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1 Introduction 
The Korteweg - de Vries equation [1] is a 

mathematical model of waves on shallow water.  It 
is a prototype example of a nonlinear partial 
differential equation (PDE) whose solutions can be 
exactly specified.  The equation is given as: 

𝑢𝑡 − 𝑢𝑢𝑥 − 𝑢𝑥𝑥𝑥 = 0. (1) 

The most referred solution to (1) is the travelling 
wave solution.  After the development of the KdV 
equation, it was only in 1960 that new application of 
the model equation was discovered [2].  Gardner 
and Morikawa [3] found this new model in the study 
of collision free hydro-magnetic waves  

 Since this time, many other applications have 
been found.  Kruskal [4] and Zabusky [5] showed 
the KdV equation models longitudinal waves 
propogating one dimensional lattice of equal masses 
coupled by nonlinear springs, the Fermi-Pasta-Ulam 
problem. Berezin and Karpman [6] derived 
applications to plasma physics.  Washimi and 
Taniuti [7] applied the equation in their study of 
ion-acoustic waves in a cold plasma.  Wijngaarden 
[8] found that the KdV equation modelled the 
pressure waves in a liquid-gas mixture bubble.  
Nariboli [9] showed the equation modelled waves in 
elastic rods.  The list goes on. 

The KdV equation is used in plasma physics, 
[10] , the study of waves in shallow water [11] as 
well as in oceanographic studies [12].  The broad 
spectrum of applications of KdV equation and its 
ability to model scenarios spanning various 

sciences, has kept the KdV equation under the 
microscope of academic study.  Most of the more 
recent research on the equation is driven by 
examining the solutions of the equation.   

In this study we will go back to finding solutions 
to the KdV equation.  In particular, we will look at 
the scale invariant solution determined through Lie 
Symmetries.  The aim, with Lie Symmetries, is to 
convert a PDE to a solveable ODE.  This study’s 
objective is to determine exact solutions to (1), 
something that has never been done.   

There have been solutions found to variations of 
the KdV equation [13] [14] [15], and KdV – like 
equations [16] [17] [18].  Berjawi, Elarwadi, and 
Israwi conducted a study of an extended KdV 
equation [19].  However, with regards to (1), and 
using Lie Symmetries, the scale invariant solution is 
incomplete.  Olver [20], uses a transform developed 
by Miura [2].  This only leads to an equation that 
can be integrated once to then yield a second 
Painlevé transcendent.  Thus we still don’t have a 
solution. 

A solution to (1) was determined in 1895 by 
Diederik Korteweg and Gustav de Vries [1] is given 
as: 

𝑢 =
𝑐

2
sech2 [

√𝑐

2
(𝑥 − 𝑐𝑡 − 𝑎)]  ( 2 ) 

This solution does not include integration constants.  
This makes the result incomplete, or inappropriate 
[21]. 
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There have been studies which have appended 
the traditional Lie approach.  Ovsiaanikov [22] 
proposed Group Invariant solutions which he 
appended to the traditional Lie Approach. However, 
he still fell short of a solution.  Other attempts can 
be found by Ibragimov and Gazizov [23],  Ali, 
Qadir and Mahomed [24], as well as Momoniat and 
Mahomed, [25]. 

The start of our journey to a solution involves 
determining the  Lie Symmetries [26]. This will be 
covered in Section 2. We will determine the scale 
invariant solutions based on the symmetries found.  
These solutions bring us to polynomials which 
require the use of manifolds to solve.  We lay out 
the theory of manifolds in Section 3. 

 In Section 4, we make use of differential 
manifolds and build the solutions.  
 

 

2 The Pure Lie Approach 
In this section, we determine the symmetries for the 
modified KdV equation (1), by applying the 
algorithm developed by Lie [26].  The process is 
laid out in the following subsection. 
 
2.1 The Infinitesimal Generator and Its 

Prolongations. 
The infinitesimal generator of a first order PDE is 
given as: 

𝑋 = 𝜉
𝜕

𝜕𝑥
+ 𝜏

𝜕

𝜕𝑡
+ 𝜂

𝜕

𝜕𝑢
 . (3) 

Where ξ, τ, η are all functions of 𝑥, 𝑡, and 𝑢. 
 
The prolongations of the generator are given as: 

𝑋(1) =  𝜉
𝜕

𝜕𝑥
+ 𝜏

𝜕

𝜕𝑡
+ 𝜂

𝜕

𝜕𝑢
 . (4) 

𝑋(2) =  𝑋(1) + 𝜂𝑥𝑥 𝜕

𝜕𝑢𝑥𝑥
+ 𝜂𝑥𝑡 𝜕

𝜕𝑢𝑥𝑡
+ 𝜂𝑡𝑡 𝜕

𝜕𝑢𝑡𝑡
 . (5) 

𝑋(3) = 𝑋(2) + 𝜂𝑥𝑥𝑥
𝜕

𝜕𝑢𝑥𝑥𝑥
+ 𝜂𝑥𝑥𝑡

𝜕

𝜕𝑢𝑥𝑥𝑡

+𝜂𝑥𝑡𝑡
𝜕

𝜕𝑢𝑥𝑡𝑡
+ 𝜂𝑡𝑡𝑡

𝜕

𝜕𝑢𝑡𝑡𝑡
 .

