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Abstract: - The proposed estimator, namely weighted maximum likelihood (WML) correlation coefficient, for 

measuring the relationship between two variables to concern about missing values and outliers in the dataset is 

presented. This estimator is proven by applying the conditional probability function to take care of some missing 

values and pay more attention to values near the center. However, outliers in the dataset are assigned a slight 

weight. These using techniques will give the robust proposed method when the preliminary assumptions 

are not met data analysis. To inspect about the quality of the proposed estimator, the six methods—WML, 

Pearson, median, percentage bend, biweight mid, and composite correlation coefficients—are compared the  
 
properties in two criteria, i.e. the bias and mean squared error, via the simulation study. The results of generated  
 
data are illustrated that the WML estimator seems to have the best performance to withstand the missing values  
 
and outliers in dataset, especially for the tiny sample size and large percentage of outliers regardless of missing  
 
data levels. However, for the massive sample size, the median correlation coefficient seems to have the good  
 
estimator when linear relationship levels between two variables are approximately over 0.4 irrespective of  
 
outliers and missing data levels.
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1 Introduction 
Outliers and incomplete data are common problems 

in many research studies and often cause wrong 

conclusions in data analysis when conventional 

techniques are used to analyse these data. In 

addition, many fields of researches such as research 

in biology, medical and engineering often be 

interested in the relationship analysis of two 

variables in the dataset. However, the collected data 

may be sometimes lost and outliers are 

contaminated in the data. Therefore, the well-

designed methods result in accurate analysis and 

conclusions as close to the actual value as possible. 

The following researches mention about the 

estimators for the correlation measure of two 

variables. Pearson correlation coefficient [1] is a 

familiar method for estimation the correlation 

coefficient of two random variables—X and Y—

when data are sampled from a bivariate normal 

distribution [2]. Using a traditional estimator such as 

Pearson correlation coefficient to analyse 

incomplete data, it tends to result an inefficient 

estimator [3, 4]. In addition, the researches of [5-16] 

were found that analysis of incomplete dataset result 

in biased estimators and make the wrong 

conclusions. We know that the major problem in 

many research studies are outliers occurrence in the 

dataset and this problem may occur from different 

reasons [17, 18]. Therefore, the correlation 

coefficient estimation using Pearson's correlation 

coefficient can give inaccurate conclusions when the 

sample data are outlier [19]. These findings are 

consistent with the researches of [20-24]. In 1997, 

the median correlation coefficient was proposed 

[24] which is based on the sample median and it is 

the robust method when dataset are composed with 

outliers. Additionally, the research study of [22] is 

confirmed that this estimator has the good properties 
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for two criteria, i.e., unbiased property and small 

variance for a huge sample size (n = 1,000) under 

data are sampled from normal distribution. In 

addition, the type M measure of correlations, e.g., 

the percentage bend and biweight mid correlation 

coefficients are suggested by Wilcox [25]. These 

estimators prevent outliers during the incremental 

distribution when dealing with outliers. Later, the 

robust estimator for correlation measure—

composite correlation coefficient—was proposed 

[26] for data are bivariate normally distributed and 

having outliers. This study was found that the 

composite correlation coefficient performs well 

when there are outliers in the dataset. In this study, 

an estimator of correlation coefficient for 

incomplete dataset with outliers is proposed. This 

method is called weighted maximum likelihood 

(WML) correlation coefficient. The proposed 

estimator was proved by using the conditional 

likelihood function [27] when some observations are 

missing and concern with the Winsorized 

distribution. That is, the tails of Winsorized 

distribution can dominate outliers. In addition, the 

simulation data were conducted to compare the 

robustness features in two properties—bias and 

mean squared error (MSE)—of the six methods, 

namely, WML, Pearson, median, percentage bend, 

biweight mid, and composite correlation 

coefficients. This finding will give an advantage to 

many field of researches because the proposed 

estimator uses all observations that are sampled. 

That is, the proposed estimator can capture 

information from all observations in the sample data 

regardless outliers that contaminated in the dataset.      

 

 

2 Materials and Methods 
In this section, random samples  ,i iX Y ; 

1, 2, ...,i n  are taken from the bivariate normal 

distribution with vector of mean  ,X Y   and 

matrix of variance covariance in the form of 
2

2
,

X XY

XY Y

 

 

 
   

  

where   is the correlation 

coefficient between X and Y. Assume observations 

 ,x y  are non-missing value for r pairs and the 

remaining n r  observations  0 r n   on y are 

lost. Moreover, data y are supposed missing 

completely at random mechanism [3] and they are 

composed of mild outliers [28]. In this study, the 

missing data pattern is represented is Fig. 1. 

