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1 Introduction
Many problems in the fields of mathematical physics
and astrophysics are modeled by the linear and non-
linear singular differential equation of the form [1]:

y′′(x)+
k

x
y′(x)+ f(x, y(x)) = h(x), x > 0, (1)

where k > 0 is called the shape factor. Equation (1)
is known as the Lane-Emden-Fowler type. The equa-
tion of this type has been used to model several phe-
nomena in mathematical physics. For k = 2, h(x) =
0 and f(x, y(x)) = ym(x), equation (1), is the stan-
dard Lane-Emden equation of the first kind which is a
fundamental equation to study of stellar structure. For
k = 2, h(x) = 0 and f(x, y(x)) = p(x)g(y), equa-
tion (1), become the Emden-Fowler type equation that
arises in the modeling of several phenomena, such as
fluid mechanics, population evolution and chemically
reacting systems.

The singularity behavior that occurs at x = 0 is the
main difficulty of equation (1). In recent years, many
researchers are attempted to develop analytic and ap-
proximate methods to solve the linear and nonlinear
Lane-Emden-Fowler type equations. Several meth-
ods for solving Lane-Emden-Fowler type equations
and system of Lane-Emden-Fowler type equations
such as Adomian decomposition method (ADM) [2]-
[4], the variational iteration method (VIM) [5],[6],
the Homotopy analysis method (HAM) [7] and the
Homotopy pertubation method (HPM) [8] have been
proposed. Although suchmethods have been success-
fully applied, there are still some difficulties about
nonlinear, especially some difficulties and complexi-

ties have appeared for computation of nonlinear term.
For example, in Adomian decompositionmethod, cal-
culating Adomian polynomial to handle the nonlinear
terms is difficult.

Integral transform method is most useful tech-
nique for solving many different type of differential
equations. Sumudu transform was introduced and
further applied to several ODEs and as well as PDEs.
For example, in [9] Kiliçman et al. applied this trans-
form to solve the system of differential equations.

In this work, we develop a computational method
for solving linear and nonlinear systems of Lane-
Emden-Fowler type equations. The proposed method
is a combination of the two powerful techniques Ado-
mian decomposition method and Sumudu transform
method. The Sumudu transform was used to avoid in-
tegration of some difficult functions while Adomian
polynomials were used to decompose the nonlinear
terms of the differential equations.

2 Preliminaries of Sumudu
Transform

Sumudu transform is an integral transform, whichwas
first introduced by Watugala [10] and applied it to
solve differential equations and control engineering
problem.

Definition 1 Consider a set A define as [10]

A =
{
f(t) : ∃M, τ1, τ2 > 0, |f(t)| < Me|t|/τj

if t ∈ (−1)j × [0,∞)
}
.

For all real t ≥ 0, the Sumudu transform of function
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f(t) ∈ A, denoted by S[f(t)] = F (u), is defined as

F (u) = S[f(t)] :=
∫ ∞

0
e−tf(ut)dt, u ∈ (−τ1, τ2).

(2)
Function f(t) in (2) is called inverse Sumudu trans-
form of F (u) and is denoted by f(t) = S−1[F (u)].

Some properties of the Sumudu transform are as fol-
low:

1. S[1] = 1

2. S[t] = u

3. S[tn] = un

n!
; n = 1, 2, . . .

Theorem 1 Let f be in A, n ≥ 1 and F (u) be
the Sumudu transform of function f(t). The Sumudu
transform of the nth derivative of f(t) is given by [11]

S[f (n)(t)](u) =
F (u)

un
−

n−1∑
k=0

f (k)(0)

un−k

For further detail and properties about Sumudu trans-
form can found in [11].

3 Sumudu decomposition method for
Lane-Emden-Fowler type systems

In this section, we will present the use of the concepts
of Sumudu decomposition method.

