. Thus,  
1

1 2ˆ T


 X S X  by replacing  and   

with X  and S , respectively. Here, X  is the sample mean 
vector whereas S  is the sample covariance matrix. The 
computations of X  and S  are: 

1

1 n

t
tn 

 X X (1) 

and 

  
1

1
1

n T
t t

tn 

  

S X X X X , (2) 

respectively, where X  and S are independent of one another. 
The run rules scheme monitors a process by looking at the 

number of samples that fall outside the warning limits, out of 
a certain number of successive samples. For example, m-out-
of-k run rules will generate an out-of-control signal if m out 

of k consecutive samples fall outside the warning limits. 
Incorporating a run rules scheme is known to improve the 
performance of the control chart. In the two one-sided 

4,5RR MCV  charts, an out-of-control signal is triggered when 
four out of five successive multivariate samples are plotted 
above the upper warning limit (UWL) or lower warning limit 
(LWL) of the one-sided chart. The RR chart only consists of 
a warning limit instead of a control limit. In this case, the in-
control region of the chart is tightened so that the chart can 
give an out-of-control signal quicker by incorporating the run 
rules scheme. The UWL and LWL of the 4,5RR MCV charts 
can be computed as: 

 1
ˆ 0UWL 1 | , ,F K n p   ,      (3) 

and 

 1
ˆ 0LWL | , ,F K n p  ,  (4) 

respectively, where 2
0 0/n  and the K value is determined

such that the in-control TARL, i.e. 0TARL I when the 
process MCV is in-control. p denotes the number of quality 
characteristics.  

Equations (3) and (4) follow an inverse cumulative 
distribution function (cdf) of ̂ , i.e.  1

ˆ , ,F n p   

 1[( ( )) / (( 1) )] (1/ 1 , , )Fn n p n p F p n p      . Here, 

 1  FF   refers to an inverse cdf of a noncentral F 
distribution, where this distribution is only valid when p < n 
due to the degree of freedom. Here,   is defined as 

 
2

0/n  , where the shift size 1   when the process is in-

control. Note that 1 0  is the out-of-control MCV, where 
1  , with the values of 1   and 0 1  refer to upward 

and downward MCV shifts, respectively.
Let US and LS be the probabilities that ̂ falls above

UWL and below LWL, respectively, then 

   ˆ1 1ˆPr UWL , , 1 UWL , ,US n p F n p      ,    (5)

and 

   ˆ1 1ˆPr LWL , , LWL , ,LS n p F n p     .    (6) 

Equations (5) and (6) follow the cdf of ̂ , i.e.  ˆ , ,F x n p 

= 21 [( ( )) / (( 1) ) , , ]FF n n p n px p n p     , where    FF 

denotes the cdf of a non-central F distribution, and 
2

1 1/n  . 
Subsequently, a Markov chain approach is applied to 

derive the formulae for the TARL of the proposed 4,5RR MCV
charts in a finite horizon process. The TARL value of the 
proposed charts can be computed as 
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0
TARL q Q 1

I

i

 
  

 
 ,       (7) 

 
where Q is the transition probability matrix (tpm) for the 
transient states and 1 = (1, 1, 1,…, 1, 1)T. Here, q = (0, 0, 0,…, 
0, 1)T for the proposed 4,5RR MCV  charts. The 4,5RR MCV  
charts consist of fifteen transient states, depending on the 
position of the last five samples plotted on the chart. 
 
