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1 Introduction and Preliminaries

Throughout this paper, the term group always
means a group of finite order. The letter G always de-
notes a group, and the letter p always denotes a prime.
For an element © € G, o(x) denotes the order of z,
and 2 denotes the conjugacy class of z in G. |2] is
called the size of the conjugacy class z&. We denote
by 7(G) the set of prime divisors of the order |G| of a
group G. For a positive integer m, 7(m) denotes the
set of prime divisors of m. All further unexplained
notations are standard and can be found in [1].

Let x be an element of G. We say that x is pri-
mary if o(z) is a power of a prime (including the case
where x = 1, the identity element); We say that z is
biprimary if o(x) is divisible by precisely two distinct
primes.

We write
cs(G) = {|2%| : 2 € G},
pes(G) = {|z%| : = € G and = is primary}
and

ppes(G) = {|z%| : 2 € G and  is primary or
biprimary}.

We say that (G is a quasi-Frobenius group if
G/Z(G) is a Frobenius group. The inverse images
in G of the kernel and a complement of G/Z(G)
are called the kernel and a complement of G. It
is well-known that if GG is a quasi-Frobenius group
with abelian kernel and complement, then cs(G) =

cs(G/Z(@)) (see [2]).
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A classical topic of finite group theory is to study
the influence of the conjugacy class sizes on the struc-
ture of groups. However, studying such properties on-
ly from partial information, provided by connjugacy
class sizes of certain elements, can be a more complex
and more interesting problem. In this paper we study
the influence of the conjugacy class sizes of prima-
ry and biprimary elements on the structure of groups.
In addition, we give a simple and clearer proof of a
known result.

In this section we list some lemmas which will
be used in the sequel. The following Lemma 1.1 is
well-known.

Lemma 1.1 Let x € G. Assume that o(x) =
pi"t...pn, where pi,...,py, are distinct primes and
mi, ..., My, are positive integers. Then, x = 1...xy,
with o(z;) = p;"* and x,xs = xTsxy fors,r =1,...,n.
Furthermore, there exist integers k; such that ok =
fort=1,--- n.

Lemma 1.2 ([3, Lemma 2.4]) A prime p does not
divide the conjugacy class sizes of primary elements
of G if and only if G has a central Sylow p—subgroup.

Lemma 1.3 ([4, LEMMA 1(1)]) Let a,b € G. If
(la%[, [b9]) = 1, then G = Cc:(a)Ca (D).

Lemma 1.4 ([5, Theorem 6.4.3]) If G = AB,
where A and B are two nilpotent subgroups of G, then
G is solvable.

Lemma 1.5 ([6, Lemma 2.1]) Let G be a
m—separable group with m C w(G). Then,

(i) |2C| is a 7' —number for every primary
7' —element x if and only if G = O (G) x O (QG).
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(ii) |2¥| is a w—number for every primary
7' —element x if and only if G has an abelian Hall
7’ —subgroup.

Lemma 1.6 ([2, Proposition 1.4]) Suppose that
G/Z(G) = Ss, the symmetric group of degree 3.
Then, up to a central direct factor, G = T D, where T
is a normal subgroup of order 3, D a cyclic 2—group.

The following Lemma 1.7 is a consequence of [7,
Theorem Al].

Lemma 1.7 Ifppes(G) = {1, m}, then m = p°
for some prime p and some positive integer a, and
G = P x A, where P is a p—group and A is an a-
belian group.

2 Results and Proofs

A positive integer m is called a Hall number of a
group G if m||G| and (m, |G|/m) = 1.

Theorem 2.1 Suppose that G satisfies the following
two conditions:

(1) pcs(G) = {1, my, ma} with (m1, ma) = 1.

(2) For each p € w(G) and any noncentral
p—element x of G, Cq(v) = Cg(x)p x Cq(x)y and
Cq(x),y is abelian.

Then, the following statements are true:

(I) G is a quasi-Frobenius group with abelian k-
ernel and complement.