1 r r+1 n

1 r

, ... , , , ... , 

, ... , 

x x x x

y y
 

Fig.1: Missing data pattern of variables X and Y 

 

2.1 Correlation Coefficient 
The following five methods of correlation 

coefficients are studied and calculated from the 

available-case analysis.  

 

2.1.1 Pearson Correlation Coefficient  

Pearson correlation coefficient is a familiar 

estimator that measure linear relationship of two 

random variables [1]. Let 
Pr  be the Pearson 

correlation coefficient that formula is given as 

follows:  

   

   

1

2 2

1 1

n

i i
i

P
n n

i i
i i

x x y y

r

x x y y



 

 



 



 

 where x

and y  are the sample means of data x and data y, 

respectively. 

 

2.1.2 Median Correlation Coefficient  

The median correlation coefficient  Mr  is 

proposed by Shevlyakov [29] in 1997. This method 

is derived by using the sample medians and this 

estimator is calculated as 

2 2

2 2

R S
M

R S

M M
r

M M





 where 

SM
 
and  

RM  are the sample medians of data s and 

r, respectively. Let data s and r be in the forms of  

i X i Y
i

X Y

x M y M
s

MAD MAD

 
      and 

i X i Y
i

X Y

x M y M
r

MAD MAD

 
  ; 1,2,...,i n ,  

where the sample median absolute deviations for 

data x and y are denoted by symbols XMAD  and 

YMAD , respectively. 

 

2.1.3 Percentage Bend Correlation Coefficient 

When data compose of outliers, one of the robust 

estimators [30] is the percentage bend correlation 

coefficient which is denoted by symbol
PBr . The 
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formula of this method is given as follows: 

1

2 2

1 1

n

i i
i

PB
n n

i i
i i

A B

r

A B



 





 

  

where     * *max 1, min 1,i i iA U U   , 

 * 1 ˆ
ˆi i X

X

U x 


   for 
 2 1

1 2

ˆ
ˆ X X
X

S i i

n i i




 


 
; 

1i  

and 
2i  are the number of observations 

ix  which 

corresponding to inequalities of  
1

1
ˆ i X

X

x M


    

and  
1

1
ˆ i X

X

x M


   respectively, 
XM  is the 

sample median of observation x,  
ˆ

X m
W   is the 

statistic of order m for variables i i XW x M  , 

 1m n       and the value of  1n   is 

rounded down to the nearest whole integer. 

Moreover, the formula of iB  is denoted by 

    * *max 1, min 1,i i iB V V    and variable 

*
iV  is the counterpart form of variable *.iU  

However,  * 1 ˆ
ˆi i Y
Y

V y 


   which is calculated by 

using the observation
iy . 

  

2.1.4 Biweight Mid Correlation Coefficient  

A robust estimator [30] when data are contained 

with outliers was proposed. This is called a biweight 

mid correlation coefficient  Br  and its formula can 

be calculated as follows: 

 

bxy

B

bxx byy

S
r

S S
 where  

 

       

     

2 2
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
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

 

, 

   

  

4 22

1

2
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S
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



 


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   
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4 22

1

2

2 2

1

1

1 5 1

n

i i i Y
i

byy
n
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i

n b V y M

S
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



 


 
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1 11

1 ,  10

i
i

i i

Ufor
a

U Ufor or

  
 
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1 11

1 ,  10

i
i

i i

Vfor
b
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9

i X
i

X

x M
U

MAD





, .

9

i Y
i

Y

y M
V

MAD





  

 

The symbols 
XM  and 

YM  are the sample median 

of data x and data y, respectively. Additionally, 

XMAD  and 
YMAD  are the sample median absolute 

deviation of data  x and data y, respectively. 