 
(6) 

 
To obtain the prolongations of a given 
transformation, we made use of the total derivative 
operator: 

𝐷𝑥 = 𝜕𝑥 + 𝑢𝑥𝜕𝑢 + 𝑢𝑥𝑥𝜕𝑢𝑥 + 𝑢𝑥𝑡𝜕𝑢𝑡 + ⋯. (7) 

𝐷𝑡 =  𝜕𝑡 + 𝑢𝑡𝜕𝑢 + 𝑢𝑥𝑡𝜕𝑢𝑥 + 𝑢𝑡𝑡𝜕𝑢𝑡 + ⋯. (8) 

The prolongations are determined using the 
following formulae: 

η𝐽𝑥 = 𝐷𝑥η𝐽 − 𝑢𝐽𝑥𝐷𝑥ξ − 𝑢𝐽𝑡𝐷𝑥τ. (9) 

 η𝐽𝑡 = 𝐷𝑡η𝐽 − 𝑢𝐽𝑡𝐷𝑡ξ − 𝑢𝐽𝑡𝐷𝑡τ. (10) 

  
2.2 Finding the Symmetries 

We make use of the third prolongation (6) and 
expand Lies Invariance condition.  Lie’s invariance 
condition is given as: 

𝑋(3)(𝑢𝑡 − 𝑢𝑢𝑥 − 𝑢𝑥𝑥𝑥) = 0. (11) 

When 𝑢𝑥𝑥𝑥 = 𝑢𝑡 − 𝑢𝑥. 
 
We expand (11) and arrive at: 

η𝑢𝑥 + 𝑢η𝑥 − η𝑡 + η𝑥𝑥𝑥 = 0. (12) 

 
We apply Lie’s invariance criterion, expand the 
expression and replace all occurrences of 𝑢𝑥𝑥𝑥 with 
𝑢𝑡 − 𝑢𝑢𝑥. By equating the coefficients of various 
monomials to zero, we are left with the defining 
equations for the symmetry group.  The coefficients 
usually yield an over-determined system of 
equations.   
 
We begin by looking at the following monomials 
and equating their coefficients to zero: 

𝒖𝒙𝒙𝒖𝒙𝒕:    τ𝑢 = 0 (13) 

𝒖𝒙𝒙𝒕:        τ𝑥 = 0 (14) 

 𝒖𝒙𝒙
𝟐 :         ξ𝑢 = 0 (15) 

 𝒖𝒙𝒖𝒙𝒙:      η𝑢𝑢 − 3ξ𝑥𝑢 = 0 (16) 

 From (13) and (14), we conclude τ is a function of 
𝑡. From (16), we determine ξ is a function of 𝑥 and 
𝑡.  We apply (15) to (16), thus simplifying (16) to: 
η𝑢𝑢 = 0. 
 
We now introduce arbitrary functions 
𝑎(𝑡), 𝑏(𝑥, 𝑡), 𝑐(𝑥, 𝑡) and 𝑑(𝑥, 𝑡) to write out an 
outline of what the infinitesimals will look like: 

η = 𝑐(𝑥, 𝑡)𝑢 + 𝑑(𝑥, 𝑡). (17) 
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ξ = 𝑏(𝑥, 𝑡). (18) 

τ = 𝑎(𝑡). (19) 

We continue our examination of the monomials and 
their coefficients, this time using equations (17), 
(18), and (19) to define the functions 𝑎, 𝑏, 𝑐, 𝑑.  We 
will be introducing constants of integrations 𝐴𝑖 and 
𝐵𝑖. 

𝒖𝒙
𝟎: 𝑢𝑐𝑥𝑥𝑥 + 𝑑𝑥𝑥𝑥 + 𝑢2𝑐𝑥 + 𝑢𝑑𝑥 − 𝑢𝑐𝑡 − 𝑑𝑡. (20) 

𝒖𝒕: 𝑎′(𝑡) − 3𝑏𝑥 = 0. (21) 

𝒖𝒙: 𝑢𝑐(𝑥, 𝑡) + 𝑑(𝑥, 𝑡) + 2𝑢𝑏𝑥 + 𝑏𝑡 + 3𝑐𝑥𝑥 −

𝑏𝑥𝑥𝑥 = 0. 

