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1 Introduction
Banach’s contraction principle is one of the most use-
ful tools in fixed point theory. Edelstein [1] proved
the following version of the Banach contraction prin-
ciple.

Let (X, d) be a compact metric space and let f :
X → X be a self-mapping. Assume that d(fx, fy) <
d(x, y) holds for all x, y ∈ X with x ̸= y. Then f has
a unique fixed point in X.

Later, Suzuki [2] proved generalized versions of
Edelstein’s results in compactmetric space as follows.

Let (X, d) be a compact metric space and let f :
X → X be a self-mapping. Assume that for all x, y ∈
X with x ̸= y,

1

2
d(x, fx) < d(x, y) ⇒ d(fx, fy) < d(x, y)

Then f has a unique fixed point in X.
The fixed point theory for set-value mapping was

developed after Nadler’s famous paper [3].
Let (X, d) be a complete metric space and f be a

multi-valued map on X such that fx is a nonempty
closed bounded subset of X for any x ∈ X. If there
exists c ∈ (0, 1) such that

H(fx, fy) ≤ cd(x, y), ∀ x, y ∈ X,

then f has a fixed point in X.
Several authors have defined multiple value map-

ping terms using the concept of the Hausdorff-
Pompieu metric. i.e.,

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

where d(a,B) = inf{d(a, b) : b ∈ B}. Then H is a
metric onCB(X), is the class of all nonempty closed
and bounded subsets of X.

Aydi et al. [4] introduced a multi-valued mapping
in b-metric spaces as follow:

Let (X, db) be a complete b-metric space and let
f : X → CB(X) be a multi-valued mapping such
that for all x, y ∈ X,

H(fx, fy) ≤ cdb(x, y),

where 0 ≤ c <
1

s2 + s
< 1 and

M(x, y) =max{db(x, y), db(x, fx), db(y, fy),
db(x, fy), db(y, fx)}.

Then f has a fixed point in X, that is, there exists
u∗ ∈ X such that u∗ ∈ fx.

It is generally expanded or explained in different
directions and many (general) fixed point theorems
have been identified (see [6, 7, 8, 9, 11, 12, 13, 14,
15]).

In this work, we present a fixed point for (α, F )-
set-valued mapping in setting b-metric space.

In Section 2, we present definition lemma in b-
metric space.

In Section 3, we prove the fixed point theorem for
(α, F )-set-valued mapping in setting b-metric space
and give an example for support our theorem.

In Section 4, we show application are available to
demonstrate the reliability of the our result.

2 Preliminaries
Definition 2.1. [17, 18] LetX be a nonempty set and
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s ≥ 1 be a given real number. Take db : X × X →
[0,∞). Suppose that for all x, y, z ∈ X, we have:
(C1) db(x, y) = 0 if and only if x = y;

(C2) db(x, y) = db(x, y);

(C3) db(x, z) ≤ s[db(x, y) + db(y, z)].

Then, db is said a b-metric and the triplet (X, db, s) is
called a b-metric space.

Let (X, db, s) be a b-metric space. Let {xn} be a
sequence in X.
(C1) {xn} ⊆ X converges to a point u∗ ∈ X if

limn→∞ db(xn, u
∗) = 0;

(C2) {xn} ⊆ X is Cauchy if, for each ϵ > 0, there is
some n(ϵ) ∈ N such that db(xn, xm) < ϵ for all
m,n ≥ n(ϵ);

(C3) (X, db, s) is said complete if any Cauchy se-
quence is convergent in X.

Lemma 2.2. [19] Let (X, db, s) be a b-metric space
with s ≥ 1. Let {xn} be a sequence in X such that

lim
n→∞

db(xn, xn+1) = 0.

If {xn} is not a b-Cauchy sequence, then there ex-
ist ϵ > 0 and {xm(k)} and {xn(k)} two sequences of
positive integers such that

(C1) ϵ ≤ lim infk→∞ db(xm(k), xn(k)) ≤
lim supk→∞ db(xm(k), xn(k)) ≤ sϵ;

(C2)
ϵ

s
≤ lim infk→∞ db(xm(k), xn(k)+1) ≤

lim supk→∞ db(xm(k), xn(k)+1) ≤ s2ϵ;

(C3)
ϵ

s
≤ lim infk→∞ db(xm(k)+1, xn(k)) ≤

lim supk→∞ db(xm(k)+1, xn(k)) ≤ s2ϵ;

(C4)
ϵ

s2
≤ lim infk→∞ db(xm(k)+1, xn(k)) ≤

lim supk→∞ db(xm(k)+1, xn(k)) ≤ s3ϵ;

Lemma 2.3. [19] Let (X, db, s) be a b-metric space
with s ≥ 1. Suppose that {xn} and {yn} are b-
convergent sequences to u∗ and v∗, respectively.
Then,
1

s
db(u

∗, v∗) ≤ lim inf
n→∞

db(xn, yn)

≤ lim sup
n→∞

db(xn, yn) ≤ s2db(u
∗, v∗).

