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Abstract: A method for relaxed graceful labeling of P
2

n
graphs is presented together with an algorithm designed

for labeling these graphs. Graceful labeling is achieved by relaxing the range to 2m and perform the labeling

using an algorithm with quadratic complexity (O(n
2

)). The algorithm can be used for labeling any P
2

n
graph with

n ≥ 3, as far as the machine can handle the size of the problem.
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1 Introduction
Graceful labeling (originally known as β valuation)
was first introduced by Rosa in 1966 [1]. A graph
is graceful if it can be “gracefully numbered.” Such
numbering can be achieved by labeling all vertices of
a graph havingm edges with a subset of distinct, non-
negative integers from 0 tom, and then, labeling each
edge with the absolute difference between the label
values of its vertices. The graph becomes a grace-
ful graph if and only if the edge labels run from 1 to
m. There exists a number of special cases of grace-
ful graphs including, for example: the utility graph
K2,3 of Gardner[2] and the (generalized) Petersen’s
graph[3, 4]. It is established that most graphs are not
graceful [5].

Graph labeling has applications in many disci-
plines. It is applied in communication networks, net-
work security, network addressing, channel assign-
ment process, social networks, coding theory, optimal
circuits layout, astronomy, radar and graph decompo-
sition problems, as well as in many other area [6].
In particular, in IP networks, graceful labeling of
trees has been used in multi-protocol label switching
(MPLS) routing platforms [7]. Moreover, Arkut et.
al. [8] and Basak [9] proposed an efficient method
for managing Internet Protocol (IP) networks using
graceful labeling of vertices, that spans caterpillars
of the autonomous sub-networks, to assign labels of
links in the sub-networks. For further applications on
graceful labeling, the reader may refer to Bloom et
al.[10] and Sivaraman [11].

In general, the complexity of graceful labeling can
be NP-complete [12]. Therefore, many researchers

have introduced methods to easing complexity and
even to applying it to non-graceful graphs as well. In
the sequel of this paper, we present an overview of
relevant graceful labeling methods (Section 2); pro-
vide theoretical preliminaries (Section 3), analytically
show graceful labeling of P 2

n with a running example
(Section 4); then present our method in Section 5, and
discuss our results in Section 6. Finally, we conclude
with our contributions in Section 7.

2 Background
Asserting about the gracefulness of graphs is mostly
given by explicit labeling. For non-graceful graphs,
few tools exists for their labeling, and proving grace-
fulness can be achieved by labeling a graph and then
eliminating contradictions among label values until
each label is unique.

However, using a deterministic backtracking algo-
rithm, Fang proved that all trees with at most 35 ver-
tices are graceful [13]. This has built on many an-
alytical and computational results of specific classes
of trees, including K2 graphs, star graphs and Cater-
pillars of diameter 3 [14]. Also, Zhao proved that all
trees with diameter 4 are graceful [15]; Hrnciar and
Haviar proved that all trees with diameter 5 are grace-
ful [16]; and Superdock proved that some sub-classes
of trees with diameter 6 are graceful [17, 18]. More
about graph classes that are graceful and methods for
graceful labeling can be found in a survey compiled
by Gallian [19].

Relaxing graphs for graceful labeling has been
studied since the introduction of graceful graphs
themselves, when Rosa introduced variants by relax-
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ing bounds on edges, vertices, or range [1]. Rosa
and Siran [20] demonstrated that every tree has an
edge-relaxed graceful labeling with at least 5

7m dif-
ferent edge labels. Van Bussel [21] and Sivara-
man [22] showed that by relaxing bounds on the range
of a tree T , vertices’ labels fall in the range of up to
2m−diam(T ). Adamaszek et al. [23] proved that all
trees are almost asymptotically graceful if Rosa con-
jecture is relaxed such that γ > 0 for all n > n0(γ).

