
Several results on conjugacy class sizes of some elements of finite
groups

Abstract: Let G be a finite group. For an element x of G, xG denotes the conjugacy class of x in G. |xG| is called
the size of the conjugacy class xG. In this paper, we establish several results on conjugacy class sizes of some
elements of finite groups. In addition, we give a simple and clearer proof of a known result.
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1 Introduction and Preliminaries
Throughout this paper, the term group always

means a group of finite order. The letter G always de-
notes a group, and the letter p always denotes a prime.
For an element x ∈ G, o(x) denotes the order of x,
and xG denotes the conjugacy class of x in G. |xG| is
called the size of the conjugacy class xG. We denote
by π(G) the set of prime divisors of the order |G| of a
group G. For a positive integer m, π(m) denotes the
set of prime divisors of m. All further unexplained
notations are standard and can be found in [1].

Let x be an element of G. We say that x is pri-
mary if o(x) is a power of a prime (including the case
where x = 1, the identity element); We say that x is
biprimary if o(x) is divisible by precisely two distinct
primes.

We write

cs(G) = {|xG| : x ∈ G},

pcs(G) = {|xG| : x ∈ G and x is primary}

and

ppcs(G) = {|xG| : x ∈ G and x is primary or
biprimary}.

We say that G is a quasi-Frobenius group if
G/Z(G) is a Frobenius group. The inverse images
in G of the kernel and a complement of G/Z(G)
are called the kernel and a complement of G. It
is well-known that if G is a quasi-Frobenius group
with abelian kernel and complement, then cs(G) =
cs(G/Z(G)) (see [2]).

A classical topic of finite group theory is to study
the influence of the conjugacy class sizes on the struc-
ture of groups. However, studying such properties on-
ly from partial information, provided by connjugacy
class sizes of certain elements, can be a more complex
and more interesting problem. In this paper we study
the influence of the conjugacy class sizes of prima-
ry and biprimary elements on the structure of groups.
In addition, we give a simple and clearer proof of a
known result.

In this section we list some lemmas which will
be used in the sequel. The following Lemma 1.1 is
well-known.

Lemma 1.1 Let x ∈ G. Assume that o(x) =
pm1
1 ...pmn

n , where p1, ..., pn are distinct primes and
m1, ...,mn are positive integers. Then, x = x1...xn
with o(xi) = pmi

i and xrxs = xsxr for s, r = 1, ..., n.
Furthermore, there exist integers ki such that xki = xi
for i = 1, · · · , n.

Lemma 1.2 ([3, Lemma 2.4]) A prime p does not
divide the conjugacy class sizes of primary elements
ofG if and only ifG has a central Sylow p−subgroup.

Lemma 1.3 ([4, LEMMA 1(1)]) Let a, b ∈ G. If
(|aG|, |bG|) = 1, then G = CG(a)CG(b).

Lemma 1.4 ([5, Theorem 6.4.3]) If G = AB,
whereA andB are two nilpotent subgroups ofG, then
G is solvable.

Lemma 1.5 ([6, Lemma 2.1]) Let G be a
π−separable group with π ⊆ π(G). Then,

(i) |xG| is a π′−number for every primary
π′−element x if and only if G = Oπ(G)×Oπ′(G).
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(ii) |xG| is a π−number for every primary
π′−element x if and only if G has an abelian Hall
π′−subgroup.

Lemma 1.6 ([2, Proposition 1.4]) Suppose that
G/Z(G) ∼= S3, the symmetric group of degree 3.
Then, up to a central direct factor, G = TD, where T
is a normal subgroup of order 3, D a cyclic 2−group.

The following Lemma 1.7 is a consequence of [7,
Theorem A].

Lemma 1.7 If ppcs(G) = {1,m}, then m = pa

for some prime p and some positive integer a, and
G = P × A, where P is a p−group and A is an a-
belian group.

2 Results and Proofs
A positive integer m is called a Hall number of a
group G if m||G| and (m, |G|/m) = 1.

Theorem 2.1 Suppose that G satisfies the following
two conditions:

(1) pcs(G) = {1,m1,m2} with (m1,m2) = 1.
(2) For each p ∈ π(G) and any noncentral

p−element x of G, CG(x) = CG(x)p × CG(x)p′ and
CG(x)p′ is abelian.