(22) 

𝒖𝒙𝒙: 𝑐𝑥 − 𝑏𝑥𝑥 = 0. (23) 

We focus our attention on the coefficients of the 
powers of u from equation (20): 

𝒖𝟎: 𝑑𝑥𝑥𝑥 − 𝑑𝑡 = 0. (24) 

 𝒖: 𝑐𝑥𝑥𝑥 + 𝑑𝑥 − 𝑐𝑡 = 0. (25) 

𝒖𝒙𝒙: 𝑐𝑥 − 𝑏𝑥𝑥 = 0. (26) 

From equation (26), we define 𝑐 further: 

𝑐 = 𝑐(𝑡) + 𝐴1. (27) 

We substitute (27) into  (26): 

𝑏𝑥𝑥 = 0. (28) 

Taking into account (27) and (28), we consider the 
coefficients of the powers of 𝑢 from (22): 

𝒖𝟎:      𝑑 + 𝑏𝑡 = 0. (29) 

 𝒖:      𝑐(𝑡) + 𝐴1 + 2𝑏𝑥 = 0. (30) 

 From equation (30): 

2𝑏𝑥 = −𝑐(𝑡) − 𝐴1, (31) 

 𝑏𝑥 = −
1

2
𝑐(𝑡) −

1

2
𝐴1, (32) 

 𝑏𝑥𝑡 = −
1

2
𝑐′(𝑡). (33) 

We substitute (27) into (25): 

𝑑𝑥 = 𝑐′(𝑡). (34) 

From (29), we determine 𝑑𝑥: 

𝑑 + 𝑏𝑡 = 0. (35) 

 𝑑 = −𝑏𝑡. (36) 

 𝑑𝑥 = −𝑏𝑥𝑡. (37) 

From (33), (34), and (37): 

𝑐′(𝑡) = −
1

2
𝑐′(𝑡). (38) 

 𝑐′(𝑡) = 0. (39) 

 𝑐(𝑡) = 𝐴2. (40) 

 
 
We can now state  

𝑐 = 𝐵1. (41) 

 We simplify (24) by applying (34) and (39): 

𝑑𝑡 = 0, (42) 

 𝑑 = 𝑓(𝑥) + 𝐴3. (43) 

where 𝑓(𝑥) is a function of integration. 
 
However, when we substitute (37) into (25): 

𝑑𝑥 = 0. (44) 

𝑑 = ℎ(𝑡) + 𝐴4. (45) 

 We now equate (43) and  (45) and simplify: 

𝑓(𝑥) + 𝐴3 = ℎ(𝑡) + 𝐴4. (46) 

 𝑓(𝑥) = ℎ(𝑡) = 𝐴5. (47) 

𝑑 = 𝐵2. (48) 

We begin defining 𝑏(𝑥, 𝑡) by looking at (36) and  
(48): 

𝑏𝑡 = −𝐵2, (49) 
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 𝑏 = 𝑘(𝑥) − 𝐵2𝑡. (50) 

for arbitrary function 𝑘(𝑥). 
 
However, from (32) and  (41) we have: 

𝑏𝑥 = −
1

2
𝐵1, (51) 

 𝑏 = 𝑚(𝑡) −
1

2
𝐵1𝑥. (52) 

 For arbitrary function 𝑚(𝑡). 
 
We now are faced with two definitions of 𝑏(𝑥, 𝑡) 
which we need to reconcile.  We equate (50) and 
(52): 
 

𝑘(𝑥) − 𝐵2𝑡 = 𝑚(𝑡) −
1

2
𝐵1𝑥, (53) 

 𝑘(𝑥) = −
1

2
𝐵1𝑥, (54) 

 𝑚(𝑡) = −𝐵2𝑡, (55) 

 𝑏 = −
1

2
𝐵1𝑥 − 𝐵2𝑡 + 𝐵3. (56) 

To determine 𝑎(𝑡) we substitute (56) into (21): 

𝑎′(𝑡) =
3

2
𝐵1, (57) 

 𝑎(𝑡) =
3

2
𝐵1𝑡 + 𝐵4. (58) 

We eliminate the fractions associated with 𝐵1 and 
replace the constants as follows: 

𝑎(𝑡) = 3𝐶1𝑡 + 𝐶4. (59) 

 𝑏(𝑥, 𝑡) = 𝐶1𝑥 − 𝐶2𝑡 + 𝐶3. (60) 

 𝑐 = −2𝐶1. (61) 

 𝑑 = 𝐶2. (62) 

2.2.1 The Infinitesimals and Symmetries 

The infinitesimals have now been fully determined: 

η = −2𝐶1𝑢 + 𝐶2. (63) 

 ξ = 𝐶1𝑥 − 𝐶2𝑡 + 𝐶3. (64) 

τ = 3𝐶1𝑡 + 𝐶4. (65) 

The infinitesimals give us our symmetries: 

𝑋1 = 𝑥
∂

∂𝑥
+ 3𝑡

∂

∂𝑡
− 2𝑢

∂

∂𝑢
. 