(II) Assume that G has no non-trivial abelian di-
rect factor. Set w := w(my). If my is a Hall-number
of G, then Z(G)r = 1. If mo is a Hall-number of
G, then Z(G) = 1. If both my and mqy are Hall-
number of G, then Z(G) = 1.

Proof We write 7 := 7(mq). By hypothe-
sis,we have m(my) N 7(mg) = 0. If a prime divi-
sor r of |G| does not divide m; for i = 1,2, then
by Lemma 1.2 we know that G has a central Sylow
r—subgroup, and hence G has a non-trivial abelian
direct factor.It is well-known that abelian direct fac-
tors are immaterial in this context, and so we can as-
sume that G' has no non-trivial abelian direct factor.
Therefore, we have 7(G) = 7w(my) U m(ms). Let
z,y € G be primary elements such that |27 = m;
and [y“| = my. Since (my, mz) = 1, by Lemma 1.3
we have G = Cg(x)Ca(y). By hypothesis(condition
(2)), Cg(x) and Cg(y) are nilpotent, and so by Lem-
ma 1.4 we conclude that G is solvable. Hence, G
has Hall w—subgroups and Hall 7/ —subgroups. No-
tice that any two Hall 7(7) —subgroups of G are con-
jugate, and any 7(7")—subgroup of G is contained a
Hall 7 (") —subgroup of G.

Let z € GG be a primary m—element, and suppose
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that || = my. Then, by hypothesis(condition (2))
we have

(x) Ca(z) =Cq(z)r x H,

where H is a Hall 7’—subgroup of G and H is a-
belian. Let K be a Hall m—subgroup of GG such
that Cg(z)r C K. Clearly, we have Cg(2)r <
K. For every noncentral primary element z €&
Cq(2)x, by equality (%) it is obvious that |2C| is a
m—number.There exists a noncentral primary element
w € K —Cg(2)x such that |w®| is a 7’ —number; oth-
erwise,for every noncentral primary element y of K
we have that |y“| is a 7—number, and thus by Lem-
ma 1.5(i) we have that G = K x H and the abelian
Hall ' —subgroup H of G is a central direct factor of
G, forcing pcs(G) = {1, my }, in contradiction to the
hypothesis of the theorem. Then, there exists some
element g such that K < Cg(w)? = Cg(w?). It fol-
lows that w9 < Z(K). Then, since Cg(z)r C K,
w9 € Cg(2)r, and thus by equality (x) we have
H < Cg(w9). It follows that w € Z(G), contrary
to the choice of w. Consequently, we conclude that
every primary m—element of G has conjugacy class
size 1 or mo. Then, by Lemma 1.5(ii)) we conclude
that Hall m—subgroups of G are abelian. By the same
arguments we conclude that Hall 7' —subgroup of G
are abelian. Let K be a Hall m—subgroup of G, and
let H be a Hall n’—subgroup of G' . Then, K and H
are abelian.

Let = be a noncentral primary m—element of G.
We may assume that x € K. Since K is abelian, by
hypothesis we have C(z) = K x Cg(z),. We may
assume that Cz(x),» < H. Then, since H is abelian,
we conclude that Cg(x),» = Z(G). Lety € Gbea
noncentral primary 7’ —element of G. By the same ar-
guments as for z we conclude that Cz(y)r = Z(G).

Since K and H are abelian, we have F(QG)
Ox(G) x Ox(G). Since G is nonabelian, by [5,
4.2, p.277] we have F(G) £ Z(G). Then, either
O0:(G) £ Z(G) or O (G) £ Z(G). Without loss
of generality, we may assume that O,(G) £ Z(G).
Suppose that O,/ (G) £ Z(G), and lety € O (G) —
Z(@G). By the above paragraph we have Cq(y)x
Z(G)z. Then, since O,(G) < Ce(On(G)) <
Ca(y), we have O, (G) < Z(G), contradicting our
assumption. Therefore, we conclude that O,/ (G) =
Z(G)p. It follows that K < Cg(O-(Q))
CG(OT('(G)) X Z(G)w’) = CG(Oﬂ(G) X OW’(G))
CG(F<G)) < F(G) = OW(G) X OW’(G)( see [5,4.2,
p.277]), and thus K = O,(G), thatis, K < G. Then,
we have G = K > <1H.(The notation > <1 denotes a
semidirect product.)