Then, the following statements are true:
(I) G is a quasi-Frobenius group with abelian k-

ernel and complement.
(II) Assume that G has no non-trivial abelian di-

rect factor. Set π := π(m1). If m1 is a Hall-number
of G, then Z(G)π = 1. If m2 is a Hall-number of
G, then Z(G)π′ = 1. If both m1 and m2 are Hall-
number of G, then Z(G) = 1.

Proof We write π := π(m1). By hypothe-
sis,we have π(m1) ∩ π(m2) = ∅. If a prime divi-
sor r of |G| does not divide mi for i = 1, 2, then
by Lemma 1.2 we know that G has a central Sylow
r−subgroup, and hence G has a non-trivial abelian
direct factor.It is well-known that abelian direct fac-
tors are immaterial in this context, and so we can as-
sume that G has no non-trivial abelian direct factor.
Therefore, we have π(G) = π(m1) ∪ π(m2). Let
x, y ∈ G be primary elements such that |xG| = m1

and |yG| = m2. Since (m1,m2) = 1, by Lemma 1.3
we have G = CG(x)CG(y). By hypothesis(condition
(2)), CG(x) and CG(y) are nilpotent, and so by Lem-
ma 1.4 we conclude that G is solvable. Hence, G
has Hall π−subgroups and Hall π′−subgroups. No-
tice that any two Hall π(π′)−subgroups of G are con-
jugate, and any π(π′)−subgroup of G is contained a
Hall π(π′)−subgroup of G.

Let z ∈ G be a primary π−element, and suppose

that |zG| = m1. Then, by hypothesis(condition (2))
we have

(∗) CG(z) = CG(z)π ×H ,

where H is a Hall π′−subgroup of G and H is a-
belian. Let K be a Hall π−subgroup of G such
that CG(z)π ⊆ K. Clearly, we have CG(z)π <
K. For every noncentral primary element x ∈
CG(z)π, by equality (∗) it is obvious that |xG| is a
π−number.There exists a noncentral primary element
w ∈ K−CG(z)π such that |wG| is a π′−number; oth-
erwise,for every noncentral primary element y of K
we have that |yG| is a π−number, and thus by Lem-
ma 1.5(i) we have that G = K × H and the abelian
Hall π′−subgroup H of G is a central direct factor of
G, forcing pcs(G) = {1,m1}, in contradiction to the
hypothesis of the theorem. Then, there exists some
element g such that K ≤ CG(w)

g = CG(w
g). It fol-

lows that wg ≤ Z(K). Then, since CG(z)π ⊆ K,
wg ∈ CG(z)π, and thus by equality (∗) we have
H ≤ CG(w

g). It follows that w ∈ Z(G), contrary
to the choice of w. Consequently, we conclude that
every primary π−element of G has conjugacy class
size 1 or m2. Then, by Lemma 1.5(ii) we conclude
that Hall π−subgroups of G are abelian. By the same
arguments we conclude that Hall π′−subgroup of G
are abelian. Let K be a Hall π−subgroup of G, and
let H be a Hall π′−subgroup of G . Then, K and H
are abelian.

Let x be a noncentral primary π−element of G.
We may assume that x ∈ K. Since K is abelian, by
hypothesis we have CG(x) = K ×CG(x)π′ . We may
assume that CG(x)π′ ≤ H . Then, since H is abelian,
we conclude that CG(x)π′ = Z(G)π′ . Let y ∈ G be a
noncentral primary π′−element ofG. By the same ar-
guments as for x we conclude that CG(y)π = Z(G)π.