(66) 

𝑋2 = −𝑡
∂

∂𝑥
+

∂

∂𝑢
. 

(67) 

  𝑋3 =
∂

∂𝑥
. (68) 

 𝑋4 =
𝜕

𝜕𝑡
 (69) 

  
2.2.2 The Commutator Table 
Consider two symmetry generators, 𝑋𝑖 and 𝑋𝑗, the 
commutator of 𝑋𝑖 with 𝑋𝑗 is defined as: 

[𝑋𝑖, 𝑋𝑗] = 𝑋𝑖𝑋𝑗 − 𝑋𝑗𝑋𝑖. (70) 

From the definition of the commutator, the 
following properties are evident: 

[𝑋𝑖, 𝑋𝑗] = −[𝑋𝑗, 𝑋𝑖]. (71) 

 [𝑋𝑖 , 𝑋𝑖] = 0. (72) 

 
The commutators for our symmetries are listed in 
the commutator table: 
 
 𝑋1 𝑋2 𝑋3 𝑋4 

𝑋1 0 2𝑋2 −𝑋3 −3𝑋4 
𝑋2 −2𝑋2 0 0 𝑋3 
𝑋3 𝑋3 0 0 0 
𝑋4 3𝑋4 −𝑋3 0 0 

Table 1: Commutator Table 

The linear space spanned by 𝑋1, 𝑋2, 𝑋3, 𝑋4 is a Lie 
Algebra with a skew symmetric operator. From 
Table 1 we can see that 𝑋2, 𝑋3, 𝑋4 commute.  For a 
symmetry 𝑌 ∈ ℒ3 = {𝑋2, 𝑋3, 𝑋4}, a subalgebra, we 
have: 

[𝑋1, 𝑌] ∈ ℒ3, (73) 
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 From this we have: 

{𝑋2} ⊂ {𝑋2, 𝑋3} ⊂ {𝑋2, 𝑋3, 𝑋4} ⊂

{𝑋1, 𝑋2, 𝑋3, 𝑋4} = ℒ. 

(74) 

  
This tells us that ℒ is solvable. 
 
 

2.3 Invariant Solution Through 𝑿𝟏 
 
In this section we will detail the calculations in 
determining the invariant solution through (66) 

𝑋1 = 𝑥
∂

∂𝑥
+ 3𝑡

∂

∂𝑡
− 2𝑢

∂

∂𝑢
 

The characteristic equation we are required to solve 
is: 

𝑑𝑥

𝑥
=

𝑑𝑡

3𝑡
=

𝑑𝑢

−2𝑢
. 

(75) 

2.3.1 The Invariants 
 
We begin by solving: 

𝑑𝑥

𝑥
=

𝑑𝑡

3𝑡
, 

(76) 

 𝑙𝑛 𝑥 =
1

3
𝑙𝑛 𝑡 + 𝑙𝑛 𝐶1, (77) 

 𝐶1 = 𝑥𝑡−
1

3. (78) 

This gives us our first invariant: 

𝑦 = 𝑥𝑡−
1

3. (79) 

To determine our second invariant, we look at: 

𝑑𝑡

3𝑡
=

𝑑𝑢

−2𝑢
, 

(80) 

 − 2

3
𝑙𝑛 𝑡 + 𝑙𝑛 𝐶2 = 𝑙𝑛 𝑢, (81) 

 𝐶2 = 𝑢𝑡
2

3. (82) 

 
Our second invariant is given as: 

𝑣 = 𝑢𝑡
2

3. (83) 

 
From (83), we write 𝑢 in terms of 𝑣: 

𝑢 = 𝑣𝑡−
2

3. (84) 

From (84), we determine: 

𝑢𝑥 =
1

𝑡
𝑣𝑦, (85) 

 𝑢𝑥𝑥𝑥 = 𝑡−
5

3𝑣𝑦𝑦𝑦, (86) 

 𝑢𝑡 = −
1

3
𝑡−

5

3(2𝑣 + 𝑦𝑣𝑦). (87) 

 
Now we substitute (85), (86), (87) into (1)  

−
1

3
𝑡−

5

3(2𝑣 + 𝑦𝑣𝑦) − 𝑣𝑡−
2

3(𝑡−1𝑣𝑦) − 𝑡−
5

3𝑣𝑦𝑦𝑦 = 0, (88) 

 − 1

3
(2𝑣 + 𝑦𝑣𝑦) − 𝑣𝑣𝑦 − 𝑣𝑦𝑦𝑦 = 0, (89) 

 𝑣𝑦𝑦𝑦 + 𝑣𝑣𝑦 +
1

3
𝑦𝑣𝑦 +

2

3
𝑣 = 0. (90) 

 
We have now taken the original PDE and 
transformed it to an ODE.  However, this third order 
ODE requires more work to solve.  This solution is 
given, in detail, in Section 4.  We first lay the 
ground work for the technique used in Section 4. 
 