2.1 Upward 4,5RR MCV  Chart 

 The transient states of the upward 4,5RR MCV  chart are 
defined as follows: 
State 1: 1st, 2nd and 3rd samples above UWL and 4th sample 

below UWL; 
State 2: 1st and 2nd samples above UWL, 3rd sample below 

UWL and 4th sample above UWL; 
State 3: 1st and 2nd samples above UWL and 3rd and 4th 

samples below UWL; 
State 4: 1st sample above UWL, 2nd sample below UWL, 3rd 

and 4th samples above UWL; 
State 5: 1st sample above UWL, 2nd sample below UWL, 3rd 

sample above UWL and 4th sample below UWL;  
State 6: 1st sample above UWL, 2nd and 3rd samples UWL 

and 4th sample above UWL;  
State 7: 1st sample above UWL and 2nd, 3rd and 4th samples 

below UWL; 
State 8: 1st sample below UWL and 2nd, 3rd and 4th samples 

above UWL; 
State 9: 1st sample below UWL, 2nd and 3rd samples above 

UWL and 4th sample below UWL; 
State 10: 1st sample below UWL, 2nd sample above UWL, 

3rd sample below UWL and 4th sample above UWL; 
State 11: 1st sample below UWL, 2nd sample above UWL, 

3rd and 4th samples below UWL; 
State 12: 1st and 2nd samples below UWL and 3rd and 4th 

samples above UWL; 
State 13: 1st and 2nd samples below UWL, 3rd sample above 

UWL and 4th sample below UWL; 
State 14: 1st, 2nd and 3rd samples below UWL and 4th sample 

above UWL; 
State 15: four successive samples below UWL. 
 
The tpm Q of the upward 4,5RR MCV  chart is: 
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2.2 Downward 4,5RR MCV  Chart 

The transient states of the downward 4,5RR MCV  chart 
are defined as follows: 
State 1: four successive samples below LWL; 

State 2: 1st, 2nd and 3rd samples above LWL and 4th sample 
below LWL; 

State 3: 1st and 2nd samples above LWL, 3rd sample below 
LWL and 4th sample above LWL; 

State 4: 1st and 2nd samples above LWL and 3rd and 4th 
samples below LWL; 

State 5: 1st sample above LWL, 2nd sample below LWL, 3rd 
and 4th samples above LWL; 

State 6: 1st sample above LWL, 2nd sample below LWL, 3rd 
sample above LWL and 4th sample below LWL; 

State 7: 1st sample above LWL, 2nd and 3rd samples below 
LWL and 4th sample above LWL; 

State 8: 1st sample above LWL and 2nd, 3rd and 4th samples 
below LWL; 

State 9: 1st sample below LWL and 2nd, 3rd and 4th samples 
above LWL; 

State 10: 1st sample below LWL, 2nd and 3rd samples above 
LWL and 4th sample below LWL; 

State 11: 1st sample below LWL, 2nd sample above LWL, 3rd 
sample below LWL and 4th sample above LWL; 

State 12: 1st sample below LWL, 2nd sample above LWL, 3rd 
and 4th samples below LWL; 

State 13: 1st and 2nd samples below LWL and 3rd and 4th 
samples above LWL; 

State 14: 1st and 2nd samples below LWL, 3rd sample above 
LWL and 4th sample below LWL; 

State 15: 1st, 2nd and 3rd samples below LWL and 4th sample 
above LWL. 

 
The tpm Q of the downward 4,5RR MCV  chart can be 
obtained as 
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     (9) 

3. Statistical Comparison 
In this section, the statistical performance of the proposed 

charts is evaluated in terms of the TARL criterion. Tables 1 – 
3 present the comparison between the RR4,5MCV, RR2,3MCV 
[23], RR3,4MCV [23] and SH MCV [22] charts, in terms of 
the TARL1 values, for p = 2, 0 {0.1,0.3}  , {5,10}n , 