Since K and H are abelian, we have F (G) =
Oπ(G) × Oπ′(G). Since G is nonabelian, by [5,
4.2, p.277] we have F (G) 6≤ Z(G). Then, either
Oπ(G) 6≤ Z(G) or Oπ′(G) 6≤ Z(G). Without loss
of generality, we may assume that Oπ(G) 6≤ Z(G).
Suppose that Oπ′(G) 6≤ Z(G), and let y ∈ Oπ′(G)−
Z(G). By the above paragraph we have CG(y)π =
Z(G)π. Then, since Oπ(G) ≤ CG(Oπ′(G)) ≤
CG(y), we have Oπ(G) ≤ Z(G), contradicting our
assumption. Therefore, we conclude that Oπ′(G) =
Z(G)π′ . It follows that K ≤ CG(Oπ(G)) =
CG(Oπ(G))× Z(G)π′) = CG(Oπ(G)× Oπ′(G)) =
CG(F (G)) ≤ F (G) = Oπ(G)×Oπ′(G)( see [5, 4.2,
p.277]), and thus K = Oπ(G), that is, K CG. Then,
we have G = K > CH .(The notation > C denotes a
semidirect product.)

Consider the factor group G/Z(G) =
KH/Z(G), and we use the bar convention. Let h be a
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primary non-identity element of H = HZ(G)/Z(G),
and let k be a primary non-identity element of
K = KZ(G)/Z(G). By Lemma 1.1 we may assume
that h and k are primary.Suppose that [k, h] = 1.
Then we have that [k, h] ≤ Z(G). It follows that
[k, h] ≤ [K,H] ∩ CK(H). On the other hand, we
have that K = [K,H] × CK(H)(see [8, Theorem
2.3, p.177]). Hence, we get that [k, h] = 1.It follows
that h ∈ CG(k)π′ = Z(G)π′ , and thus h = 1, a
contradiction. So, we have that [k, h] 6= 1. Then,
by Lemma 1.1 and [9, Problems 7.1(a), p.121] we
conclude that G/Z(G) = KH/Z(G) is a Frobenius
group with the kernel KZ(G)/Z(G) and a comple-
ment HZ(G)/Z(G). Thus, noting that K and H are
abelian, G is a quasi-Frobenius group with abelian
kernel and complement. So, statement (I) holds.

We have that m1 = |K/Z(G)π| and m2 =
|H/Z(G)π′ |, and so statement (II)) is obvious. This
completes the proof of the theorem.

Theorem 2.2 [10, THEOREM 1.1] Suppose that
ppcs(G) = {1,m1,m2} with (m1,m2) = 1. Then,
G is a quasi-Frobenius group with abelian kernel and
complement.

Proof By hypothesis and Lemma 1.2 we have
that pcs(G) = {1,m1,m2} with (m1,m2) = 1.

For any p ∈ π(G), let x be a p−element of G
such that |xG| = mi for i = 1 or 2. Let z be
any primary p′−element of CG(x). We have that
CG(xz) = CG(x) ∩ CG(z) ≤ CG(x). Then, s-
ince (m1,m2) = 1, we conclude that CG(x) =
CG(xz) ≤ CG(z), and thus z ∈ Z(CG(x)). Hence,
CG(x) = CG(x)p × CG(x)p′ and CG(x)p′ is abelian.

To sum up, G satisfies two conditions of Theo-
rem 2.1. Hence, by Theorem 2.1 we conclude that the
theorem holds. This completes the proof.

Note In the original proof of [10, THEOREM
1.1], the authors of [10] dealt separately with the fol-
lowing three cases: (i) Bothm1 andm2 are Hall num-
bers ofG;(ii) Only one ofm1 andm2 is a Hall number
of G; (iii) Neither m1 nor m2 is a Hall number of G.
From the proof of Theorem 2.1, we see that it is not
necessary to deal separately with the above-mentioned
three cases. So, we have given a simple and clearer
proof of [10, THEOREM 1.1]. However, we point out
that, in fact, THEOREM 1.1 of [10] is a consequence
of Theorem 1 and Theorem 2 of [4] (see the following
Theorem 2.5 and its proof). In addition, we will see
that THEOREM 1.1 of [10] is also a consequence of
Corollary 2.12 in the present paper.

Corollary 2.3 Suppose that ppcs(G) =
{1, n, n + 1}. Then, G is a quasi-Frobenius group
with abelian kernel and complement. Furthermore,

n+ 1 is a prime power.