3 The Differential Topological 

Manifolds Basis 
Our approach to the solution of (90) is borrowed 
from the method of variation of parameters. This 
procedure is often used to solve second order non-
homogeneous linear ODEs: 
 

𝑎
𝑑2𝑦

𝑑𝑥2
+ 𝑏

𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 𝑓(𝑥). 

(91) 

   
3.1 The Variation of Parameters Method 

The usual steps involved in solving (91) requires 
first setting: 

𝑓(𝑥) = 0. (92) 

so that: 

𝑎
𝑑2𝑦

𝑑𝑥2
+ 𝑏

𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 0. 

(93) 
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The homogeneous version of the ODE, the result to 
(93) is given as: 

𝑦𝑐 = 𝐶1𝑦1 + 𝐶2𝑦2. (94) 

This is called the complementary solution.  The 
constants 𝐶1 and 𝐶2 are parameters that have to be 
varied.  At some stage we will need to set: 

𝑣𝑖 = 𝐶𝑖, 𝑖 = 1,2. (95) 

These lead to the particular solution: 

𝑦𝑝 = 𝑣1𝑦1 + 𝑣2𝑦2 (96) 

  
So that the general solution is given as: 

𝑦 = 𝑦𝑐 + 𝑦𝑝 (97) 

We take two assumptions to the next subsection and 
beyond.  The assumption giving rise to (93) will be 
interpreted as describing points within quotient 
spaces, leading to (127).  The second assumption, 
the one leading to (95), relates this space to the 
entire differentiable topological manifold, where it 
is located.  It leads to (103) and  (104) which 
generates (134). 
 
 

3.2 Differentiable Topological Manifolds 
We start with a topological space 𝑀 = (𝑋, 𝐽𝑋), a 
Hausdroff topology.  That is, a set 𝑋 with a topology 
𝐽𝑋.  For it to be a differentiable topological 
manifold, or simply a differentiable manifold, we 
require an atlas 𝐴 as well, then we have 𝐷𝑀 =
(𝑋, 𝐽𝑥 , 𝐴). 
 
We now consider two points 𝑝 ∈ 𝑈𝑝 and 𝑞 ∈ 𝑈𝑞 
such that the sets 𝑈𝑝 and 𝑈𝑞 are elements of the 
same manifold.  We can then build the sub-
topologies (𝑈𝑝, 𝐽𝑋 ∣𝑈𝑃

) and (𝑈𝑞 , 𝐽𝑥 ∣𝑈𝑞
). That is, the 

topology of 𝑋 restricted to 𝑈𝑝 and 𝑈𝑞.  A mapping 
φ𝑝, if it exists, maps the space (𝑈𝑝, 𝐽𝑋 ∣𝑈𝑃

) into the 
Euclidean space (𝑅𝑁, 𝒥ℛ𝒩 |φ𝓅(𝒰𝓅)). Similarly, φ𝑞 

maps (𝑈𝑞 , 𝐽𝑥 ∣𝑈𝑞
) into the Euclidean space 

(ℝ𝑁, 𝒥ℛ𝒩 |φ𝓆(𝒰𝓆)). 
If these mappings are homomorphisms, then the set 
A, with: 

𝐴 = (𝑈𝑝, φ𝑝), (𝑈𝑞 , φ𝑞) (98) 

is called an atlas, with φ𝑝, φ𝑞 called coordinates. 

 
Our interest is in one of the charts mapping 
equivalence classes.  That is: 

𝐴 = ([𝑈𝑝], [φ𝑝]), (𝑈𝑞 , φ𝑞) (99) 

  
Similarly, for manifolds of derivatives of φ, we get 
the atlases: 

𝒜(𝒾) = ([𝑈𝑝], [φ𝑝
(𝑖)

]) , (𝑈𝑞 , φ𝑞
(𝑖)

) (100) 

  
 
3.2.1 Transmission Mappings 

The mapping from (ℝ, 𝐽ℝ|[φ([𝑈𝑝])]) to 

(ℝ, 𝐽ℝ|φ([𝑈𝑞])) having stepped down from ℝ𝑁 to ℝ, 
is given by: 

φ𝑝 (φ𝑞
−1 (φ𝑞([𝑈𝑝]))) (101) 

and it is called a transition mapping.  Its inverse is: 

φ𝑞 (φ𝑝
−1 (φ𝑝(𝑈𝑞))) (102) 