 

2.1.5 Composite Correlation Coefficient  

In 2016, the composite correlation coefficient  Cr

was proposed by Sinsomboonthong [26]. This 

estimator was proved by using two combination of 

estimator—adaptive Blest and Blest correlation 

coefficients—with equal weights of them are 

assigned. This estimator can be computed as 

 
1

1ˆ ˆ1
n

C i
i

r n
n

 




 
   

 
  where ̂  and 

 
ˆ

i



 are 

defined as follows:  

 

  
   

2 2

2
1

2 1ˆ
1

6
1 1

1 1

n

i i i i
i

n

n

n q p n p q
n n n










      
   



  

 

 

  
   

2 2

2

2 1ˆ
2

6

1 2

i

n

ij ij ij ij
j i

n

n

n q p n p q
n n n











 
   

   

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ijp
 

and 
ijq  are the ranks of 

jx  and 
jy , 

respectively, of the ith jackknife sample  iS


; 

. 

 

2.2 Proposed Correlation Coefficient 
When some observations are lost and data with 

outliers, the estimator of the correlation measure 

   
for the bivariate normal distribution is 

proposed in this section. The important problem for 

the average of observation y is the tail of 

distribution contains of outliers which can dominate 

its average. Hence, one technique for solving this 

problem, the small weights for observations in the 

tail of distribution are assigned and set more 

important weights to those near the central of 

distribution. This procedure dealing with the 

Winsorized distribution [30]. For 

   1 3Q 1.5 IQR Q +1.5 IQRiy   , let function of 

Winsorized mean be given by equation (1).   

 F i iy y       (1) 

For  1Q 1.5 IQRiy    or  3> Q +1.5 IQRiy , let 

the function of the Winsorized mean be computed 

by equation (2).  

 

*

1

*

1

F

r

i i
i

i r

i
i

w y

y

w










       (2) 

where IQR is the interquartile range of y values,       

1Q  and 
3Q  are the 1st and 3rd quartiles of data y 

respectively, and *
iw  is the weight function of y 

which is denoted by equation (3). 

 

             0  for  
1Q 1.5IQRiy    or   

           
3> Q +1.5IQRiy  

 * yiw                    (3) 

         1  for 
1 3Q 1.5IQR Q +1.5IQRiy      

 

 

or  *
iw y  can be symbolized with *

iw  as illustrated 

in equation (3); i 1, 2, ..., r . Let iW  be the random 

sample after make a Winsorization and distribution 

of these as same as distribution of iY . The values for 

iW  can be given in the form of equation (4). 

 Fi iw y       (4) 

The independent and identically distributed of all 

data pairs  ,i ix w  are considered. In addition, the 

joint distribution of random variables X and W 

corresponds to the joint distribution of random 

variables X and Y  [30]. The proposed estimator of 

  is called the weighted maximum likelihood 

(WML) correlation.  This estimator is proved by 

using the likelihood function approach as given in 

Theorem 1.  

 

Lemma 1 The bivariate random vector  ,X W  is 

taken from a bivariate normal distribution with 

vector of mean 
X

W






 
  
 

, matrix of variance 

covariance 

2

2

X XW

XW W

 

 

 
   

  

, and   is correlation 

coefficient between X and W. The joint distribution 

of random variables X and W is assigned in equation 

(5).  

     

 
2

1
,w

2 1X W

f x E
  




      

;
 

22
1

2
22 1

x w wx W W WX

X X W W

E e

  


   

 
         

               
         

   

(5) 

         

for  ,x    and  ,w   . There exists the 

marginal distribution of random variable X is given 

by equation (6).        

 

2
1

21

2

x X

X

X

f x e







 
   

    for  x    (6) 

Proof Assume  ,X W  is the bivariate random 

vector with joint distribution in the form of equation 

(5). Let X

X

x
A





 
  
 

 and W

W

w
B





 
   
 

. Then, 

the marginal distribution of X can be derived as 

follows: 

   ,wf x f x dw





   

 
 1 2 22

22 1

2

1

2 1

A AB B

X W

e dw




  

  









    

1 2i , ,...,n
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 
 

1 2
1 2 22 1
2

2

1 1

2 2 1

B A

A

X W

e e dw




  

 


 








             (7) 

 

Consider the term in equation (7) as follows:  

 
 

1 2

22 1

2

1

2 1

B A

W

e dw




  

 




 
 . 

  

This term can be written in the other form as shown 

in equation (8).  