Consider the factor group G/Z(G)
KH/Z(G), and we use the bar convention. Let i be a
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primary non-identity element of H = HZ(G)/Z(G),
and let k be a primary non-identity element of
K = KZ(G)/Z(G). By Lemma 1.1 we may assume
that h and k are primary.Suppose that [k, h] = 1.
Then we have that [k,h] < Z(G). It follows that
[k,h] < [K,H] N Cg(H). On the other hand, we
have that K = [K,H] x Ck(H)(see [8, Theorem
2.3, p.177]). Hence, we get that [k, h] = 1.It follows
that h € Cg(k)w = Z(G)p, and thus h = 1, a
contradiction. So, we have that [k, h] # 1. Then,
by Lemma 1.1 and [9, Problems 7.1(a), p.121] we
conclude that G/Z(G) = KH/Z(G) is a Frobenius
group with the kernel KZ(G)/Z(G) and a comple-
ment HZ(G)/Z(G). Thus, noting that K and H are
abelian, G is a quasi-Frobenius group with abelian
kernel and complement. So, statement (I) holds.

We have that my = |K/Z(G),| and me =
|H/Z(G)y|, and so statement (II)) is obvious. This
completes the proof of the theorem.

Theorem 2.2 [10, THEOREM 1.1] Suppose that
ppes(G) = {1, my1,ma} with (m1,m2) = 1. Then,
G is a quasi-Frobenius group with abelian kernel and
complement.

Proof By hypothesis and Lemma 1.2 we have
that pcs(G) = {1, m1, ma} with (my, mg) = 1.

For any p € 7(G), let x be a p—element of G
such that [z¢] = m; for i = 1 or 2. Let z be
any primary p’'—element of Cg(z). We have that
Ca(xz) = Cg(x) N Cg(z) < Cg(x). Then, s-
ince (m1,ma2) = 1, we conclude that Cg(x) =
Ca(zz) < Ci(z), and thus z € Z(Cg(x)). Hence,
Ca(z) = Ca(x)p x Cg(x)y and Cg(x), is abelian.

To sum up, G satisfies two conditions of Theo-
rem 2.1. Hence, by Theorem 2.1 we conclude that the
theorem holds. This completes the proof.

Note In the original proof of [10, THEOREM
1.1], the authors of [10] dealt separately with the fol-
lowing three cases: (i) Both m; and ms are Hall num-
bers of G;(ii) Only one of m; and my is a Hall number
of G, (iii) Neither m; nor ms is a Hall number of G.
From the proof of Theorem 2.1, we see that it is not
necessary to deal separately with the above-mentioned
three cases. So, we have given a simple and clearer
proof of [10, THEOREM 1.1]. However, we point out
that, in fact, THEOREM 1.1 of [10] is a consequence
of Theorem 1 and Theorem 2 of [4] (see the following
Theorem 2.5 and its proof). In addition, we will see
that THEOREM 1.1 of [10] is also a consequence of
Corollary 2.12 in the present paper.

Corollary 2.3 Suppose that ppcs(G) =
{1,n,n + 1}. Then, G is a quasi-Frobenius group
with abelian kernel and complement. Furthermore,
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n + 1 is a prime power.