We are interested in case(s) where [𝑈𝑝] and 𝑈𝑞 
 overlap, so that there is a point 𝑥 in the 
neighborhood of both 𝑝 and 𝑞 such that: 

[φ[𝑥]] = φ(𝑥) (103) 

The transmission mappings in derivative spaces lead 
to: 

𝑑𝑛[φ[𝑥]]

𝑑𝑥𝑛
=

𝑑𝑛φ(𝑥)

𝑑𝑥𝑛
 

(104) 

 for 𝑛 =  1, 2, 3, … 
 
3.2.2 Tangent Spaces 

As indicated earlier, tangent spaces assist in 
establishing a function 𝑓, that allows for results to 
be projected onto the metric space. 
 
A tangent space is a set:  

𝑇𝑃 = {𝑉γ,𝑃|γ ∶ ℝ → 𝑋} (105) 

Such that: 

𝑉γ,𝑃𝑓 = (𝑓 ∘ γ−1)[γ(τ0)] (106) 

 where 𝑓 ∈ 𝐶∞(𝑋), 𝑉γ,𝑃: 𝐶∞(𝑀) → ℝ, γ(τ0) = 𝑃. 
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The tangent space 𝑇𝑃 has the basis vectors {∂𝑋𝑖}.  
Any vector can be represented in terms of it, so that 

𝑋 = ξ𝑖
∂

∂𝑋𝑖
|𝑃 

(107) 

That is 𝑋 ∈ 𝑇𝑝𝑋 = 𝑇𝑝𝑀 
 
3.2.3 Cotangent Spaces 

A tangent space is a vector space, and where there is 
one there should also be a co-vector space, hence 
the cotangent space.  It is the set of all maps in the 
tangent space to ℝ.  That is: 

ω: 𝑇𝑝𝑋 → ℝ (108) 

With 𝜔 being an element of the cotangent space.  
The symbol (𝑑𝑓)𝑝 represents a co-vector acting on 
mapping 𝑓 at 𝑃.  A cotangent space, therefore, is: 

𝑇𝑃∗ = {(𝑑𝑓)𝑝|𝑓 ∈ 𝐶∞(𝑋)} (109) 

 and it is a vector space and is the dual of 𝑇𝑃. 
 
The basis vectors of a cotangent space requires that: 

(𝑑ω𝑗)
𝑝

(
∂

∂𝑥𝑖
) |𝑃 = δ𝑖

𝑗 
(110) 

so that: 

(𝒯𝒫∗) = {
∂

∂𝑥𝑖
} |𝑝 

(111) 

Therefore, an element ω of 𝑇𝑃∗ can be written: 

ω = ω𝑖(𝑑𝑥𝑖)|𝑝 (112) 

  
3.3 Quotient Spaces 
Consider the general ordinary differential equation: 

𝑓(𝑥, φ, φ′, φ′′, φ(3) … ) (113) 

with  

φ: 𝑋 → 𝑌 (114) 

  
A set: 

𝑆 = {𝑥0, 𝑥1, 𝑥2, … } ⊂ 𝑋 (115) 

such that: 

𝑥𝑖 = 𝑃(𝑥𝑗) = 𝑥𝑗 + 2π𝑘𝑠 (116) 

 where 𝑘𝑠 is an integer, is called an equivalence 
class.  This leads to a Quotient Space ℝ/~.  It is the 
set of all equivalent classes in ℝ, and is given by: 

ℝ/~ = {[𝑥0], [𝑥1], [𝑥2], … } (117) 

 It is a differentiable topological space.  In our 
study, the image of this set, is also an equivalence 
class: 

𝑆 =  {[φ(𝑥0)], [φ(𝑥1)], [φ(𝑥2)], … } (118) 

 as such there is a homomorphism, and it extends to 
the derivative spaces: 

𝑇 = {[φ(𝑖)(𝑥0)], [φ(𝑖)(𝑥1)], [φ(𝑖)(𝑥2)], … } (119) 

for 𝑖 =  1, 2, 3, … 
 

4 The Solution through 𝑿𝟏 
We isolate 𝑣(𝑦) from (90): 

𝑣(𝑦) =
−𝑦𝑣′ − 3𝑣(3)

2 + 3𝑣′
. 