Proof Clearly, (n, n + 1) = 1. Then, by The-
orem 2.2, G/Z(G) = K/Z(G) > CH/Z(G) is a
Frobenius group with the kernel K/Z(G) and a com-
plement H/Z(G), and K and H are abelian. S-
ince {1, |H/Z(G)|, |K/Z(G)|} = cs(G/Z(G)) =
cs(G), we conclude that{1, |H/Z(G)|, |K/Z(G)|} =
{1, n, n+1}.Hence,G/Z(G) is a sharply 2−transitive
group of degree n + 1, and so by [11, XII Theorem
9.1] we conclude that n + 1 is a prime power. This
completes the proof.

Corollary 2.4 Suppose that ppcs(G) =
{1, 2, 3}. Then, G/Z(G) ∼= S3. Furthermore, up to a
central direct factor, G = DT , where D is a normal
subgroup of order 3 and T is a cyclic 2−group.

Proof By Corollary 2.3 and its proof we con-
clude that G/Z(G) is a nonabelian group of order 6,
and so G/Z(G) ∼= S3. Thus, by Lemma 1.6 we get
that, up to an abelian direct factor, G = DT , where
D is a normal subgroup of order 3 and T is a cyclic
2−group. This completes the proof.

Theorem 2.5 Suppose that

ppcs(G) = {1,m1, · · · ,mt}

with t ≥ 2.In addition, for i, j = 1, · · · , t, if i 6= j,
then (mi,mj) = 1.Then, t = 2 and G is a quasi-
Frobenius group with abelian kernel and complement.

Proof Let x be a noncentral element of G, and
assume that o(x) = pr11 ...p

rn
n , where p1, ..., pn are dis-

tinct primes and r1, ..., rn are positive integers. By
Lemma 1.1 we have that x = x1...xn with o(xi) = prii
and xrxs = xsxr for s, r = 1, ..., n. Since x is
noncentral, some xi is noncentral for 1 ≤ i ≤ n.
Without loss of generality, we may assume that x1 is
noncentral. By hypothesis, we have |xG1 | = mj for
some j.Clearly, we may assume that j = 1, that is,
|xG1 | = m1. By the same arguments as in the proof of
Theorem 2.2 we conclude that xi ∈ Z(CG(x1)) for
i = 1, · · · , n. It follows that CG(x1) ⊆ CG(xi) for
i = 2, · · · , n.Thus,

CG(x) = CG(x1 · · ·xn) =
CG(x1) ∩ CG(x2) ∩ · · · ∩ CG(xn) = CG(x1).

It follows that |xG| = |xG1 | = m1. So, we have proved
that cs(G) = ppcs(G) = {1,m1, · · · ,mt}. Then,
since (mi,mj) = 1 for i 6= j, by THEOREM 1 of [4]
we conclude that t = 2, and so by THEOREM 2 of [4]
(or by Theorem 2.2 in the precent paper) we conclude
that G is a quasi-Frobenus group with abelian kernel
and complement. This completes the proof.

The following Theorem 2.6 is an extension of [4,
COROLLARY 3].
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Theorem 2.6 Let G be a nonabelian group, and
suppose that G satisfies the following condition:

(∗) Let x, y ∈ G−Z(G) be primary or biprimary.
If xG 6= yG, then (|xG|, |yG|) = 1.

Then, G ∼= S3.

Proof In view of condition (∗), by Theorem 2.5
and Lemma 1.7, one of the following two cases may
occur:

(1) G = P × A, where P is a p−group for some
prime p and A is an abelian group.Furthermore,if
x, y ∈ G − Z(G) are primary or biprimary, then
xG = yG.

In this case, it is clear that A = 1 and G is
a p−group. Furthermore,G has only one conjugacy
class of noncentral elements. It follows that |G| =
|Z(G)| + |G|/n, where n is a positive integer and
n ≥ 2. Then, |Z(G)| ≥ |G|/2, and this implies that
G is abelian, a contradiction because G is nonabelian
by hypothesis. So, this case can not occur.

(2) G is a quasi-Frobenius group. Furthermore,
G has exactly two classes of noncentral primary and
biprimary elements.