In this work, we consider simple, finite and undi-
rected graphs G and focus on P 2

n where the set of
vertices V (P 2

n) = V (Pn) = {v0, v1, . . . , vn} and
the set of edges E(P 2

n) = {vivj |1 ≤ |i − j| ≤ 2}.
Henceforth, the number of edges m for such a graph
is 2n − 1. For this particular graph, we contribute
a graceful labeling method by relaxing the range to
2m and perform the labeling using an algorithm with
quadratic complexity (O(n2)). The algorithm can be
used for labeling any P 2

n graph with n ≥ 3, as far as
the machine can handle the size of the problem.

In the next section, we prelude to our approach
with a theoretical basis.

3 Preliminaries
A caterpillar and cycle graphs are graceful on con-
strained cycle values [1]:

Theorem 3.1.

1. All caterpillars are graceful.

2. Cycle graph Cn is a graceful if and only if n ≡
0 or 3 (mod 4).

Apath graph is a caterpillar with only two end ver-
tices, then for any path graph, it is a graceful graph.
Whereas, a complete graph Kn is a graceful graph
only if it has four or less vertices, Golomb [24]:

Theorem 3.2. A complete graph Kn is a graceful
graph if and only if n ≤ 4.

Beutner et al. [25], worked on nearly complete
graphs, and established gracefulness by removing 1,
2, or 3 edges following the formula Kn − ix, where
i ∈ {1, 2, 3}:

Theorem 3.3.

• Kn − x is a graceful graph only if n ≤ 5.

• Kn − 2x is a graceful graph only if n ≤ 6.

• Kn − 3x is a graceful graph only if n ≤ 6.

4 Gracefulness of P 2
n for integer

n ≥ 2
For a graceful graph G, a search algorithm generates
a graceful labeling. If the graph has m edges, then
two adjacent vertices must be labeled with 0 and m.
The m − 1 label of an edge must has either a vertex
with label 1 or label m − 1, and should be adjacent
to a vertex labeled m or 0, respectively. If a search
algorithm follows this pattern in looking for labeled
vertices, then it is searching a graceful graph. Let us
apply this kind of search algorithm to the graph P 2

n
with a set of vertices V (P 2

n) = {v0, v1, . . . , vn} and
a set of edges E(P 2

n) = {vivj |1 ≤ |i − j| ≤ 2}.
Henceforth, the number of edges m for such a graph
is 2n− 1 where the number of vertices is q = n+ 1.

From theorems 3.2 and 3.3, one can prove that P 2
n

is a graceful graph with 2 ≤ n ≤ 4 as follows:

Proposition 1. A graph P 2
n with 2 ≤ n ≤ 4 is a

graceful graph.

Proof of Proposition 1.

i. For n = 2, P 2
2 is isomorphic to K3. Hence, it is

graceful by Theorem 3.2.

ii. For n = 3, P 2
3 is isomorphic to K4 − x. Hence,

it is graceful by Theorem 3.3.

iii. For n = 4, P 2
4 is isomorphic toK5− 3x. Hence,

it is graceful by Theorem 3.3.

We have shown that P 2
n is a graceful graph using

an algorithm but with exponential complexity1. For
a number of P 2

n graphs, Table 1 presents possible so-
lutions for each graph, showing the maximum num-
ber of solutions and time in seconds for identifying
all solutions up to n equals 14. Considering the lim-
ited platform resources, we have altered the algorithm
to find one possible solution for graphs with vertices
greater than n equals 14. The platform was capable of
generating partial sets of the solutions for graphs with
n equals 22. In the Table 1, the number of solutions
super-scripted with a star (∗) are subsets of the solu-
tions and henceforth the time is much smaller than in
previous results. The platform used for this calcula-
tion is a Windows© machine with Intel© i5© proces-
sor and 16GB of RAM. Furthermore, the algorithm
consists of a depth-first search algorithm (DFS) and
a breadth-first search algorithm (BFS) [26]. It gener-
ates all possible labels of P 2

n for n ≥ 3; agreeing with
Kang2 et al. [27].