 
 

1 2

22 1

2

1

2 1

B A

W

e dw




  

 




 
  

 
 

2
1

2 22 1

2

1

2 1

Ww x
W X

XW

W

e d w


 

 

  

   
     

      








                           (8) 

Since the formula  

 
 

2
1

2 22 1

2

1

2 1

Ww xW X
X

W

W

e


 

 

  

   
     

     



 

is the function of probability density of the normal 

distribution that has mean  W
W X

X

x


 


   and 

variance  2 21 .W   Therefore, the integration of 

this normal function over w from   to  , it’s 

equal to one and equation (8) can be written as 

equation (9). 

 
 

1 2

22 1

2

1
1

2 1

B A

W

e dw




  

 









       (9) 

By substituting equation (9) in equation (7), the 

marginal probability density function of X is 

obtained. That is,  

2
1

21

2

x X

X

X

f x e







 
   

   for 

x  . Hence,  X  is normally distributed with 

the average and variance are equal to 
X  and 2

X  

respectively.  

 

 

Lemma 2 Assume  ,X W  is the vector of random 

bivariate with distribution having vector of mean as 

X

W






 
  
 

, matrix of variance covariance is given 

as 

2

2

X XW

XW W

 

 

 
   

  

, and   is the correlation 

coefficient of X and W. A joint distribution of X and 

W is shown in equation (5). For some x such that

 f x  is greater than zero, the conditional 

distribution of random variable W given X=x is 

shown as equation (10). 
2

1 |X

2 W|X

W|X

1
( | )

2

w W

f w x e







 
 
 
  for w   

                          

where  W|X 0 1 ,x     
0 W 1 ,X    

1
W

X


 


   and 

2
W|X W 1                     (10) 

Proof Assume  ,X W  is the bivariate random 

vector with the joint distribution  ,wf x  as 

illustrate in equation (5). The marginal distribution 

of X is illustrated in equation (6). For some x such 

that  f x  is greater than zero, the conditional 

distribution of random variable W given X=x is 

written in the form of equation (11). 

( , )
(w | )

( )

f x w
f x

f x
                (11) 

From Lemma 1, substitute equations (5) and (6) into 

equation (11), this conditional density function is 

given as follows: 

21
W|X22

W|X

W|X

1
(w | )

2

w

f x e






  
 

                

for W|X 0 1x    , 1
W

X


 


 , 

0 W 1 X      

and 
2

W|X W 1 .     Hence, the variable W 

given X x  is distributed of normal with average 

equals W|X 0 1x     and variance equals

 2 2 2

W|X W
1    . 
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Theorem 1 The random vector  ,X Y  is taken 

from bivariate normal distribution with vector of 

mean
X

Y






 
  
 

, matrix of variance covariance 

equals 

2

2

X XY

XY Y

 

 

 
   

  

, and   is the correlation 

coefficient of X and Y. Suppose that data  ,x y  are 

non-missing observed for r pairs and the rest  n r  

observations (for r between zero and n) on y are lost. 
Furthermore, data y are supposed missing 

completely at random mechanism and they are 

composed of mild outliers.  Let W be a random 

variable with the same distribution as the random 

variable Y after Winsorization of the data.  The 

values for 
iW  are written by  Fi iw y ;  

 1,  2, ,  i r   where the function  F yi  are shown 

in equation (1) or (2). Then, the weighted maximum 

likelihood correlation coefficient estimator of   
is 

computed in equation (12). This estimator is called 

the weighted maximum likelihood (WML) 

correlation coefficient and symbolized by 
WMLr .  

1
ˆ ˆ

ˆ
X

WML
W

r
 


                 (12) 

where 1
1

2 2

1

ˆ

r

i i
i

r

i
i

x w rx w

x rx

 



 








, 

 
2

1ˆ

n

i
i

X

x x

n
 






, 

    
2

2
W|X 1

1

1 ˆˆ ,
r

i i
i

w w x x
r

 


    

2 2 2
W|X 1

ˆˆ ˆ ˆ
W X     ,  1

r

i
i

w

w
r

 


,   1

r

i
i

x

x
r

 


 

and  1

n

i
i

x

x
n




. 

Proof  Suppose the random vector  ,X Y  is taken 

from bivariate normal distribution. The value of 

random variable W is symbolized as  Fi iw y ; 

 =1, 2, ,i r  and  F iy  are illustrated in equation 

(1) or (2). Hence, the random vector  ,X W  is 

bivariate normally distributed and the joint 

distribution of variables X and W is explained in 

equation (4). The likelihood function of vector 

parameter  2 2, , , ,X W X W       can be 

demonstrated as equation (13).  