In this case, it is easy to see that |π(G)| = 2 and
Z(G) = 1. Then, G = P > CQ is a Frobenius group
with the kernel P and a complement Q, where P is
an abelian p−group and Q is an abelian q−group, p
and q are two distinct primes. Suppose that |Q| > 2.
Then, there exist non-identity elements x, y ∈ Q such
that x 6= y. We have xG = yG, and thus there exists
a non-identity element w ∈ P such that xw = y. It
follows that y ∈ Qw ∩Q = 1(see [5, 8.5, p.497]), and
so y = 1, a contradiction. Hence, we have |Q| = 2.
Then, we have |P | − 1 = 2, and thus |P | = 3 and
G ∼= S3. The proof is complete.

Theorem 2.7 Suppose that

ppcs(G) = {1, n, n+ 1, · · · , n+ r}

with r ≥ 1. If ppcs(G) does not contain any prime,
then r = 1 and G is a quasi-Frobenius group with
abelian kernel and complement. Furthermore, n + 1
is a prime power.

Proof Let x be a noncentral element of G. We
have that that o(x) = pm1

1 ...pmk
k , where p1, ..., pk

are distinct primes and m1, ...,mk are positive in-
tegers. By Lemma 1.1 we have that x = x1...xk
with o(xi) = pmi

i and xtxs = xsxt for s, t =
1, ..., k. Since x is noncentral, some xi is noncen-
tral for 1 ≤ i ≤ k. Without loss of generality,
we may assume that x1 is noncentral. For i 6= 1,
we have CG(x1xi) = CG(x1) ∩ CG(xi), and so
CG(x1xi) ≤ CG(x1). If CG(x1xi) < CG(x1),

then |xG1 | is a proper divisor of |(x1xi)G|, so that
2|xG1 | ≤ |(x1xi)G|. By the Bertrand’s postulate, there
exists a prime p such that |xG1 | < p < 2|xG1 | ≤
|(x1xi)G|. Since {|xG1 |, |(x1xi)G|} ⊆ ppcs(G), we
get that p ∈ ppcs(G), contradicting the assumption
of the theorem. Hence, CG(x1) = CG(x1xi) =
CG(x1) ∩ CG(xi). It follows that CG(x1) ≤ CG(xi)
for i = 2, · · · , k. Hence, we have

CG(x) = CG(x1 · · ·xk) =
CG(x1) ∩ CG(x2) ∩ · · · ∩ CG(xk) = CG(x1).

It follows that |xG| = |xG1 | ∈ ppcs(G). So, we have
proved that

cs(G) = ppcs(G) = {1, n, n+ 1, · · · , n+ r}.

Then, by [2, Theorem 2 ] we conclude that the theo-
rem holds. This completes the proof.

The following Theorem 2.8 is an extension of [12,
Theorem 1].

Theorem 2.8 Suppose thatG satisfies the follow-
ing two conditions:

(1) For r, t ∈ ppcs(G) − {1}, if r 6= t, then r 6 |t
and t 6 |r;

(2) |ppcs(G)− {1}| ≥ 3.
Then, for any three distinct numbers r1, r2 and r3

in ppcs(G) − {1}, if (r1, r2) = 1,then (r1, r3) 6= 1
and (r2, r3) 6= 1.

Proof It is easy to show that pcs(G) = ppcs(G).
Let x ∈ G be a noncentral p−element for some prime
p, and let y ∈ CG(x) be a primary p′−element. We
have that CG(xy) = CG(x) ∩ CG(y) ≤ CG(x). By
condition (1) we conclude that CG(x) = CG(xy) ≤
CG(y), and so y ∈ Z(CG(x)). It follows that
CG(x) = CG(x)p × CG(x)p′ and CG(x)p′ is a-
belian. Suppose that CG(x)p′ 6≤ Z(G). Let u ∈
CG(x)p′ − Z(G) be a q−element for some prime q.
We have q 6= p.Reapeating the previous arguments,
we conclude that CG(u) = CG(u)q × CG(u)q′ and
CG(u)q′ is abelian. Then, since CG(x)p ≤ CG(u)q′ ,
CG(x)p is abelian. It follows that CG(x) is abelian.
So, we have proved that if x is a noncentral pri-
mary element of G,then (i)CG(x) is abelian, or (ii)
CG(x) = CG(x)p × Z(G)p′ for some prime p.