Proof Clearly, (n,n + 1) = 1. Then, by The-
orem 2.2, G/Z(G) = K/Z(G) > <H/Z(G) is a
Frobenius group with the kernel K /Z(G) and a com-
plement H/Z(G), and K and H are abelian. S-
ince {1,|H/Z(G)], [K/Z(G)} = cs(G/Z(G)) —
cs(G), we conclude that{1, |H/Z (G)|, |K/Z(G)|} =
{1,n,n+1}.Hence, G/Z(G) is a sharply 2—transitive
group of degree n + 1, and so by [11, XII Theorem
9.1] we conclude that n + 1 is a prime power. This
completes the proof.

Corollary 2.4 Suppose that ppcs(G) =
{1,2,3}. Then, G/Z(G) = Ss. Furthermore, up to a
central direct factor, G = DT, where D is a normal
subgroup of order 3 and T’ is a cyclic 2—group.

Proof By Corollary 2.3 and its proof we con-
clude that G/Z(G) is a nonabelian group of order 6,
and so G/Z(G) = S3. Thus, by Lemma 1.6 we get
that, up to an abelian direct factor, G = DT, where
D is a normal subgroup of order 3 and 71" is a cyclic
2—group. This completes the proof.

Theorem 2.5 Suppose that
ppCS(G) - {17m17 to 7mt}

with t > 2.In addition, for i,j = 1,--- ,t, if i # j,
then (mj,m;) = 1.Then, t = 2 and G is a quasi-
Frobenius group with abelian kernel and complement.

Proof Let x be a noncentral element of GG, and
assume that o(z) = pi*...pl", where p1, ..., py, are dis-
tinct primes and 1, ..., 7, are positive integers. By
Lemma 1.1 we have that z = ...z, with o(z;) = p;’
and z,x;, = zsx, for s, = 1,...,n. Since x is
noncentral, some z; is noncentral for 1 < 7 < n.
Without loss of generality, we may assume that z; is
noncentral. By hypothesis, we have |z{/| = m; for
some j.Clearly, we may assume that j = 1, that is,
|z¥| = m1. By the same arguments as in the proof of
Theorem 2.2 we conclude that z; € Z(Cg(z1)) for
i =1,---,n. It follows that Cg(z1) C Cg(x;) for
i =2, -+ ,n.Thus,

Co(x)=Cq(x1--xp) =
Cg(l'l) N Cg(xg) NN Cg(ajn) = Cg(xl).

It follows that || = |2{'| = m1. So, we have proved
that ¢s(G) = ppes(G) = {1,mq,--- ,ms}. Then,
since (m;, m;) = 1 fori # j, by THEOREM 1 of [4]
we conclude that ¢ = 2, and so by THEOREM 2 of [4]
(or by Theorem 2.2 in the precent paper) we conclude
that GG is a quasi-Frobenus group with abelian kernel
and complement. This completes the proof.

The following Theorem 2.6 is an extension of [4,
COROLLARY 3].
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Theorem 2.6 Letr G be a nonabelian group, and
suppose that G satisfies the following condition:
(x) Letx,y € G— Z(Q) be primary or biprimary.
If 2% # y©, then (2%, |[y“|) = 1.

Then, G = Ss.

Proof In view of condition (x), by Theorem 2.5
and Lemma 1.7, one of the following two cases may
occur:

(1) G = P x A, where P is a p—group for some
prime p and A is an abelian group.Furthermore,if
xz,y € G — Z(QG) are primary or biprimary, then
¢ = yC.

In this case, it is clear that A = 1 and G is
a p—group. Furthermore,G has only one conjugacy
class of noncentral elements. It follows that |G| =
|Z(G)| + |G|/n, where n is a positive integer and
n > 2. Then, |Z(G)| > |G|/2, and this implies that
( is abelian, a contradiction because G is nonabelian
by hypothesis. So, this case can not occur.

(2) G is a quasi-Frobenius group. Furthermore,
G has exactly two classes of noncentral primary and
biprimary elements.