To demonstrate the key ideas of the method,
we consider the following system of Lane-Emden-
Fowler type

y′′i (x) +
αi

x
y′i(x) =fi(x, y1(x), y2(x), . . . , ym(x))

+ hi(x), i = 1, 2, . . . ,m (3)

subject to the initial conditions

yi(0) = βi, y′i(0) = 0, (4)

where αi > 0 and βi are constants.
In order to solve this system by using modified

Sumudu decomposition method, we first apply the
Sumudu transform on both sides of (3), we get

S[y′′i (x) +
αi

x
y′i(x)] =S[fi(x, y1(x), y2(x), . . . , ym(x))]

+ S[hi(x)].

Using the properties of the Sumudu transform, we get

S[yi(x)]
u2

− yi(0)

u2
− y′i(0)

u
=S[Fi] + S[hi(x)]

− S[
αi

x
y′i(x)] (5)

where Fi = fi(x, y1(x), y2(x), . . . , ym(x)).
Simplifying (5), we obtain

S[yi(x)] =yi(0) + uy′i(0) + u2S[Fi] + u2S[hi(x)]

− u2S[
αi

x
y′i(x)]. (6)

The inverse Sumudu transform of (6) and the initial
condition (4) yields

yi(x) =βi + S−1[u2S[Fi]] + S−1[u2S[hi(x)]]

− S−1[u2S[
αi

x
y′i(x)]]. (7)

We decompose Fi into two parts:

Fi = Li +Ni, i = 1, 2, . . . ,m (8)

where Li = Li(x, y1, y2, . . . , ym) and
Ni = Ni(y1, y2, . . . , ym) denote the linear and the
nonlinear term, respectively.

Applying the Adomian decompositionmethod, we
suppose that the solution yi(x) can be expressed by an
infinite series

yi(x) =

∞∑
n=0

yin(x), i = 1, 2, . . . ,m (9)

and the nonlinear term Ni(y1, y2, . . . , ym) can be ex-
pressed by an infinite series of the Adomian polyno-
mials Ain in the following form

Ni =

∞∑
n=0

Ain, i = 1, 2, . . . ,m (10)

where Adomian polynomials Ain can be calculated
by the following formula:

Ain =
1

n!

[
dn

dλn
Ni

( ∞∑
n=0

λny1n, . . . ,

∞∑
n=0

λnymn

)]
λ=0

(11)
Substituting (8) and (9) into (7) , we obtain
∞∑
n=0

yin = βi + S−1
[
u2S[hi(x)]

]
− S−1

[
u2S[

αi

x
y′i(x)]

]
+ S−1

[
u2S

[
Li +

∞∑
n=0

Ain

]]
.

The recursive relation for SDM is given by

yi0 = βi + S−1
[
u2S[hi(x)]

]
= Φ

yi,n+1 = − S−1[u2S[
αi

x
y′in(x)]]

+ S−1[u2S[Li(yn) +Ain]]

 (12)
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where Li(yn) = Li

(
y1n, y2n, . . . , ymn

)
for n =

0, 1, 2, . . ..
The modified Sumudu decomposition method in-

troduces a slight variation to the recursive relation
(12) that will lead to the determination of the com-
ponents of yin in a faster and easier way.

We recall the modified Sumudu decomposition
method was established based on the assumption that
the function

Φ =

∞∑
n=0

ainx
n−p

∞∑
n=0

ainx
n+βi+S−1

[
u2S[hi(x)]

]
,

(13)
where p is an artificial parameter and ain are unknown
coefficients that can be divide into two parts. We set

Φ = φ1 + φ2, (14)

where

φ1 = βi +

∞∑
n=0

ainx
n,

φ2 = − p

∞∑
n=0

ainx
n + S−1

[
u2S[hi(x)]

]
.