 1 2 1 2
1 1

| , ,..., ,w ,w ,...,w (x ,w ) (x )
r n

n r i i i
i i r

L x x x f f
  

 

     
1 1

(x ) (w | )
n r

i i i
i i

f f x
 

                 (13)      

From Lemmas 1 and 2, equations (6) and (10) are 

substituted into equation (13), then equation (14) is 

obtained.    
 

 1 2 1 2| , ,..., ,w ,w ,...,wn rL x x x C D               

(14) 
      

where  

 
 

1 2

222 122

n
xn i X

iX
XC e






 





 , 

 
 

21
0 122 12 W|X2

W|X2

r
w xi ir

i
D e

 




    
 



 ,  

0 W 1 X     , 1
W

X


 


  and 

 2 2 2
W|X 1W    . The log likelihood function of 

equation (14) can be proved in equation (15). 

 

   1 2 1 2ln ln | , ,..., ,w ,w ,...,wn rL L x x x   

   

   

22

2
1

22
W|X 0 12

1W|X

1
ln 2

2 2

1
ln 2

2 2

n

X i X
iX

r

i i
i

n
x

r
w x

 


  






 
  

 
     





                 (15) 

The maximum likelihood estimators of  ,X  2 ,X  

0 ,  1  and 
2
W|X   will be proved on taking the 

partial derivative of the log-likelihood function as 

shown in equation (15) with respect to each of 

parameters ,X  2 ,X  0 ,  1  and 
2
W|X  , and 

assigning to zero for each. These can be derived as 

follows:   

   
2

2
1

1
ln 0

2

n

i X
iX X X

L x 
   

   
   

    
  

 
2

1

1
2 0

2

n

i X
iX

x 
 

 
    

 
  
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So that     1

n

i
i

X

x

n
 


                (16) 

Additionally, the maximum likelihood estimator of 

parameter X  is symbolized by 1ˆ .

n

i
i

X

x

x
n

  


 

Next, considering the partial derivative of the log-

likelihood function with respect to parameter 2 .X  

     
22

2 2 2
1

1
ln ln 2

2 2

0

n

X i X
iX X X

n
L x  

   

   
    

    





    

 
 

2

2 2
2 1

2 1
0

2 2 2

n

i X
iX

X

n
x




  

 
     

 
 

  

 
2

2 2
1

1 1
0.

2

n

i X
iX X

n x 
  

 
     

 
 

  After rearrange 

this formula, the variance of X is computed as 

 
2

2 1

n

i X
i

X

x

n



 






 and X  is replaced with 

equation (16). Hence, the maximum likelihood 

estimator of parameter 2
X  is denoted by symbol  

 
2

2 1ˆ .

n

i
i

X

x x

n
 






 Moreover, the estimators of 

parameters 0  and 1  can be derived by the same 

way as previous proof. That is, 

   
2

0 12
10 0 W|X

1
ln

2

0

r

i i
i

L w x  
   

   
       
 





 0 12
1W|X

2
1 0

2

r

i i
i

w x 
 


        

0 1
1 1

0
r r

i i
i i

w r x 
 

                                        

(17) 

   
2

0 12
11 1 W|X

1
ln

2

0

r

i i
i

L w x  
   

   
       
 





 0 12
1W|X

2
0

2

r

i i i
i

w x x 
 


        

2
0 1

1 1 1

0
r r r

i i i i
i i i

x w x x 
  

                                

(18) 

Equation (17) 
1

r

i
i

x


 , it is written in equation (19). 

2

0 1
1 1 1 1

0
r r r r

i i i i
i i i i

x w r x x 
   

 
   

 
                   (19) 

 

Equation (18) r , it is written in equation (20). 