1Only results of this algorithm are presented in this context.
2Link to the journal or the full article can not be established, as stated

at https://mathscinet.ams.org/mathscinet-getitem?mr=1418071
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No. of Vertices Labels of vertices No. of Solu-

tions

Time (sec.)

q = n+ 1 (sample)

4 0, 5, 4, 2 16 1.714700

7 0, 11, 10, 2, 5, 9, 3 121 4.126300

8 0, 13, 12, 3, 1, 9, 6, 2 164 3.835200

9 0, 15, 1, 11, 14, 2, 7, 13, 5 389 13.498900

10 0, 17, 16, 2, 12, 15, 3, 8, 14, 6 909 7.764800

11 0, 19, 1, 8, 18, 2, 4, 17, 13, 5, 10 2010 14.951700

12 0, 21, 1, 16, 20, 4, 2, 11, 19, 5, 8, 18 3539 20.834700

13 0, 23, 1, 3, 22, 8, 4, 21, 11, 5, 20, 17, 9 8300 207.371900

16 0, 29, 1, 3, 28, 17, 4, 27, 8, 5, 26, 11, 6, 23, 14, 7 16∗ 0.886000

19 35, 0, 1, 33, 31, 2, 20, 30, 3, 26, 29, 4, 13, 28, 7, 15, 27, 8, 22 20∗ 0.661200

20 0, 37, 1, 3, 36, 31, 4, 35, 14, 5, 34, 23, 8, 11, 33, 25, 9, 32, 26, 13 20∗ 0.665900

Table 1: Graceful labeling of P 2
n using DFS-BDS algorithm with exponential complexity.

In the next section, a range-relaxed graceful
(RRG) algorithm is designed for generating graceful
labeling of P 2

n with n ≥ 3. This algorithm assumes
that the graph’s range is relaxed to 2m. In some cases,
the range needs to be relaxed by 3m (see Observation
5.2).

5 Range-Relaxed Graceful labeling

of P 2
n

The main contribution of this work is a graceful la-
beling of a P 2

n graph with polynomial complexity.
Our approach is achieved by relaxing the graph range
fromm to 2m. In this section, we manually label P 2

7
and then specify our algorithm for solving the general
problem of graceful labeling of P 2

n graphs.

5.1 Running Example

To demonstrate, let us derive a P 2
7 graph from a P7

graph shown in Fig. 1. The set of vertices of both
graphs is {v0, v1, v2, v3, v4, v5, v6, v7}, where vivj ∈
E(P 2

7 ) if and only if 1 ≤ |i−j| ≤ 2. We organize our

Figure 1: A simple P 2
7 graph.

solution in steps starting with Step 0. In this step, and
for the ease of clarity, we connect by a directed, bold
arrow every two vertices of P7 that are separated by a
path of length 2 (Fig.2a), and re-organize it as shown
in Fig.2b. The dashed line in Fig.2 represents the path
connecting vertices of the original graph.

In Step 1, we label vertices with even index using
the following rule:

fe(vi) =

{
i
4 ; i ≡ 0 (mod 4)
m− ( i−2

4 ) ; i ≡ 2 (mod 4)
(1)

(a) Connected vertices

(b) Reorganized graph of connected vertices

Figure 2: Preparation of P 2
7 for labeling (Step 0)

The result of applying fe(vi) is shown in Fig.3a
and Fig.3b, where g is the set of edge labels evaluated
by the formula g(vivj) = |f(vi)− f(vj)|.

In Step 2, we continue by labeling odd vertices
using the following rule:

fo(vi) =


⌈
n
2

⌉
; i = 1

(2)

2(
i−1

2
) + f(vi−2) ; i 6= 1 ∧

i ≡
1 mod 2

We proceed with this step by labeling vertex by
vertex, and when evaluating the label of each vertex,
we check if the corresponding edge labels are already
in g. If all the new edge labels are unique and not in g,
we continue with next vertex. Otherwise, we have a
conflict. In this example, when labeling v5 by fo(v5),
the g label of the edge connecting v0 and v1 has the
same value of the edge label connecting v3 and v5 (4
is already amember of g as shown Fig.4b; highlighted
by the arrow).

In this part of Step 2, let us define a set S of in-
tegers i such that 0 ≤ i ≤ 2m, where 2m = 26.
We are interested in a sorted set S′ ⊆ S such that
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(a) Starting graceful labeling of the graph.