(120) 

We differentiate (90): 

v(4)y + v𝑣′′ +
1

3
y𝑣′′ + (𝑣′)2 + 𝑣′ = 0. (121) 

  
We isolate 𝑣′′ from (121): 

𝑣′′(𝑦) =
3(2 + 3𝑣′)(𝑣′ + (𝑣′)2 + 𝑣(4))

2𝑦 − 9𝑣(3)
 

(122) 

 We differentiate (121): 

𝑣(5) + 𝑣𝑣(3) +
1

3
𝑦𝑣(3) + 3𝑣′𝑣′′ +

4

3
𝑣′′

= 0 

(123) 

To use the method of differential manifolds we 
require generating equations of the form: 

[𝑞′′] = 𝜔2[𝑞]. (124) 

 We are looking for: 

[𝑞(𝑛+2)] = [𝑞𝑛] = 0. (125) 

  
We substitute (120) and (122) into (123) and 
determine the equivalence class generators to be: 
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[𝑞′] = 𝑣′ +
2

3
. (126) 

 
Where 𝑣′ = −

2

3
 

 
From (126) we have 𝑞(3)  =  0 
The condition laid out in  (125) has now been 
satisfied.   
 
From L’Hopitals Rule,  

[𝑞(3)]

[𝑞′]
=

[𝑞(4)]

[𝑞′′]
 

(127) 

From (127) 

[𝑞(3)]

[𝑞′]
=

[𝑞(4)]

[𝑞′′]
 

(128) 

[𝑞(3)]

[𝑞(4)]
=

[𝑞′]

[𝑞′′]
 

(129) 

 𝑑

𝑑𝑦
𝑙𝑛[𝑞(3)] =

𝑑

𝑑𝑦
𝑙𝑛[𝑞′] (130) 

 𝑙𝑛[𝑞(3)] = 𝑙𝑛[𝑞′] + 𝑙𝑛 𝑘 (131) 

 [𝑞(3)] = 𝑘[𝑞′] (132) 

 We let 𝑘 = ω2 so (132)can be written as: 

[𝑞(3)] = 𝜔2[𝑞′] (133) 

   
From (133), we have: 

[𝑞′] =
𝑎

𝑖𝜔
𝑠𝑖𝑛(𝑖𝜔𝑦 + 𝛼) (134) 

  
Given the condition, (126), we have: 

𝑎

𝑖𝜔
𝑠𝑖𝑛(𝑖𝜔𝑦 + 𝛼) = −

2

3
, (135) 

 𝑠𝑖𝑛(𝑖𝜔𝑦 + 𝛼) =
−2

3
(

𝑖𝜔

𝑎
). (136) 

  
From (136) we calculate: 

𝑐𝑜𝑠(𝑖𝜔𝑦 + 𝛼) = √1 − (
−2

3
(

𝑖𝜔

𝑎
))

2

 
(137) 

  
We take: 

𝑣 =
𝑎

𝑖𝜔
𝑠𝑖𝑛(𝑖𝜔𝑦 + 𝛼) +

2

3
, (138) 

  
  In terms of elements in our equivalence class 
conditions, (138) is written as: 

[𝑣] = 0. (139) 

We differentiate (138) 

𝑣′ = a 𝑐𝑜𝑠(𝑖ω𝑦 + α) , (140) 

 
The equivalence class element is: 

[𝑣′] = a√1 − (
−2

3
(

𝑖𝜔

𝑎
))

2

.  
(141) 

  
We differentiate (140) : 

𝑣′′ = −𝑎(𝑖𝜔) 𝑠𝑖𝑛(𝑖𝜔𝑦 + 𝛼) (142) 

  
The equivalence class element is: 

[𝑣′′] =
2

3
(𝑖𝜔)2 (143) 

  
We differentiate(142): 

𝑣(3) = −𝑎 (𝑖𝜔)2𝑐𝑜𝑠(𝑖𝜔𝑦 + 𝛼) (144) 

 
The equivalence class element is: 

[𝑣(3)] = −𝑎(𝑖𝜔)2√1 − (
−2

3
(

𝑖𝜔

𝑎
))

2

 
(145) 

 
We differentiate (144): 

𝑣(4) = 𝑎(𝑖𝜔)3 𝑠𝑖𝑛(𝑖𝜔𝑦 + 𝛼) (146) 

  
The equivalence class element is given as: 
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[𝑣(4)] =
−2

3
(𝑖𝜔)4 (147) 

  
We now substitute (138), (140) and (144) into (90) 
and integrate once, and then substitute (136) and 
(137). To make the result easier to read, we make 
the substitutions: 

 𝜆 = 𝑎√
9𝑎2−4(𝑖𝜔)2

𝑎2 , 
(148) 

 

𝜔2 = 𝜆2 − 9𝑎2 (149) 

  
 
The numerator yields: 

𝜆2(−27𝑎2 + 36𝐶1 + 8𝑦 − 8) − 324𝑎2𝐶1

− 72𝑎2𝑦 +
243𝑎4

2
+ 63𝑎2

+
3𝜆4

2
− 4 

(150) 

   We integrate a second time, making the same 
substitutions and get: 

−162𝑎2𝐶1𝑦 − 162𝑎2𝐶2 − 36𝑎2𝑦2   

+ 𝜆(−54𝑎2 − 2𝑦 − 3) 