In this case, it is easy to see that |7(G)| = 2 and
Z(G) = 1. Then, G = P > <Q is a Frobenius group
with the kernel P and a complement (), where P is
an abelian p—group and () is an abelian g—group, p
and ¢ are two distinct primes. Suppose that |Q| > 2.
Then, there exist non-identity elements z, y € () such
that z # y. We have ¢ = y©, and thus there exists
a non-identity element w € P such that 2% = y. It
follows that y € Q™ NQ = 1(see [5, 8.5, p.497]), and
so y = 1, a contradiction. Hence, we have |Q| = 2.
Then, we have |P| — 1 = 2, and thus |P| = 3 and
G = Ss. The proof is complete.

Theorem 2.7 Suppose that
ppCS(G> = {17n7n+ ]-a ,n+r}

with v > 1. If ppcs(G) does not contain any prime,
then v = 1 and G is a quasi-Frobenius group with
abelian kernel and complement. Furthermore, n + 1
is a prime power.

Proof Let x be a noncentral element of G. We
have that that o(z) = pi"...p,"*, where pi, ...,
are distinct primes and my,...,my are positive in-

tegers. By Lemma 1.1 we have that x = x...x%
with o(x;) = p/" and xx, = xgx¢ for s,t =

1,...,k. Since x is noncentral, some x; is noncen-
tral for 1 < ¢ < k. Without loss of generality,
we may assume that x; is noncentral. For i # 1,
we have Cg(z1z;) = Cg(x1) N Cg(z;), and so
Ca(r1zi) < Cg(z1). If Co(ziz;) < Cg(xr),
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then |z{| is a proper divisor of |(x12;)¢|, so that
2|2$| < |(z12;)¢|. By the Bertrand’s postulate, there
exists a prime p such that [zf| < p < 2[zf| <
((@120)C]. Since {a§], [(:12:)C]} C ppes(G), we
get that p € ppes(G), contradicting the assumption

of the theorem. Hence, Cg(z1) = Cg(zi1x;) =
Ca(z1) N Cg(x;). It follows that Cg(z1) < Ca(wi)
fori = 2,--- , k. Hence, we have

Ca(z) =Cqlzy- i) =
Cg(xl) N Cg(xQ) n---N C(;(l'k) = Cg(.%‘l).

It follows that |2¢| = |2§'| € ppes(G). So, we have
proved that

cs(G) = ppes(G) ={l,n,n+1,--- ;n+r}

Then, by [2, Theorem 2 ] we conclude that the theo-
rem holds. This completes the proof.

The following Theorem 2.8 is an extension of [12,
Theorem 1].

Theorem 2.8 Suppose that G satisfies the follow-
ing two conditions:

(1) Forr,t € ppes(G) — {1}, if r # t, thenr t
andt fr;

(2) |ppes(G) — {1}| > 3.

Then, for any three distinct numbers 1,73 and rs
in ppes(G) — {1}, if (r1,r2) = Lthen (ri1,73) # 1
and (r2,13) # 1.

Proof It is easy to show that pcs(G) = ppcs(G).
Let x € GG be a noncentral p—element for some prime
p, and let y € Cg(x) be a primary p'—element. We
have that Cq(zy) = Ca(x) N Ca(y) < Ca(x). By
condition (1) we conclude that Cg(z) = Cg(zy) <
Ca(y), and so y € Z(Cg(z)). It follows that
C(;(:C) = C(;(:C)p X Cg(:c)p/ and Cg(:c)p/ is a-
belian. Suppose that Cq(z), £ Z(G). Let u €
Cq(x)y — Z(G) be a g—element for some prime gq.
We have ¢ # p.Reapeating the previous arguments,
we conclude that Cg(u) = Cg(u)q x Cg(u)y and
Cq(u)y is abelian. Then, since Cg(x), < Ca(u)q,
Cg(x)p is abelian. It follows that C¢(z) is abelian.
So, we have proved that if = is a noncentral pri-
mary element of G,then (i))Cq(z) is abelian, or (ii)
Ca(z) = Cg(x)p x Z(G), for some prime p.