(b) Table of labeling results.

Figure 3: Step 1 showing initial labeling values.

S′ = S − f , where f = Im(fe) ∪ Im(fo). We start
by assigning f(v5) the first value in S′. If the result-
ing edge labels for this value are not in the range of
g, then we append the value from S′ in the set f and
append the values evaluated using this label value in
the set g. Otherwise, we repeat this step by selecting
the next smallest value in S′ until a value is found that
produces edge labels not in g, and so forth. This step
has been performed on v5 and v7 leading to the results
summarized in Fig.5. In this particular example, the
order of complexity is O(n).

5.2 An RRGAlgorithm

Manually labeling P 2
7 in Section 5.1 highlighted the

main steps of an RRG algorithm for graceful labeling
of P 2

n graphs. These steps are:
• Step 0: Initialization of variables and sets.

• Step 1: Labeling of even-indexed vertices.

• Step 2: Piece-wise labeling of the remaining
odd-indexed vertices.

In writing a specification for this algorithm, we
have much of the notation from refinement calculus
[28]. But also, included some imperative code and
textual comments. The algorithm has been refined to
C++ code and compiled on aWindows 10 platform.

In Line 0.4 of Specification 1, we assume that S′

is sorted in ascending order; e0 ≤ e1 ≤ ..., and in
Line 0.6, n? denotes a data input of an integer greater
or equals to three. We also define an operator λ such
λkS

′ returns the kth element ek ∈S′; i.e., ek := λkS
′.

Line 1.1 of Specification 2 asserts that n < 3 or
aborts the algorithm, and lines 1.2 and 1.3 assigns la-

(a) Graceful labeling fails at v5.

(b) g2 = 4 conflicts with g1 = 4.

Figure 4: Step 2 shows how labeling has failed when
g1 = 4 and g2 = 4.

bels to even-indexed vertices and edges connecting
these vertices.

The algorithm generates graceful labeling of a P 2
n

graph whose range is relaxed to 2m for any n ≥ 3,
with quadratic complexity O(n2). This contribution
is formally stated below with a proof.

Theorem 5.1. The labeling algorithm generates a re-
laxed graceful labeling for P 2

n graph with a relaxed
range 2m where n ≥ 3.

Proof of Theorem 4.

Step 0: Definitions of main variables and sets for this al-
gorithm are given in Specification 1.

Spec. 1: Initialization (Step 0)
0.1 S := {0 ≤ i ≤ 2m : i ∈ N};

By using equations (1) and (2),
0.2 f := Im(fe) ∪ Im(fo);
0.3 f ⊆ S;
0.4 S′ := S − f ; // S′ := {e0, e1, ..., ek, ...}
0.5 g := Im(g) = |f(vi)− f(vj)|;
0.6 n?;

Spec. 2: Labeling even-indexed vertices (Step 1)
1.1 if n < 3 → SKIP ; fi;
1.2 i := 0; do i ≤ n

2 → f := {fe(v2i)} ∪ f ; od;
1.3 i := 0; do i < n

2 →
g := {g(v2iv(2(i+1)))} ∪ g; od;
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Spec. 3.1: Labeling odd-indexed vertices (Step 2.1)

2.01 i := 0; do i ≤ n−1
2 →

2.02 af := fo(v2i+1);
2.03 if(2i+ 1) = 1 →
2.04 if{|fe(v2i)− fo(v2i+1)|} ⊆ g∨

{|fo(v2i+1)− fe(v2(i+1))|} ⊆ g →
2.05 k := 0; do k ≤ |S′| → ek := λkS

′

2.06 if{|fe(v2i)− ek|} * g∧
{|ek − fe(v2(i+1))|} * g∧

2.07 |fe(v2i)− fo(v2i+1)| 6=
|fo(v2i+1)− fe(v2(i+1))| →

2.08 g := {|fe(v2i)− ek|,
|ek − fe(v2(i+1))|} ∪ g;