Suppose that (r1, r3) = 1. Let x1, x2 and x3
be three noncentral primary elements of G such that
|xGi | = ri for i = 1, 2, 3. We claim that CG(x1)
is abelian. Suppose on the contrary that CG(x1) is
not abelian. By the above paragraph we have that
CG(x1) = CG(x1)p × Z(G)p′ for some prime p.
Then, we have

|G| = |xG1 ||CG(x1)| = r1|CG(x1)p|Z(G)p′ | =
r1p

a|Z(G)p′ |,
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where a is some positive integer. It follows that
|G : Z(G)||r1pa. Then, noting that r2||G/Z(G)| and
r3||G/Z(G)|, we get that r2|r1pa and r3|r1pa. Then,
since (r1, r2) = (r1, r3) = 1, we conclude that r2|pa
and r3|pa, and thus either r2|r3 or r3|r2, against con-
dition (1).Hence, we have proved that CG(x1) is a-
belian. Suppose that CG(x2) is not abelian. By us-
ing the arguments used for CG(x1) we conclude that
|G : Z(G)||r2qb, where q is some prime and b is some
positive integer.Then, since r1||G : Z(G)||r2qb and
(r1, r2) = 1, we conclude that r1 is a power of q.
Since (r1, r3) = 1, we have q 6 |r3. Then, since
r3||G : Z(G)||r2qb we get that r3|r2, against condi-
tion (1). Hence, CG(x2) is also abelian.

Since (r1, r2) = 1, by Lemma 1.3 we have G =
CG(x1)CG(x2). Then, since CG(x1) and CG(x2) are
abelian, we have that CG(x1) ∩ CG(x2) = Z(G). It
follows that

|G : Z(G)| = |G : CG(x1) ∩ CG(x2)| =
|G||CG(x1)CG(x2)|/|CG(x1)||CG(x2)|,

|G : Z(G)| = |G|2/|CG(x1)||CG(x2)| =
|xG1 ||xG2 | = r1r2.

Then, r3|r1r2. Thus, since (r1, r3) = 1, we get
that r3|r2, against condition (1). Hence, we have
(r1, r3) 6= 1.

By symmetry, we have (r2, r3) 6= 1. This com-
pletes the proof of the theorem.

Corollary 2.9 Suppose that ppcs(G) = {1, 2k+
1, 2k+3, · · · , 2l+1} ( continuous odd numbers) with
l ≤ 3k. Then, ppcs(G) = {1, 2k+1}, 2k+1 = pa for
some prime p, andG = P ×A, where P is a p−group
and A is an abelian group.

Proof Since l ≤ 3k by hypothesis,G satisfies
condition (1) of Theorem 2.8. Since (2k + 1, 2k +
3) = 1 and (2k + 1, 2k + 5) = 1, by Theorem 2.8 we
conclude that |ppcs(G)− {1}| ≤ 2.

(i) Assume that |ppcs(G)− {1}| = 2.
In this case, ppcs(G) = {1, 2k + 1, 2k + 3}. By

Theorem 2.2, G/Z(G) = KH/Z(G) is a Frobenius
group with the kernel K/Z(G) and a complemen-
t H/Z(G), and K and H are abelian. Then,we have
cs(G) = {1, |H/Z(G)|, |K/Z(G)|}. It follows that
2k + 3 = |K/Z(G)| and 2k + 1 = |H/Z(G)|. Then,
2k + 1 = |H/Z(G)|||K/Z(G)| − 1 = 2k + 2(see [5,
8.3, p.497]). But, this is impossible.

(ii) Assume that |ppcs(G)− {1}| = 1.
In this case, ppcs(G) = {1, 2k + 1}. Then, by

Lemma 1.7 we conclude that 2k + 1 = pa for some
prime p, and G = P × A, where P is a p−group and
A is an abelian group. This completes the proof of
theorem.

We recall that a nonabelian groupG is an F-group
if the centralizers of its noncentral elements are pair-
wise incomparable with respect to inclusion, that is,
for x, y ∈ G − Z(G), we have that CG(x) ≤ CG(y)
implies that CG(x) = CG(y).