+𝜆2(18𝐶1𝑦 + 18𝐶2 + 4𝑦2) + 6𝜆3 

(151) 

  
  
We solve for 𝑎2 by equating (151) to 0: 

𝑎2 =
18𝐶2𝜆2 + 18𝐶1𝜆2𝑦 + 6𝜆3 − 3𝜆 + 4𝜆2𝑦2 − 2𝜆𝑦

18(9𝐶1𝑦 + 9𝐶2 + 3𝜆 + 2𝑦2)
 (152) 

  
We now can solve for  λ, α and ω: 

λ = −
2

9
(6 + 2𝑦2 + 9𝑦𝐶1 + 9𝐶2) − (153) 

(1 + 𝑖√3) (
𝑓1

216 × 2
2

3𝑓3

1

3

)

+
1

432 × 2
1

3

(1 − 𝑖√3)𝑓3

1

3. 

 
Where: 
 

𝑓1 = −20736𝐶1𝑦3 − 46656𝐶1
2𝑦2 

−20736𝐶2𝑦2 − 62208𝐶1𝑦 − 93312𝐶1𝐶2𝑦 

−46656𝐶2
2 − 279936𝐶1 + 124416𝐶2 

−2304𝑦4 − 16416𝑦2 − 33696𝑦 − 34344 

(154) 

  
 

𝑓2 = 5785344 + 29113344𝑦 

+23701248𝑦2 − 1492992𝑦3 

−1244160𝑦4 − 221184𝑦6 

+241864704𝐶1 + 96577920𝐶1𝑦 

−47029248𝐶1𝑦2 − 14556672𝐶1𝑦3 

−2985984𝐶1𝑦5 − 181398528𝐶1
2𝑦 

−40310784𝐶1
2𝑦2 − 13436928𝐶1

2𝑦4 

−20155392𝐶1
3𝑦3 − 64665216𝐶2 

−6718464𝐶2𝑦 + 12317184𝐶2𝑦2 

−2985984𝐶2𝑦4 − 181398528𝐶1𝐶2 

+40310784𝐶1𝐶2𝑦 − 26873856𝐶1𝐶2𝑦3 

−60466176𝐶1
2𝐶2𝑦2 + 80621568𝐶2

2 

(155) 
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−13436928𝐶2
2𝑦2 − 60466176𝐶1𝐶2

2𝑦 

−20155392𝐶2
3 + 

 

𝑓3 = 𝑓2 + √4𝑓1
3 + 𝑓2

2 
(156) 

  
We can solve for 𝑎 using (152) and (153).   
We can solve for ω using (149) and (153). 
We integrate a third time, now substituting our 
solutions for λ, 𝑎 and ω. 
 
We let 𝐶1 = 0, 𝐶2 = −1, 𝐶3 = 1, to get a solution 
for 𝑣(𝑦).  We can now substitute our solution for 
𝑣(𝑦) into (84) to obtain a solution to (1).   This 
solution is illustrated as a 2D plot in  
Figure 1, and as a 3D plot in  
Figure 2.   
The presence of the constants lifts our solution over 
those of the founding fathers.  The original solution 
did not have integration constants, which, in the 
theory of differential equations, is an anomaly.  [21]  
 

 
 

Figure 1: Plot of the solution from (83) 

 
 

Figure 2: 3D Plot of the solution from (83) 

 

5 Conclusion 

 
We began with finding the Lie Symmetries for (1). 
Our intention was to find solutions through (66). 
The invariant solution yielded an ODE, (90),  that 
was not simple to solve. Though Lie Symmetries 
help us determine solutions, it is not a one size fits 
all algorithm.  We have demonstrated here, that the 
there are times where we need to apply aggressive 
techniques to determine solutions. Through 
differential manifolds we have established solutions 
to (90) which we used to determine solutions to (1).   
The solutions are numerous, this even after 
simplifying our case.  The plot of our solution,  
Figure 1, gives us a visual that is far more pleasing 
to the eye than the lengthy equation it illustrates.  
The 3D plot, shown in  
Figure 2, provides a clear visual of the rise and fall 
of the wave form. 
Through the application of manifolds, we have 
determined solutions where the traditional Lie 
approach could not.  We have also determined an 
exact solution to (1), which includes integration 
constants, making our solution mathematically 
sound. 
The results illustrated here, open the door to us 
examining previously solved equations.  It gives us 
a new set of tools, a new algorithm to apply. There 
is the exciting possibility of finding new/ additional 
solutions.  One such extension to consider is to 
consider the KdV equation where all spatial 
variables are considered.  That is the case where 
𝑢 = 𝑢(𝑡, 𝑥, 𝑦, 𝑧).  This would provide a connection 
to uses of the equation in industry. 
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