2.09 f := f ∪ {ek};
2.10 break; //break loop
2.11 fi;
2.12 od;
2.13 else
2.14 g := g ∪ {|fe(v2i)− fo(v2i+1)|,
2.15 |fo(v2i+1)− fe(v2(i+1))|};
2.16 f := f ∪ {af};
2.17 fi;

Spec. 3.2: Labeling odd-indexed vertices (Step 2.2)
2.18 else if(2i+ 1) < n
2.19 if{|fo(v2i−1)− fo(v2i+1)|} ⊆ g
2.20 ∨{|fo(v2i+1)− fe(v2i)|} ⊆ g
2.21 ∨{|fo(v2i+1)− fe(v2(i+1))|} ⊆ g →
2.22 k := 0; do k ≤ |S′| → ek := λkS

′

2.23 if{|fo(v2i−1)− ek|} * g
2.24 ∧{|ek − fe(v2i)|} * g
2.25 ∧{|ek − fe(v2(i+1))|} * g
2.26 //elements of a set are unique
2.27 ∧|{|fo(v2i−1)− ek|, |ek − fe(v2i)|,

|ek − fe(v2(i+1))|}| = 3 →
2.28 g := g ∪ {|fo(v2i−1)− ek|,
2.29 |ek − fe(v2i)|,
2.30 |ek − fe(v2i+2)|};
2.31 f := f ∪ {ek};
2.32 break; //break loop
2.33 fi;
2.34 od;
2.35 else
2.36 g := g ∪ {|fo(v2i−1)− fo(v2i+1)|,

|fo(v2i+1)− fe(v2i)|,
2.37 |fo(v2i+1)− fe(v2(i+1))|};
2.38 f := f ∪ {af};
2.39 fi;

(a) Graph fully labeled.

(b) Table of the labeling results.

Figure 5: Final graceful labeling of P 2
n .

Step 1: Evaluating fe(vi) of even indices, updating S′

(i.e. remove fe(vi) from S) and appends edge
labels to set g.

Step 2: Evaluating fo(vi) of odd indices, and testing in
each step if the following conditions hold:

Spec. 3.3: Labeling odd-indexed vertices (Step 2.3)
2.40 else if(2i+ 1) = n
2.41 if{|fo(v2i−1)− fo(v2i+1)|} ⊆

g ∨ {|fo(v2i+1)− fe(v2i)|} ⊆ g →
2.42 k := 0; do k ≤ |S′| → ek := λkS

′

2.43 if{|fo(v2i−1)− sk|} * g
2.44 ∧{|ek − fe(v2i)|} * g
2.45 //Elements of a set are unique
2.46 ∧ |{|fo(v2i−1)− ek|,

|ek − fe(v2i)|}| = 2 →
2.47 g := g ∪ {|fo(v2i−1)− ek|,

|ek − fe(v2i)|};
2.48 f := f ∪ {ek};
2.49 break; //break loop
2.50 fi;
2.51 od;
2.52 else
2.53 g := g ∪ {|fo(v2i−1)− fo(v2i+1)|,
2.54 |fo(v2i+1)− fe(v2i)|};
2.55 f := f ∪ {af};
2.56 fi;
2.57 fi;
2.58 od;
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1. Vertex label is unique (set f ).

2. Edge labels are unique (set g).

Then, update S′ and append edge labels to the set
g. If in this step a conflict occurs, iterate in S′ to
calculate labels that satisfy the graceful labeling
property. It is important to note that by contra-
diction, one can prove that fe ∩ fo = φ, fe and
fo are one-to-one functions.

According to the previous theorem, we have the
following observations:

The labeling algorithm has a relaxed range set, de-
noted by S = {0, 1, . . . , 2m}, where S′ is the up-
dated, sorted set of S.

The labeling algorithm works at a relaxed range of
2m for most cases. Some cases have relaxed range up
to 2.7m, e.g. n ∈ {20, 39, 41, 42, 57, 77, 88}.

Based on the algorithm we have presented in this
work, we propose the following:

Proposition 2. The complexity of the relaxed labeling
algorithm of P 2

n , with a relaxed range of 2m and n ≥
3, is of the order of O(n2):

Proof of Proposition 3.

1. Step one runs dn+1
2 e times, while index label is

even.