Accordingly, a slight variation was proposed only on
the components yi0 and yi1. The suggestion was that
only the part φ1 be assigned to the zeroth component
yi0, whereas the remaining part φ2 be combined with
the other terms given in (12) to define yi1. Conse-
quently, the modified recursive relation:

yi0 =βi +

∞∑
n=0

ainx
n

yi1 =− p

∞∑
n=0

ainx
n + S−1

[
u2S[hi(x)]

]
+ S−1

[
u2S

[
−αi

x
y′i0(x) + Li(y0) +Ai0

]]
yi,n+1 =S−1

[
u2S

[
−αi

x
y′in(x) + Li(yn) +Ain

]]


(15)

To find the coefficients ain and bin and to avoid
computation of Adomian polynomial Ain for n =
1, 2, . . ., we put yi1 = 0 for i = 1, 2, . . . ,m. This
implies that yin = 0 for n > 1. Setting p = 1, yields
the solution will be obtained as yi(x) = yi0.

4 Applications
In this section, to demonstrate the applicability and
validity of the proposed method, we have applied it to
linear and nonlinear systems of Lane-Emden-Fowler
type equations with singular behavior at x = 0 and
the result obtained will be compared with the exact
solution.

Example 4.1 First, we consider the following system
of linear homogeneous equations of Lane-Emden type
with α1 = 3 and α2 = 2 [1]:

y′′(x) +
3

x
y′(x) = 4(y(x) + v(x)),

v′′(x) +
2

x
v′(x) = −3(y(x) + v(x)),

 (16)

with the following initial conditions

y(0) = 1, y′(0) = 0,

v(0) = 1, v′(0) = 0,

}
(17)

which has the exact solution

(y(x), v(x)) = (1 + x2, 1− x2).

To solve this problem by the proposed method, we
apply the modified Sumudu decomposition method.
From (16), we have

h1(x) = h2(x) = 0, L1 = 4(y + v),

L2 = −3(y + v), N1 = N2 = 0.

By using the recursive relation (15) and the initial
conditions, we get a0 = b0 = 0 and a1 = b1 = 0.
Then, we obtain

y0 = 1 +

∞∑
n=2

anx
n and v0 = 1 +

∞∑
n=2

bnx
n.

In view of (15), y1, v1 are given by

y1 =− p

∞∑
n=2

anx
n − 3S−1

[
u2S[x−1y′0]

]
+ 4S−1

[
u2S[y0 + v0]

]
v1 =− p

∞∑
n=2

bnx
n − 2S−1

[
u2S[x−1v′0]

]
− 3S−1

[
u2S[y0 + v0]

]
Now we find ai, bi, in such a way that y1 = 0 and
v1 = 0. If y1 = v1 = 0 then the all components
yi = vi = 0 for i = 1, 2, . . ., and the solution will be
obtained as y(x) = y0 and v(x) = v0. Therefore

y1 =− p(a2x
2 + a3x

3 + . . .)

− 3
(
a2x

2 +
a3
2
x3 +

a4
3
x4 + . . .

)
+ 4

(
x2 +

(a2 + b2)

4 · 3
x4 +

(a3 + b3)

5 · 4
x5 + . . .

)
=0
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v1 =− p(b2x
2 + b3x

3 + . . .)

− 2

(
b2x

2 +
b3
2
x3 +

b4
3
x4 + . . .

)
− 3

(
x2 +

(a2 + b2)

4 · 3
x4 +

(a3 + b3)

5 · 4
x5 + . . .

)
=0.

By equating the coefficients of xn and setting p = 1,
we have

−a2 − 3a2 + 4 =0,

−a3 −
3

2
a3 =0,

−a4 − a4 +
(a2 + b2)

3
=0,

−pa5 −
3

4
a5 +

(a3 + b3)

5
=0,

...

and

−b2 − 2b2 − 3 =0

−b3 − b3 =0

−b4 −
2

3
b4 −

(a2 + b2)

4
=0

−pb5 −
3

4
b5 −

3(a3 + b3)

5 · 4
=0

...

Solving the above algebraic equations, we have

a2 = 1, ak = 0, k = 3, 4, . . .

b2 = −1, bk = 0, k = 3, 4, . . .