We have the following

Theorem A [13, Rebmann] A nonabelian solv-
able group G is an F-group if and only if it is one of
the following types:

(i) G = P × A, where P is an F-group of prime
power order and A is abelian;

(ii) G has an abelian normal subgroup of prime
index;

(iii) G is a quasi-Frobenius group with abelian
kernel and complement;

(iv) G/Z(G) is a Frobenius group with the ker-
nel K/Z(G) and a complement L/Z(G), where L is
abelian, Z(K) = Z(G),K/Z(G) has prime power
order and K is an F-group.

(v) G/Z(G) ∼= S4, and V is not abelian if
V/Z(G) is the Klein four group in G/Z(G).

Theorem 2.10 Let G be a nonabelian
group.Suppose that for noncentral primary or bipri-
mary elements x, y of G,CG(x) ≤ CG(y) implies
CG(x) = CG(y). Then, cs(G) = pcs(G) = ppcs(G)
and G is an F-group.

Proof Let z be any noncentral element of G.We
have that o(z) = pm1

1 ...pmn
n , where p1, ..., pn are dis-

tinct primes and m1, ...,mn are positive integers. By
Lemma 1.1 we have that z = z1...zn with o(zi) = pmi

i
and zrzs = zszr for s, r = 1, ..., n. Since z is non-
central, some zi is noncentral. Without loss of gen-
erality we may assume that z1 is noncentral. For
i = 2, · · · , n, we have that CG(z1zi) = CG(z1) ∩
CG(zi) ≤ CG(z1). Then, by hypothesis we have
CG(z1zi) = CG(z1). On the other hand, we have
CG(z1zi) = CG(z1) ∩ CG(zi) ≤ CG(zi). It follows
that CG(z1) ≤ CG(zi) for i = 2, · · · , n. Hence, we
have

CG(z) = CG(z1 · · · zn) = CG(z1)∩CG(z2 · · · zn) =
CG(z1) ∩ CG(z2) ∩ · · · ∩ CG(zn) = CG(z1).

So, we have CG(z) = CG(z1) and we have proved
that cs(G) = pcs(G) = ppcs(G).

Let x, y be noncentral elements of G such that
CG(x) ≤ CG(y). By the above paragraph, there
exist noncentral primary elements x1 and y1 of G
such that CG(x) = CG(x1) and CG(y) = CG(y1).
Then, CG(x1) ≤ CG(y1). By hypothesis, we have
CG(x1) = CG(y1). It follows that CG(x) = CG(y).
So, we have proved that, for any noncentral elements
x, y of G, CG(x) ≤ CG(y) implies CG(x) = CG(y).
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Hence, G is an F-group. This completes the proof of
the theorem.

Theorem 2.11 Let G be a nonabelian group,
and suppose that ppcs(G) satisfies the following con-
dition: For r, t ∈ ppcs(G), if r 6= t, then r 6 |t and
t 6 |r. Then, the following two propositions hold:

(1) cs(G) = pcs(G) = ppcs(G);
(2) If G is solvable, then G is one of the following

types:
(i) G = P × A, where P is a p−group for

some prime p and A is an abelian group. Further,
ppcs(G) = cs(P ) = {1, pa}, where a is a fixed posi-
tive integer;

(ii) G is a quasi-Frobenius group with abelian k-
ernel and complement;

(iii) G = PL, where P is a normal Sylow
p−subgroup of G for some prime p and L is an a-
belian p−complement of G, and G/Z(G) is a Frobe-
nius group. Furthermore, Z(P ) = Z(G) ∩ P and
|cs(P )| = 2 .

Proof By hypothesis and Theorem 2.10 we con-
clude that cs(G) = ppcs(G) = pcs(G) and G 1s an
F-group. Thus, proposition (1) holds.

Now, we prove proposition (2). By the assump-
tion of (2), G is solvable. Then, G is a solvable F-
group. Therefore, by Theorem A, we have the follow-
ing types of groups:

(a) G = P ×A,where P is an F−group of prime
power order and A is abelian.