2. Step two runs (bn+1
2 c) ((4n − 2) − dn+1

2 e) for
odd index labels.

Consequently, the complexity function can be ex-
pressed as follows:

h(n) = dn+ 1

2
e+ bn+ 1

2
c ((4n− 2)− dn+ 1

2
e)
(2)

Hence, the complexity is of the order of O(n2).

6 Discussion
Many researchers have investigated graceful labeling
of different types of graphs, with or without relax-
ation. However, as far as our work is concerned, no
other research has directly investigated graceful label-
ing of P 2

n graphs. But, it deserves mentioning few
works that have had addressed graceful labeling by
analytical means or computational methods.

Recently, Adamaszek et al. [23] provided an algo-
rithm to find a graceful labeling of a tree by propos-
ing a relaxation of Rosa conjecture [1]. The pro-
posed relaxation based on assuming γ > 0 and for
all n > n0(γ), an upper bound Oγ(

n
log n) set on the

tree degree, and choosing vertex labels from {1,2,
....,d(1+γ)ne}. The algorithm finds a graceful label-
ing under these conditions, but the complexity of the
algorithm has not been quantified. Themethod and its
algorithm processes trees which are bipartite graphs.
Our method and algorithm find graceful labeling of
square of path graphs with complexity of O(n2).

In [13], without relaxation, a hybrid algorithm is
used to perform graceful labeling of a tree graph. The
algorithm implements labeling in two search stages:
(i) a deterministic backtracking stage and (ii) a prob-
abilistic stage. The first stage is an optimized, de-
terministic algorithm based on Horton’s proposal of
randomized backtracking search for graceful labeling
[29]. However, the number of backtracks in this al-
gorithm can grow exponentially, henceforth a thresh-
old has been added on the number of backtracks. The
probabilistic stage algorithm is based on hill-climbing
tabu search proposed by [31] combined with ideas
from simulated annealing from combinatorial opti-
mization. The resulted hybrid algorithm, applies the
first stage, and if it fails in finding a graceful labeling,
the second stage is started. It has been observed that
the deterministic backtracking search is sufficient to
label 99.9% of trees. This algorithm computes grace-
ful labeling of trees of order up to 35 vertices, improv-
ing over previous works [29, 30, 31], but the complex-
ity of the algorithm has not been explicitly specified.

Beutner et al. investigated nearly complete graphs
focused at Kn and removed 1, 2, or 3 edges [25].
Without relaxation, graphs K4 − x and K5 − 3x
are isomorphic to P 2

3 and P 2
4 respectively. That is,

we have analytical proof of gracefulness of the later
graphs up to n = 4. Furthermore, authors proved
gracefulness of tripartiteK1,a,b andK2,a,b that are not

isomorphic to the tripartite P 2
n when n ≥ 4.

In a relevant work to ours, Redl has used a con-
straint programming approach to show that the gen-
eral graph P (n, k) is graceful for 5 ≤ n ≤ 10 [3]
and Shao et al.[4] has managed to label the graph
for n ≤ 75. Both used algorithms to generate la-
beling without calculating the complexity, but Shao
algorithm is faster than Redl’s.

In the context of range relaxation, Bussel (2002)
and Sethuraman (2017) relaxed the range of a tree
graph up to 2m − diameter, where m is the num-
ber of edges [21, 22]. Sethuraman has achieved label-
ing with a smaller range but without explicit mention
of complexity. While Bussel investigated graceful la-
beling of graphs with larger size with a cost of expo-
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No. of Vertices
Exponential Algorithm on rangem Polynomial algorithm on range 2m
Labels of vertices Time

(sec.)
Labels of vertices Time

(sec.)
q = n+ 1 (sample)

4 0, 5, 4, 2 1.714700 0, 2, 5, 1 0.04155
7 0, 11, 10, 2, 5, 9, 3 4.126300 0, 3, 11, 5, 1, 17, 10 0.020720
8 0, 13, 12, 3, 1, 9, 6,