Thus the solution of (16) is obtained as

y(x) = y0 =1 + x2

v(x) = v0 =1− x2

which is the same as the exact solution. �

Example 4.2 Consider the following system of linear
homogeneous equations of Emden-Fowler type with
α1 = 2 and α2 = 2 [12]:

y′′(x) +
2

x
y′(x) = y(x) + (4x2 + 5)v(x),

v′′(x) +
2

x
v′(x) = −v(x) + (4x2 + 7)y(x),


(18)

with the following initial conditions

y(0) = 1, y′(0) = 0,

v(0) = 1, v′(0) = 0,

}
(19)

which has the exact solution

(y(x), v(x)) = (ex
2

, ex
2

).

To solve this problem by the proposed method, we
apply the modified Sumudu decomposition method.
From (18), we have

h1(x) = h2(x) = 0, L1 = y + (4x2 + 5)v,

L2 = −v + (4x2 + 7)y, N1 = N2 = 0.

By using the recursive relation (15) and the initial
conditions, we get a0 = b0 = 0 and a1 = b1 = 0.
Then, we obtain

y0 = 1 +

∞∑
n=2

anx
n and v0 = 1 +

∞∑
n=2

bnx
n.

In view of (15), y1, v1 are given by

y1 =− p

∞∑
n=2

anx
n − 2S−1

[
u2S[x−1y′0]

]
+ S−1

[
u2S[y0 + 4x2v0 + 5v0]

]
v1 =− p

∞∑
n=2

bnx
n − 2S−1

[
u2S[x−1v′0]

]
+ S−1

[
u2S[−v0 + 7y0 + 4x2y0]

]
Now we find ai, bi, in such a way that y1 = 0 and
v1 = 0. If y1 = v1 = 0 then the all components
yi = vi = 0 for i = 1, 2, . . ., and the solution will be
obtained as y(x) = y0 and v(x) = v0. Therefore

y1 =− p(a2x
2 + a3x

3 + . . .)

− 2
(
a2x

2 +
a3
2
x3 +

a4
3
x4 + . . .

)
+ 3x2

+
(a2 + 5b2 + 4)

4 · 3
x4 +

(a3 + 5b3)

5 · 4
x5 + . . .

=0

v1 =− p(b2x
2 + b3x

3 + . . .)

− 2

(
b2x

2 +
b3
2
x3 +

b4
3
x4 + . . .

)
+ 3x2

+
(7a2 − b2 + 4)

4 · 3
x4 +

(7a3 − b3)

5 · 4
x5 + . . .

=0.

By equating the coefficients of xn and setting p = 1,
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we have

−a2 − 2a2 + 3 =0,

−a3 − a3 =0,

−a4 −
2

3
a4 +

(a2 + 5b2 + 4)

4 · 3
=0,

−a5 −
1

2
a5 +

(a3 + 5b3)

5 · 4
=0,

−a6 −
2

5
a6 +

(a4 + 5b4 + 4b2)

6 · 5
=0,

...

and

−b2 − 2b2 + 3 =0

−b3 − b3 =0

−b4 −
2

3
b4 +

(7a2 − b2 + 4)

4 · 3
=0

−b5 −
1

2
b5 +

(7a3 − b3)

5 · 4
=0

−b6 −
2

5
b6 +

(7a4 − b4 + 4a2)

6 · 5
=0,

...

Solving the above algebraic equations, we have

a2 = 1, a4 =
1

2
, a6 =

1

6
, . . .

b2 = 1, b4 =
1

2
, b6 =

1

6
, . . .

a2k−1 = b2k−1 = 0, k = 1, 2, . . . .

Thus the solution of (18) is obtained as

y(x) = y0 =1 + x2 +
x4

2!
+

x6

3!
+ . . . = ex

2

v(x) = v0 =1 + x2 +
x4

2!
+

x6

3!
+ . . . = ex

2

which is gives exact solution of the problem. �
Example 4.3 Consider the following non-
homogeneous nonlinear system of Lane-Emden-type
with α1 = α2 = 2 [5]:

y′′(x) +
2

x
y′(x) =y2(x)− v2(x)− 6v(x)

+ 6x2 + 6,

v′′(x) +
2

x
v′(x) =v2(x)− y2(x) + 6v(x)

− 6x2 + 6,


(20)

subject to conditions

y(0) = 1, y′(0) = 0,

v(0) = −1, v′(0) = 0,

}
(21)

which has the exact solution

(y(x), v(x)) = (x2 + ex
2

, x2 − ex
2

).