Suppose that (r1,73) = 1. Let x1,x2 and z3
be three noncentral primary elements of G such that
|z¥| = 7 for i = 1,2,3. We claim that Cg(21)
is abelian. Suppose on the contrary that C(x1) is
not abelian. By the above paragraph we have that
Ca(z1) = Cg(z1)p x Z(G)y for some prime p.
Then, we have

|G| = [27]|Ca(@1)| = 1|Ca (1) Z(G)y | =
rp*lZ(G)yl,
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where a is some positive integer. It follows that
|G : Z(G)||r1p®. Then, noting that r3||G/Z(G)| and
r3||G/Z(G)|, we get that ro|r1p® and r3|r1p®. Then,
since (r1,72) = (r1,73) = 1, we conclude that ro|p®
and r3|p®, and thus either 73|73 or r3|re, against con-
dition (1).Hence, we have proved that C(x1) is a-
belian. Suppose that C(z2) is not abelian. By us-
ing the arguments used for C(x1) we conclude that
|G : Z(G)||raq”, where q is some prime and b is some
positive integer.Then, since 71||G : Z(G)||r2¢® and
(r1,72) = 1, we conclude that r; is a power of q.
Since (r1,73) = 1, we have ¢ /|rs. Then, since
r3|G : Z(G)||r2q” we get that r3|ro, against condi-
tion (1). Hence, Cz(2) is also abelian.

Since (r1,72) = 1, by Lemma 1.3 we have G =
Ca(z1)Cq(x2). Then, since Cg(x1) and Cg(x2) are
abelian, we have that Cq(z1) N Cg(z2) = Z(G). It
follows that

G : Z(G)| = |G : Cg(w1) N Ca(a)| =
|GlICc(21)Cq(22)|/|Ca(z1)[|Cq (a2)],

G Z(G)] =(|;G\2/!CG($1)IICG(:E2)| =

|$1 ||5L'2 | = ri7a.

Then, r3|rire. Thus, since (r1,73) = 1, we get
that r3|re, against condition (1). Hence, we have
(r1,7r3) # 1.

By symmetry, we have (r9,73) # 1. This com-
pletes the proof of the theorem.

Corollary 2.9 Suppose that ppcs(G) = {1, 2k+
1,2k+3,--- , 2141} ( continuous odd numbers) with
| < 3k. Then, ppcs(G) = {1,2k+1}, 2k+1 = p* for
some prime p, and G = P x A, where P is a p—group
and A is an abelian group.

Proof Since | < 3k by hypothesis,G satisfies
condition (1) of Theorem 2.8. Since (2k + 1,2k +
3) =1land (2k + 1,2k + 5) = 1, by Theorem 2.8 we
conclude that [ppes(G) — {1} < 2.

(i) Assume that |ppes(G) — {1}| = 2.

In this case, ppcs(G) = {1,2k + 1,2k + 3}. By
Theorem 2.2, G/Z(G) = KH/Z(G) is a Frobenius
group with the kernel K/Z(G) and a complemen-
t H/Z(G), and K and H are abelian. Then,we have
es(G) = {1,|H/Z(G)|,|K/Z(G)|}. 1t follows that
2k +3 =|K/Z(G)| and 2k + 1 = |H/Z(G)|. Then,
2k+1=|H/Z(G)|||K/Z(G)| — 1 = 2k + 2(see [5,
8.3, p.497]). But, this is impossible.

(ii) Assume that |ppcs(G) — {1}| = 1.

In this case, ppes(G) = {1,2k + 1}. Then, by
Lemma 1.7 we conclude that 2k + 1 = p® for some
prime p, and G = P x A, where P is a p—group and
A is an abelian group. This completes the proof of
theorem.
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We recall that a nonabelian group G is an F-group
if the centralizers of its noncentral elements are pair-
wise incomparable with respect to inclusion, that is,
forz,y € G — Z(G), we have that Ci(z) < Ca(y)
implies that Cz(z) = Ca(y).