{30,50}I   and  {0.50, 0.60, 0.75, 0.90, 1.15, 1.25, 1.50, 
2.00}. In the detection of upward MCV shifts, it is obvious 
that RR2, 3MCV chart has the best performance, for small and 
moderate downward shift sizes, when the sample size n is 
small and the production horizon I is short. For example, from 
Table 1, when p = 2, I = 30, n = 5, 0 0.1   and  = 1.25, the 
RR4,5MCV, RR2,3MCV, RR3,4MCV and SH MCV charts 
provide TARL1 = 21.80, 21.10, 21.34 and 21.82, respectively, 
where the RR2,3MCV chart has the smallest TARL1 value. 
However, when the sample size and the production horizon 
increase, the RR4,5MCV chart prevails over other MCV 
charts. In the detection of downward MCV shifts, the 
RR4,5MCV chart provides the best performance among the 
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MCV charts. For example, from Table 2, when p = 2, I = 50, 
n = 10, 0 0.1   and  = 0.75, the RR4,5MCV, RR2,3MCV, 
RR3,4MCV and SH MCV charts give TARL1 = 19.28, 33.15, 
24.25 and 41.22, respectively, where the RR4,5MCV chart has 
the smallest TARL1 value. 
 
Table 1. TARL1 values of the RR4,5MCV, RR2,3MCV, 
RR3,4MCV and SH MCV charts when p = 2 and I = 30 
  

 RR4,5MCV RR2,3MCV RR3,4MCV SH MCV 
 0 0.1   
  n = 5 

0.50 7.03 13.91 8.60 24.30 
0.60 12.40 20.77 15.46 26.80 
0.75 23.09 26.83 24.82 28.95 
0.90 28.64 29.27 28.93 29.64 
1.15 26.02 25.82 25.86 26.22 
1.25 21.80 21.10 21.34 21.82 
1.50 12.44 10.50 11.39 10.67 
2.00 6.29 4.23 5.25 3.40 

 n = 10 
0.50 4.11 2.92 3.29 6.04 
0.60 4.61 5.65 4.66 13.88 
0.75 11.93 17.95 13.85 22.51 
0.90 26.38 27.93 27.06 28.95 
1.15 21.62 21.97 21.59 23.50 
1.25 14.04 13.78 13.65 15.89 
1.50 6.25 4.73 5.43 4.71 
2.00 4.29 2.42 3.34 1.59 

 0 0.3   
  n = 5 

0.50 7.35 14.45 9.06 24.58 
0.60 13.02 21.20 16.09 26.97 
0.75 23.50 26.99 25.12 28.84 
0.90 28.71 29.31 28.98 29.66 
1.15 26.34 26.18 26.20 26.57 
1.25 22.51 21.93 22.19 22.67 
1.50 13.62 11.85 12.64 12.30 
2.00 7.00 4.93 5.95 4.25 

 n = 10 
0.50 4.14 3.08 3.36 6.72 
0.60 5.10 6.14 4.95 14.90 
0.75 12.84 18.76 14.82 23.69 
0.90 26.68 28.06 27.28 29.02 
1.15 22.48 22.86 22.49 24.28 
1.25 15.38 15.32 15.09 17.52 
1.50 6.96 5.57 6.17 5.91 
2.00 4.49 2.68 3.57 1.95 

 
Table 2. TARL1 values of the RR4,5MCV, RR2,3MCV, 
RR3,4MCV and SH MCV charts when p = 2 and I = 50 
 

 RR4,5MCV RR2,3MCV RR3,4MCV SH MCV 
 0 0.1   
  n = 5 

0.50 10.26 27.41 14.85 43.80 
0.60 21.39 38.52 28.57 46.62 
0.75 40.71 46.48 43.62 49.25 
0.90 48.43 49.24 48.82 49.63 
1.15 43.88 43.90 43.77 44.71 

1.25 35.88 35.50 35.45 37.32 
1.50 17.20 15.13 15.96 16.50 
2.00 7.09 4.95 5.99 4.26 

 n = 10 
0.50 4.24 3.83 3.60 12.42 
0.60 5.71 9.21 6.08 27.96 
0.75 19.28 33.15 24.25 41.22 
0.90 45.31 47.65 46.39 48.87 
1.15 36.00 37.55 36.39 40.58 
1.25 20.85 21.99 20.87 27.05 
1.50 7.21 5.88 6.42 6.57 
2.00 4.40 2.56 3.46 1.80 