We apply the new modified Sumudu decomposition
method. From (20), we have

h1(x) = 6x2 + 6, L1 = −6v, N1 = y2 − v2,

h2(x) = −6x2 + 6, L2 = 6v, N2 = v2 − y2.

By using the recursive relation (15) and initial condi-
tion, we get a0 = b0 = 0 and a1 = b1 = 0. Then, we
obtain

y0 = 1 +

∞∑
n=2

anx
n and v0 = −1 +

∞∑
n=2

bnx
n.

In view of (15), y1, v1 are given by

y1 =− p

∞∑
n=2

anx
n + 6S−1

[
u2S[1 + x2]

]
− 2S−1

[
u2S[x−1y′0]

]
− 6S−1

[
u2S[v0]

]
+ S−1

[
u2S[y20 − v20]

]
v1 =− p

∞∑
n=2

bnx
n + 6S−1

[
u2S[1− x2]

]
− 2S−1

[
u2S[x−1v′0]

]
+ 6S−1

[
u2S[v0]

]
− S−1

[
u2S[y20 − v20]

]
To find ai and bi for i ≥ 1, we put y1 = v1 = 0.
Therefore

y1 =− p(a2x
2 + a3x

3 + a4x
4 + . . .) + 3x2

+
x4

2
− 2

(
a2x

2 +
a3
2
x3 +

a4
3
x4 + . . .

)
− 6

(
x2

2
+

b2
4 · 3

x4 +
b3
5 · 4

x5 + . . .

)
+

(a2 + b2)

3 · 2
x4 +

(a3 + b3)

5 · 2
x5 +

(a4 + b4)

5 · 3
x6

+
(a22 − b22)

6 · 5
x6 + . . .

= 0

v1 =− p(b2x
2 + b3x

3 + b4x
4 + . . .) + 3x2

− x4

2
− 2

(
b2x

2 +
b3
2
x3 +

b4
3
x4 + . . .

)
+ 6

(
x2

2
+

b2
4 · 3

x4 +
b3
5 · 4

x5 + . . .

)
− (a2 + b2)

3 · 2
x4 − (a3 + b3)

5 · 2
x5 − (a4 + b4)

5 · 3
x6

+
(a22 − b22)

6 · 5
x6 + . . .

= 0.
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By equating the coefficients of xn and setting p = 1,
we obtain

−a2 − 2a2 + 6 =0,

−a3 − a3 =0,

−a4 −
2

3
a4 −

1

2
b2 +

(a2 + b2)

6
+

1

2
=0,

−a5 −
1

2
a5 −

6

5 · 4
b3 +

(a3 + b3)

5 · 2
=0,

−a6 −
2

5
a6 −

1

5
b4 +

(a4 + b4)

5 · 3
+

(a22 − b22)

6 · 5
=0,

...

and

−b2 − 2b2 =0

−b3 − b3 =0

−b4 −
2

3
b4 −

1

2
b2 −

(a2 + b2)

6
− 1

2
=0,

−b5 −
1

2
b5 −

6

5 · 4
b3 −

(a3 + b3)

5 · 2
=0,

−b6 −
2

5
b6 −

1

5
b4 −

(a4 + b4)

5 · 3
− (a22 − b22)

6 · 5
=0,

...

Solving the above algebraic equations , we have

a2 = 2, a4 =
1

2
, a6 =

1

6
, . . .

b2 = 0, b4 = −1

2
, b6 = −1

6
, . . .

a2k−1 = b2k−1 = 0, k = 1, 2, . . . .