2
0 1

1 1 1

0
r r r

i i i i
i i i

r x w r x r x 
  

                                

(20) 

 

Solving equation (19) and equation (20), then the 

maximum likelihood estimators of parameters 0  

and 1  can be symbolized as 0 1
ˆ ˆw x     and 

1
1

2 2

1

ˆ ,

r

i i
i

r

i
i

x w rx w

x rx

 



 








 respectively. Further, a partial 

derivative of the log-likelihood function with 

respect to parameter 
2
W|X  and setting it to zero that 

can be proved as 

 

   

2
W|X

22
W|X 0 12 2

1W|X W|X

ln

1
ln 2

2 2

0

r

i i
i

L

r
w x




  
  





  
          





 
 

2

0 12 2
2 1W|X
W|X

2 1
0

2 2 2

r

i i
i

r
w x


 

  

 
      
 
 

  

 
2

0 12 2
1W|X W|X

1 1
0

2

r

i i
i

r w x 
  

  
      

  
  

 
22

W|X 0 1
1

1 r

i i
i

w x
r

  


                  (21) 

The maximum likelihood estimator of parameter
2
W|X  can be calculated by replacing 0  with its 

estimator as 0 1
ˆ ˆw x     in equation (21) and 

rearrange the formula. Therefore, the maximum 

likelihood estimator of parameter
2
W|X  is denoted 
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as   
2

2
W|X 1 1

1

1 ˆ ˆˆ
r

i i
i

w w x x
r

  


     or

    
2

2
W|X 1

1

1 ˆˆ .
r

i i
i

w w x x
r

 


      

 

In equation (10), parameters 
1  and 

2
W|X  can be 

written in the formulas of equation (22) and (23). 

 

  1
W

X


 


    or   

1
X

W


 


                 (22) 

 

   2 2 2
W|X 1 W                                  (23) 

 

Equation (22) is substituted into equation (23), then 

equation (24) is obtained.  

 
2

2 2
W|X 11 X

W
W


  



  
        

 

2
2 2

1 2
1 X

W

W


 



 
  

 
 

    

       

         2 2 2
1W X                                             (24) 

 

The variance of random variable W can be written in 

the formula
2 2 2 2

W|X 1W X     . In equation (22), 

we know that 1
X

W


 


 . Due to a result of 

invariance feature for the maximum likelihood 

estimator, then the WML correlation coefficient of 

  
is symbolized by 

WMLr  and this estimator can be 

written in the formula 1
ˆ ˆ

ˆ
X

WML
W

r
 


 . Similarly, the 

maximum likelihood estimator of parameter 
W  

can be proved by using its invariance feature, and 

the WML estimator of parameter W  is given in the 

formula 2 2 2
W|X 1

ˆˆ ˆ ˆ
W X     . 

 

 

3 Results of the Simulation Study 
A performance validity of the proposed estimator is 

performed to compare the reliability in term of 

robustness properties through the simulated data. 

The comparison of six estimators, namely WMLr , Pr , 

Mr , 
PBr , Br  and 

Cr , are investigated through the 

simulated data across 240 situations. In this study, 

the bivariate normal distributed data are generated 

by Monte Carlo technique. The simulated data are 

composed of mild outliers [28] and missing 

observations in variable Y for 10% and 20% of the 

total cases. The performance comparisons of the six 

estimators are considered from two features: bias 

and mean squared error. The random sample  x, y  

of six sizes as 10, 20, 30, 40, 50 and 100 are taken 

from the standard bivariate normal distribution with 

the correlation measure coefficient   equals 0, 0.1, 

0.2, …, 0.9. The results of this study are illustrated 

in Fig. 2 to Fig. 13.  Consider Fig.2, it is found that 

bias of the proposed correlation measure—
WMLr —

tends to be smaller than those of four methods—
Pr , 

Mr , 
PBr  and 

Br —for sample size (n) equals 10 and 

outliers equal 20% regardless of missing data levels 

and  levels of .  Moreover, for sample size equals 

10 and outliers in dataset equals 20%, it is found 

that the mean squared error of WML estimator gives 

the smallest values for all levels of correlation 

coefficients   that show in Fig. 3.  That is, the 

WMLr  seems to be the best method or it provides 

both of the smallest bias and mean squared error for 

a sample size equals 10 when outliers equals 20% 

regardless levels of   and percentages of missing 

data. For a sample size equals 20 as shows in Fig. 4, 

the composite and median correlation coefficients 

tend to have the smallest biases. However, mean 

squared error of the WML estimator tends to be less 

than those of the composite and median correlation 

coefficients for   approximates not greater than 0.5 

regardless levels of missing data and outliers in the 

dataset as shows in Fig. 5. For larger sample sizes, 

i.e., n = 30, 40, 50, 100, the results are shown in Fig. 