 0 0.3   
  n = 5 

0.50 10.90 28.22 15.81 44.12 
0.60 22.62 39.05 29.68 46.80 
0.75 41.34 46.63 44.02 48.76 
0.90 48.54 49.26 48.87 49.65 
1.15 44.44 44.50 44.36 45.26 
1.25 37.30 37.08 36.95 38.84 
1.50 19.45 17.65 18.30 19.60 
2.00 8.12 5.97 7.00 5.57 

 n = 10 
0.50 4.31 4.10 3.73 13.94 
0.60 6.05 10.11 6.60 29.70 
0.75 21.08 34.35 26.05 42.23 
0.90 45.73 47.80 46.68 48.95 
1.15 37.68 39.15 38.07 41.84 
1.25 23.55 25.01 23.70 30.12 
1.50 8.29 7.19 7.56 8.61 
2.00 4.67 2.92 3.77 2.31 

 
Table 3. Summary of the performance comparisons 
 

 I = 30 
 0 0.1   0 0.3   
  n = 5 

0.50 RR4,5MCV RR4,5MCV 
0.60 RR4,5MCV RR4,5MCV 
0.75 RR4,5MCV RR4,5MCV 
0.90 RR4,5MCV RR4,5MCV 
1.15 RR2,3MCV RR2,3MCV 
1.25 RR2,3MCV RR2,3MCV 
1.50 RR2,3MCV RR2,3MCV 
2.00 RR2,3MCV SH MCV 

 n = 10 
0.50 RR2,3MCV RR2,3MCV 
0.60 RR4,5MCV RR4,5MCV 
0.75 RR4,5MCV RR4,5MCV 
0.90 RR4,5MCV RR4,5MCV 
1.15 RR3,4MCV RR4,5MCV 
1.25 RR3,4MCV RR3,4MCV 
1.50 SH MCV RR2,3MCV 
2.00 SH MCV SH MCV 

 I = 50 
 0 0.1   0 0.3   
  n = 5 

0.50 RR4,5MCV RR4,5MCV 
0.60 RR4,5MCV RR4,5MCV 
0.75 RR4,5MCV RR4,5MCV 
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0.90 RR4,5MCV RR4,5MCV 
1.15 RR3,4MCV RR3,4MCV 
1.25 RR3,4MCV RR3,4MCV 
1.50 RR2,3MCV RR2,3MCV 
2.00 SH MCV SH MCV 

 n = 10 
0.50 RR3,4MCV RR3,4MCV 
0.60 RR4,5MCV RR4,5MCV 
0.75 RR4,5MCV RR4,5MCV 
0.90 RR4,5MCV RR4,5MCV 
1.15 RR4,5MCV RR4,5MCV 
1.25 RR4,5MCV RR4,5MCV 
1.50 RR2,3MCV RR2,3MCV 
2.00 SH MCV SH MCV 

 
 

4. Conclusion 
In this paper, two one-sided RR4,5MCV charts are 

proposed for enhancing a multivariate finite horizon process 
monitoring. The performances of these charts are measured in 
terms of the TARL criterion based on the Markov-chain 
approach. The numerical comparisons reveal that the 
RR4,5MCV charts outperform the RR2,3MCV, RR3,4MCV and 
SH MCV charts, for detecting small or moderate shifts in a 
finite horizon process, especially in detecting the downward 
process shifts. No attempt has been made to improve the 
efficiency of the multivariate process monitoring in a finite 
horizon process based on the 4-out-of-5 run rules scheme in 
the existing literature. The motivation of this research is to 
develop control charts that are simple to implement in 
industries. It should be highlighted that the proposed scheme 
can be viewed as an important framework for quality 
engineers who wish to use an intermediate control chart 
instead of a more advanced control chart, with the 
consideration of cost and time efficiencies. It cannot be denied 
that the proposed intermediate scheme is useful for certain 
finite horizon process monitoring. In the future, this research 
can be extended to the RR4,5MCV charts with the presence of 
measurement errors and estimated parameters for monitoring 
the finite horizon process.  
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