Thus the solution of (20) is obtained as

y(x) = u0 =1 + 2x2 +
x4

2!
+

x6

3!
+ . . . ,

v(x) = v0 =− 1− x4

2!
− x6

3!
+ . . . ,

which converges to the exact solution

(y(x), v(x)) = (x2 + ex
2

, x2 − ex
2

)

and is the same as the solutions obtain by
A.M.Wazwaz using VIM [5]. �

Example 4.4 We consider the following non-
homogeneous nonlinear system of Lane-Emden-
Fowler type equations with α1 = 3, α2 = 4 [1]:

y′′(x) +
3

x
y′(x) = y(x)v(x) + x4 + 7,

v′′(x) +
4

x
v′(x) = y(x)v(x) + x4 − 11,

 (22)

subject to the following initial conditions

y(0) = 1, y′(0) = 0,

v(0) = 1, v′(0) = 0,

}
(23)

with the exact solution

(y(x), v(x)) = (1 + x2, 1− x2).

We apply the modified Sumudu decomposition
method. From (22), we have

h1(x) = x4 + 7, h2(x) = x2 − 11,

N1 = N2 = y(x)v(x).

By using the recursive relation (15) and the initial
condition, we get a0 = b0 = 0 and a1 = b1 = 0.
Then, we obtain

y0 = 1 +

∞∑
n=2

anx
n and v0 = 1 +

∞∑
n=2

bnx
n

In view of (15), y1, v1 are given by

y1 =− p

∞∑
n=2

anx
n + S−1

[
u2S[x4 + 7]

]
− 3S−1

[
u2S[x−1y′0]

]
+ S−1

[
u2S[y0v0]

]
v1 =− p

∞∑
n=2

bnx
n + S−1

[
u2S[x4 − 11]

]
− 4S−1

[
u2S[x−1v′0]

]
+ S−1

[
u2S[y0v0]

]
.

To find ai and bi, i ≥ 1, we put y1 = v1 = 0. There-
fore

y1 =− p(a2x
2 + a3x

3 + . . .)

− 3
(
a2x

2 +
a3
2
x3 +

a4
3
x4 + . . .

)
+

x6

6 · 5
+ 4x2

+
(a2 + b2)

4 · 3
x4 +

(a3 + b3)

5 · 4
x5 +

(a4 + b4)

6 · 5
x6

+
a2b2
6 · 5

x6 + . . .

= 0

v1 =− p(b2x
2 + b3x

3 + . . .)

− 4

(
b2x

2 +
b3
2
x3 +

b4
3
x4 + . . .

)
+

x6

6 · 5
− 5x2 +

(a2 + b2)

4 · 3
x4 +

(a3 + b3)

5 · 4
x5

+
(a4 + b4)

6 · 5
x6 +

a2b2
6 · 5

x6 + . . .

= 0.
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By equating the coefficients of xn and setting p = 1,
we get

−4a2 + 4 =0,

−5

2
a3 =0,

−2a4 +
(a2 + b2)

4 · 3
=0,

−7

4
a5 +

(a3 + b3)

5 · 4
=0,

...

and

−5b2 − 5 =0

−3b3 =0

−7

3
b4 −

(a2 + b2)

4 · 3
=0

−2b5 +
(a3 + b3)

5 · 4
=0

...

Solving the above algebraic equations, we have

a2 = 1, ak = 0, k = 3, 4, . . .

b2 = −1, bk = 0, k = 3, 4, . . .

Thus the solution of (22) is obtained as

y(x) = y0 =1 + x2

v(x) = v0 =1− x2

which is the same as the exact solution. �

Example 4.5 Consider the following system of non-
linear homogeneous equations of Emden-Fowler type
[1]:

v′′(x) +
8

x
v′(x) = 4v(x) ln y(x)− 18v(x),

y′′(x) +
4

x
y′(x) = 10y(x)− 4y(x) ln v(x),


(24)

subject to the initial conditions

v(0) = 1, v′(0) = 0,

y(0) = 1, y′(0) = 0,

}
(25)

which has the exact solution

(v(x), y(x)) = (e−x2

, ex
2

).