6, 8, 10 and 12, these are found that bias of the 

median correlation coefficients tend to be lower 

than those of five estimators—
Pr , 

WMLr , 
PBr , 

Br  

and 
Cr — irrespective of outliers and missing data 

levels. However, the mean squared error of WML 

estimator seems to have the lowest value for the 

small correlation coefficients  , e.g.,  = 0.1, 0.2, 

0.3, 0.4, irrespectively of percentages of outliers and 

missing data which these results are shown in Fig. 7, 

9, 11 and 13. For the largest sample size  100n  , 

Fig. 12 to Fig. 13 indicate that Mr  seems to have a 

good properties for both criteria, namely, bias and 

mean squared error. That is, it tends to give the 

small bias and mean squared error for all the levels 

of outliers and missing whatever the level of  will 

be. 
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Fig.2: Biases comparison of the six estimators 
for different levels of missing and outliers in 

the sample data when n=10. 

 
 

Fig.3: Dipersion comparison of six estimators 
for different levels of outliers and missing in 

the sample data when n=10. 
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Fig.4: Biases comparison of the six estimators 
for different levels of missing and outliers in 

the sample data when n=20. 

 
 

Fig.5: Dipersion comparison of six estimators 
for different levels of outliers and missing in 

the sample data when n=20. 
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Fig.6: Biases comparison of the six estimators 
for different levels of missing and outliers in 

the sample data when n=30. 

 
 

Fig.7: Dipersion comparison of six estimators 
for different levels of outliers and missing in 

the sample data when n=30. 
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Fig.8: Biases comparison of the six estimators 
for different levels of missing and outliers in 

the sample data when when n=40. 

 

 
 

Fig.9: Dipersion comparison of six estimators 
for different levels of outliers and missing in 

the sample data when n=40. 
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Fig.10: Biases comparison of the six 

estimators for different levels of missing and 

outliers in the sample data when n=50. 

 
 

Fig.11: Dipersion comparison of six 

estimators for different levels of outliers and 

missing in the sample data when n=50. 
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Fig.12: Biases comparison of the six 

estimators for different levels of missing and 

outliers in the sample data when n=100. 

 
 

Fig.13: Dipersion comparison of six 

estimators for different levels of outliers and 

missing in the sample data when n=100. 
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4 Discussion 
From the results of this research, the median 

correlation coefficient tends to provide the best 

performance even if some observations are lost and 

outliers occur in the dataset. As a results of this 

method using the robust estimator, i.e., sample 

median and sample median absolute deviations, then 

outliers are not effect in the accuracy of estimation.  

In other words, this method give the lowest bias and 

mean squared error when the sizes of sample are 

large by comparing with the other five methods. 

This study result conforms to the research of [22]. 

Additionally, the Pearson correlation coefficient is 

the most ineffective estimator for estimating the 

relationship between two random variables for the 

bivariate normal distribution when some 

observations are lost and outliers occur in the 

dataset. The result of this research is consistent with 

the studies of [20-23, 25, 31-32]. Because Pearson 

estimator based on the sample mean of two 

variables and it is a sensitive estimator for outliers, 

hence the estimated of this estimator is not close to 

the true parameter.  

 

 

5 Conclusion 
The relationship estimator—WML correlation 

coefficient—is presented when data are sampled 

from population which has the bivariate normal 

distribution. This proposed estimator was developed 

from the conditional probability function principle 

and concern about the Winsorized distribution 

concept when the tails of it contains anomalous 

information. A performance verification of the 

presented estimator is performed through the 

simulated data across 240 scenarios to compare the 

robust property of this estimator when analysis of 

data dealing with outliers and missing observations 

occur. The comparison results of six method—

WML, Pearson, median, percentage bend, biweight 

mid, and composite correlation coefficients—are as 

follow: for almost all levels of  , the WML 

correlation coefficient tends to be the robust 

estimator although the data in the analysis contain 

outliers and missing values. Especially, when the 

sample size is as small as 10 and outliers are 

presented in the dataset as 20%, regardless of the 

percentage of data loss. For size of  sample equals 

100, the median correlation coefficient seems to 

provide the best performance when   

approximately over 0.4 at all levels of percentages 

of missing and outliers in the dataset. Although, the 

bias of the proposed estimator is greater than this of 

median method when sample sizes are larger, but its 

mean squared error tends to be lower than another 

methods, regardless of the degree of data loss and 

outliers. This effect is particularly observed when   

approximately less than 0.5. 
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