We have the following

Theorem A [13, Rebmann] A nonabelian solv-
able group G is an F-group if and only if it is one of
the following types:

(i) G = P x A, where P is an F-group of prime
power order and A is abelian;

(ii) G has an abelian normal subgroup of prime
index;

(iii) G is a quasi-Frobenius group with abelian
kernel and complement;

(iv) G/Z(G) is a Frobenius group with the ker-
nel K/Z(G) and a complement L/Z(G), where L is
abelian, Z(K) = Z(G),K/Z(Q) has prime power
order and K is an F-group.

(v) G/Z(G) = Sy and V is not abelian if
V/Z(G) is the Klein four group in G/Z(G).

Theorem 2.10 Let G be a nonabelian
group.Suppose that for noncentral primary or bipri-
mary elements z,y of G,Cq(x) < Cg(y) implies
Ca(z) = Ca(y). Then, cs(G) = pes(G) = ppes(G)
and G is an F-group.

Proof Let z be any noncentral element of G.We
have that o(z) = p{"*...pJ"», where p1, ..., p,, are dis-
tinct primes and my, ..., m,, are positive integers. By
Lemma 1.1 we have that z = z;...z,, with o(z;) = p"
and z,z; = 22, for s,r = 1,...,n. Since z is non-
central, some z; is noncentral. Without loss of gen-
erality we may assume that z; is noncentral. For
i = 2,---,n, we have that Cg(z12;) = Cg(z1) N
Ca(zi) < Cg(z1). Then, by hypothesis we have

Ca(z12z;) = Cg(z1). On the other hand, we have
Ca(z12) = Cg(z1) N Cg(z) < Cg(z;). It follows
that Cg(z1) < Cg(z;) fori = 2,--- ,n. Hence, we
have

CG(Zl) ﬂCG(zQ . Zn) —

Ca(z) =Cq(z1---2p) =
N Cq(zn) = Ca(z1).

Cg(zl) N CG(ZQ) N

So, we have C;(z) = Cg(z1) and we have proved
that cs(G) = pcs(G) = ppes(G).

Let x,y be noncentral elements of GG such that
Ca(z) < Cg(y). By the above paragraph, there
exist noncentral primary elements x; and y; of G
such that Cg(z) = Cg(x1) and Ca(y) = Ca(y1).
Then, Cg(x1) < Cg(y1). By hypothesis, we have
Ca(z1) = Ca(yr). It follows that C(z) = Ca(y).
So, we have proved that, for any noncentral elements
z,y of G, Cg(x) < Cg(y) implies Cq(z) = Ca(y).
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Hence, G is an F-group. This completes the proof of
the theorem.

Theorem 2.11 Let G be a nonabelian group,
and suppose that ppcs(G) satisfies the following con-
dition: For r,t € ppes(G), if r # t, then r /|t and
t fr. Then, the following two propositions hold:

(1) es(G) = pes(G) = ppes(G);

(2) If G is solvable, then G is one of the following
types:

(i) G = P x A, where P is a p—group for
some prime p and A is an abelian group. Further,
ppes(G) = es(P) = {1,p*}, where a is a fixed posi-
tive integer;

(ii) G is a quasi-Frobenius group with abelian k-
ernel and complement;

(iii) G = PL, where P is a normal Sylow
p—subgroup of G for some prime p and L is an a-
belian p—complement of G, and G/Z(G) is a Frobe-
nius group. Furthermore, Z(P) = Z(G) N P and
les(P)| = 2.

Proof By hypothesis and Theorem 2.10 we con-
clude that c¢s(G) = ppcs(G) = pes(G) and G 1s an
F-group. Thus, proposition (1) holds.

Now, we prove proposition (2). By the assump-
tion of (2), G is solvable. Then, G is a solvable F-
group. Therefore, by Theorem A, we have the follow-
ing types of groups:

(a) G = P x A,where P is an F—group of prime
power order and A is abelian.