2
3.835200 0, 4, 13, 6, 1, 20,

12, 2
0.019700

9 0, 15, 1, 11, 14, 2,
7, 13, 5

13.498900 0, 4, 15, 6, 1, 7, 14,
24, 2

0.044971

10 0, 17, 16, 2, 12, 15,
3, 8, 14, 6

7.764800 0, 5, 17, 7, 1, 8, 16,
27, 2, 3

0.040651

11 0, 19, 1, 8, 18, 2, 4,
17, 13, 5, 10

14.951700 0, 5, 19, 7, 1, 11,
18, 31, 2, 28, 17

0.065612

12 0, 21, 1, 16, 20, 4,
2, 11, 19, 5, 8, 18

20.834700 0, 6, 21, 8, 1, 12,
20, 34, 2, 3, 19, 4

0.057235

13 0, 23, 1, 3, 22, 8, 4,
21, 11, 5, 20, 17, 9

207.371900 0, 6, 23, 8, 1, 12,
22, 36, 2, 5, 21, 30,
3

0.060580

16 0, 29, 1, 3, 28, 17,
4, 27, 8, 5, 26, 11,
6, 23, 14, 7

0.886000∗ 0, 8, 29, 10, 1, 14,
28, 13, 2, 7, 27, 37,
3, 19, 26, 4

0.083707

19 35, 0, 1, 33, 31, 2,
20, 30, 3, 26, 29, 4,
13, 28, 7, 15, 27, 8,
22

0.661200∗ 0, 9, 35, 11, 1, 15,
34, 23, 2, 39, 33,
16, 3, 52, 32, 7, 4,
46, 31

0.113140

20 0, 37, 1, 3, 36, 31,
4, 35, 14, 5, 34, 23,
8, 11, 33, 25, 9, 32,
26, 13

0.665900∗ 0, 10, 37, 12, 1, 16,
36, 24, 2, 40, 35,
17, 3, 43, 34, 62, 4,
75, 33, 5

0.287005

Table 2: Contrasting results of an exponential algorithm vs the relaxed algorithm for a number of P 2
n graphs. Star

(∗) in the Time column indicates time spent in searching for subset of solutions.

nential complexity. Compared to our work, authors
of these works have achieved labeling with a smaller
range. However, they did not calculate or comment
on the complexity of their algorithm.

We have performed graceful labeling of a graph
by relaxing the range to 2m achieving quadratic com-
plexity.

Compared to our work, [3, 4, 25] and [29, 30, 31]
performed graceful labeling of graphs with restriction
on the number of vertices and without explicit men-
tion of complexity, though we believe their complex-
ity is exponential. In other works, range was relaxed
to at most 2m but without computing complexity as
well [21, 22].

Finally, Montgomery et al. [32] have recently
proved Ringel’s conjecture which conjectures a
graceful labeling of many special classes of trees in-
cluding caterpillars, trees with 4 leaves, Firecrackers,
diameter 5 trees, symmetrical trees, trees with 35 ver-
tices, and olive trees. But their proof is equivalent
to ρ-graceful which is weaker than graceful labeling.

Ringel’s conjecture is weaker than graceful labeling
conjecture that we have achieved in our work.

We have developed the specification of our algo-
rithm in C++ (Section 5.2). On an i5 machine with
16GB RAM, we tested the algorithm with graph sizes
up to n = 500, 0000, and it took 36 hours to finish
such maximum on this platform. A sample run of the
exponential and the relaxed algorithms is summarized
in Table 2.

7 Conclusion
The main contribution of this work is a graceful la-
beling of square of path graphs (P 2

n ) with a polyno-
mial complexity of the order ofO(n2). Our approach
is achieved by relaxing the range from m to 2m. We
applied a labeling algorithm that finds labels for even-
indexed vertices, and then piece-wise labeling the re-
maining odd-indexed vertices. The steps of the al-
gorithm has been demonstrated by a small size graph
(P 2

n ) and it has been speciefied using refinement cal-
culus notation.
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The algorithm has been implemented in C++ and
run on a Windows© machine with Intel© i5© and
16GB RAM. Results has confirmed our calculated
complexity which is of the order of O(n2).
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