In this case, P is a p−group for some prime p.
We can assume that A = 1. Then G = P , and by
hypothesis we have ppcs(G) = cs(G) = cs(P ) =
{1, pa}, where a is a fixed positive integer. So, G is of
type (i).

(b) G is nonabelian and has an abelian normal
subgroup of prime index p.

If G is nilpotent, then it is easy to see that G is
of type (i). So, we may assume that G is not nilpo-
tent. Then, it is clear that G = KP , where P is a
Sylow p−subgroup of G and K is an abelian normal
p−complement of G, and |P/Op(G)| = p.

Since K is abelian normal and (|K|, |P |) = 1,
we have K = [K,P ] × CK(P ). Clearly, CK(P )
is an abelian direcy factor of G. We can assume
that G has no nontrivial abelian direct factor, and so
CK(P ) = 1 and K = [K,P ]. Then, it is obvious
that G/Op(G) is a Frobenius group with the kernel
KOp(G)/Op(G) ∼= K and a complement P/Op(G)
of order p. Suppose that P is nonabelian. Then, it is
easy to see that cs(G) = {1, p, pa|K|} for some pos-
itive integer a (see also [14, Lemma 3.3]).Thus, since
ppcs(G) = cs(G)(see (1)), ppcs(G) does not satisfy
the condition of the theorem, a contradiction. There-
fore, P is abelian, Op(G) = Z(G) as CK(P ) = 1,

and G/Z(G) = KP/Z(G) is a Frobenius group.
Then, G is of type (ii).

(c) G is a quasi-Frobenius group with abelian k-
ernel and complement.

This is of type (ii).
(d) G/Z(G) is a Frobenius group with the kernel

K0/Z(G) and a complement L0/Z(G), where L0 is
abelian, Z(K0) = Z(G),K0/Z(G) has prime power
order and K0 is an F-group.

In this case, K0/Z(G) is a p−group for some
prime p. Then, K0 = P × A, where P is a Sylow
p−subgroup of K, and A is an abelian group.Clearly,
P C G and Z(G) = Z(K0) = Z(P ) × A. Fur-
ther, sinceK0 is an F-group andA is abelian, we have
|cs(P )| = 2. We have

G/Z(G) = K0/Z(G) > CL0/Z(G)
∼= P/Z(P ) > CL0/Z(G).

Then, since G/Z(G) is a Frobenius group with the k-
ernelK0/Z(G) and a complementL0/Z(G), we have
p 6 ||L0/Z(G)|. Let L be the p−complement of L0.
Since L0 is abelian, L is abelian. So, we have that
G = PL and G is of type (iii).

(e) G/Z(G) ∼= S4, and V is not abelian if
V/Z(G) is the Klein four group in G/Z(G).

In this case we have cs(G) = {1, 6, 8, 12} (see
[14, p.925]), and so by (1) we get that ppcs(G) =
cs(G) = {1, 6, 8, 12}, against the condition of the
theorem. This completes the proof of the theorem.

We know that if |cs(G)| ≤ 3, then G is solvable
(see [14, THEOREM 2.4(Ito)]). Hence, by Theorem
2.11 we obtain two corollaries. One corollary is Lem-
ma 1.7, and another corollary is the following:

Corollary 2.12 Suppose that ppcs(G) =
{1, n,m} with n < m and n 6 |m. Then, G is one
of the following types:

(1) G is a quasi-Frobenius group with abelian k-
ernel and complement;

(2) G = PL, where P is a normal Sylow
p−subgroup of G for some prime p and L is an a-
belian p−complement of G, and G/Z(G) is a Frobe-
nius group. Furthermore, Z(P ) = Z(G) ∩ P and
|cs(P )| = 2.

Note (i) Corollary 2.12 is an improvement of a
part of [14, THEOREM A].

(ii) If G is of type (2) in Corollary 2.12, then
ppcs(G) = cs(G) = {1, pa, pb|L/L ∩ Z(G)|} and
a > b (see [14, Lemma 3.3 and p.924]). So, Theorem
2.2, that is, THEOREM 1.1 of [10], is also a conse-
quence of Corollary 2.12.
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