In this case, P is a p—group for some prime p.
We can assume that A = 1. Then G = P, and by
hypothesis we have ppcs(G) = ¢s(G) = cs(P) =
{1, p*}, where a is a fixed positive integer. So, G is of
type (i).

(b) G is nonabelian and has an abelian normal
subgroup of prime index p.

If G is nilpotent, then it is easy to see that GG is
of type (i). So, we may assume that GG is not nilpo-
tent. Then, it is clear that G = K P, where P is a
Sylow p—subgroup of G and K is an abelian normal
p—complement of G, and |P/O,(G)| = p.

Since K is abelian normal and (| K|, |P|) = 1,
we have K = [K, P] x Ck(P). Clearly, Cx(P)
is an abelian direcy factor of G. We can assume
that GG has no nontrivial abelian direct factor, and so
Ck(P) = 1 and K = [K, P]. Then, it is obvious
that G/O,(G) is a Frobenius group with the kernel
KO,(G)/Oy(G) = K and a complement P/O,(G)
of order p. Suppose that P is nonabelian. Then, it is
easy to see that cs(G) = {1, p, p? K|} for some pos-
itive integer a (see also [14, Lemma 3.3]).Thus, since
ppes(G) = es(G)(see (1)), ppes(G) does not satisfy
the condition of the theorem, a contradiction. There-
fore, P is abelian, O,(G) = Z(G) as Ck(P) = 1,
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and G/Z(G) = KP/Z(G) is a Frobenius group.
Then, G is of type (ii).

(¢) GG is a quasi-Frobenius group with abelian k-
ernel and complement.

This is of type (ii).

(d) G/Z (@) is a Frobenius group with the kernel
Ky/Z(G) and a complement Lo/Z(G), where Ly is
abelian, Z(Ko) = Z(G), Ko/Z(G) has prime power
order and Kj is an F-group.

In this case, Ky/Z(G) is a p—group for some
prime p. Then, Ko = P x A, where P is a Sylow
p—subgroup of K, and A is an abelian group.Clearly,
PG and Z(G) = Z(Ky) = Z(P) x A. Fur-
ther, since K is an F-group and A is abelian, we have
|cs(P)| = 2. We have

G/Z(G) = Ko/Z(G) > Lo/ Z(G)
~ P/Z(P) > <Lo/Z(G).

Then, since G/Z(G) is a Frobenius group with the k-
ernel Ky/Z(G) and a complement Lo /Z(G), we have
p AlLo/Z(G)|. Let L be the p—complement of L.
Since Lg is abelian, L is abelian. So, we have that
G = PL and G is of type (iii).

(e) G/Z(G) = S4, and V is not abelian if
V/Z(G) is the Klein four group in G/Z(G).

In this case we have cs(G) = {1,6,8,12} (see
[14, p.925]), and so by (1) we get that ppcs(G) =
cs(G) = {1,6,8,12}, against the condition of the
theorem. This completes the proof of the theorem.

We know that if |cs(G)| < 3, then G is solvable
(see [14, THEOREM 2.4(Ito)]). Hence, by Theorem
2.11 we obtain two corollaries. One corollary is Lem-
ma 1.7, and another corollary is the following:

Corollary 2.12  Suppose that ppcs(G) =
{1,n,m} withn < m and n /m. Then, G is one
of the following types:

(1) G is a quasi-Frobenius group with abelian k-
ernel and complement;

(2) G = PL, where P is a normal Sylow
p—subgroup of G for some prime p and L is an a-
belian p—complement of G, and G /Z(G) is a Frobe-
nius group. Furthermore, Z(P) = Z(G) N P and
les(P)| = 2.

Note (i) Corollary 2.12 is an improvement of a
part of [14, THEOREM A].

@ii) If G is of type (2) in Corollary 2.12, then
ppes(G) = es(@) = {Lp"p|L/L N Z(G)]} and
a > b (see [14, Lemma 3.3 and p.924]). So, Theorem
2.2, that is, THEOREM 1.1 of [10], is also a conse-
quence of Corollary 2.12.
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