To solve problem (24)-(25), by the modified
method we can use the transform

v(x) = ew(x) and y(x) = ez(x),

where w(x) and z(x) are unknown functions. We
have transformed system as

w′′(x) +
8

x
w′(x) = 4z(x)− 18− (w′(x))2,

z′′(x) +
4

x
z′(x) = 10− 4w(x)− (z′(x))2,


(26)

with the initial conditions

w(0) = 0, w′(0) = 0,

z(0) = 0, z′(0) = 0.

}
(27)

We apply the new modified Sumudu decomposition
method. From (26), we have α1 = 8 and α2 = 4 and

h1(x) = −18, L1 = 4z(x), N1 = −(w′(x))2,

h2(x) = 10, L2 = −4w(x), N2 = −(z′(x))2.

By using the recursive relation (15) and the initial
conditions, we get a0 = b0 = 0 and a1 = b1 = 0.
Then, we obtain

w0 =

∞∑
n=2

anx
n and z0 =

∞∑
n=2

bnx
n

In view of (15), w1, z1 are given by

w1 =− p

∞∑
n=2

anx
n − 8S−1

[
u2S[x−1w′

0]
]

+ S−1
[
u2S[4z0 − 18]

]
− S−1

[
u2S[(w′

0)
2]
]

z1 =− p

∞∑
n=2

bnx
n − 4S−1

[
u2S[x−1z′0]

]
+ S−1

[
u2S[10− 4w0]

]
− S−1

[
u2S[(z′0)2]

]
To find ai and bi, i ≥ 1, we put z1 = w1 = 0.
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Therefore

w1 =− p(a2x
2 + a3x

3 + . . .)

− 8
(
a2x

2 +
a3
2
x3 +

a4
3
x4 + . . .

)
− 9x2 + 4

(
b2
4 · 3

x4 +
b3
5 · 4

x5 + . . .

)
−
(
a22
3
x4 +

3a2a3
5

x5 + . . .

)
=0

z1 =− p(b2x
2 + b3x

3 + . . .)

− 4

(
b2x

2 +
b3
2
x3 +

b4
3
x4 + . . .

)
+ 5x2 − 4

( a2
4 · 3

x4 +
a3
5 · 4

x5 + . . .
)

−
(
b22
3
x4 +

3b2b3
5

x5 + . . .

)
=0.

By equating the coefficients of xn and setting p = 1,
we get

−a2 − 8a2 − 9 =0

−a3 − 4a3 =0

−a4 −
8

3
a4 +

(b2 − a22)

3
=0

−a5 − 2a5 +
(b3 − 3a2a3)

5
=0

...

and

−b2 − 4b2 + 5 =0,

−b3 − 2b3 =0,

−b4 −
4

3
b4 −

(b22 + a2)

3
=0,

−2b5 −
(3b2b3 + a3)

5
=0,

...

Solving the above algebraic equations, we have

a2 = −1, ai = 0, i = 3, 4, . . .

b2 = 1, bi = 0, i = 3, 4, . . .

Thus the solution of (26) is obtained as

w(x) = w0 = −x2 and z(x) = z0 = x2.

Thus the solution of (24) will be obtained as

v(x) = ew(x) = e−x2 and y(x) = ez(x) = ex
2

which is the same as the exact solution. �

5 Conclusion
In this article, the modification of Sumudu decom-
position method has been applied to solve systems
of singular initial value problems of Lane-Emden-
Fowler type equations. From the obtained results, it is
show that the proposed method is powerful and easy
to calculate because this method yields very accurate
solutions using only a few iterates and only requires
the calculation of the first Adomian polynomial. The
advantage of this method is that it reduce steps of cal-
culation and give accurate results. We expect that this
modified algorithmwill be a promisingmethod for in-
vestigating exact solutions to other singular IVPs of
higher-order nonlinear ODEs.
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