Lemma 2.4. [20] Let (X, db, s) be a b-metric space.
For A ∈ CL(X) and x ∈ X, we have

db(x,A) = 0 ⇔ x ∈ Ā = A, (1)

where the closure of the set A is denoted by Ā.

Denote by 2X (resp. CL(X)) the family of subsets
(resp. of closed subsets) of X. Let CB(X) be the
class of all nonempty closed bounded subsets of X .

Lemma 2.5. [21] Assume that fx ∈ CL(X) for each
x ∈ X. If f is upper semi-continuous then Gr(f) is
closed in X2.

Definition 2.6. [22] Let X be a nonempty set. Let
f : X → X and α : X × X → [0,∞) be two
mappings. Let s ≥ 1 be a given real number. We say
that f is weak α-admissible of type S if for x ∈ X and
α(x, fx) ≥ s, then α(fx, ffx) ≥ s.

Definition 2.7. [23] LetX be a nonempty set. Given
f : X → CL(X) and α : X × X → [0,∞). Let
s ≥ 1 be a given real number. Such that f is said
to be α-admissible of type S if for each x ∈ X and
y ∈ fx with α(x, y) ≥ s, we have α(y, z) ≥ s for
each z ∈ fy.

Definition 2.8. [24] A mapping F : [0,∞) ×
[0,∞) → R is called aC-class function if it is contin-
uous and for s, t ∈ [0,∞), F satisfies the following
two conditions:

(C1) F (r, t) ≤ r;

(C2) F (r, t) = r implies that either r = 0 or t = 0.

The family of C-class functions is denoted by C.

3 Main Results
Definition 3.1. Let (X, db, s) be a b-metric space
with constant s ≥ 1 and f : X → CL(X) such
that f is an (α, F )-set-valued mapping if there exist
α : X × X → [0,∞), F ∈ C, ψ ∈ Ψ, θ ∈ Θ and
ϕ ∈ Φ such that

x, y ∈ X with α(x, y) ≥ s

⇒ H(fx, fy)

≤ F (ψ(M(x, y)) + θ(N(x, y)), ϕ(M(x, y))),
(2)

where

M(x, y) = max
{
db(x, y),

db(y, fy)[1 + db(x, fx)]

1 + db(x, y)
,

db(y, fx)[1 + db(x, fy)]

1 + db(x, y)
,

db(x, fy) + db(y, fx)

2s

}
(3)

and

N(x, y) = min{db(x, y), db(x, fx), db(y, fy),
db(x, fy), db(y, fx)}.

(4)
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Theorem 3.2. Let (X, db, s) be a b-metric space with
constant s ≥ 1 and f : X → CL(X) be an (α, F )-
admissible set-valued mapping. Assume that:

(C1) f is α-admissible of type S;

(C2) there exist x0 ∈ X and x1 ∈ fx0 such that
α(x0, x1) ≥ s;

(C3) Gr(f) is a closed subset of X2.

Then, f has a fixed point.

Proof. Using condition (C2), we have x0 ∈ X and
x1 ∈ fx0 such that α(x0, x1) ≥ s. If x0 = x1 or x1 ∈
fx1,we deduce that x1 is a fixed point of f and hence
the proof is done. Now, we assume that x0 ̸= x1 and
x1 /∈ fx1. Using Lemma 2.4, db(x1, fx1) > 0. It
following equation (2), we have

0 < db(x1, fx1)

≤ H(fx0, fx1)

≤ F (ψ(M(x0, x1)) + θ(N(x0, x1)), ϕ(M(x0, x1))),
(5)

where

M(x0, x1)

= max
{
db(x0, x1),

db(x1, fx1)[1 + db(x0, fx0)]

1 + db(x0, x1)
,

db(x1, fx0)[1 + db(x0, fx1)]

1 + db(x0, x1)
,

db(x0, fx1) + db(x1, fx0)

2s

}
≤ max

{
db(x0, x1), db(x1, fx1), db(x1, fx0),

db(x0, fx1)

2s

}
≤ max

{
db(x0, x1), db(x1, fx1),

db(x0, x1) + db(x1, fx1)

2s

}
≤ max

{
db(x0, x1), db(x1, fx1)

}
.

(6)
Suppose now max

{
db(x0, x1), db(x1, fx1)

}
=

db(x1, fx1), then by equation (5) becomes

db(x1, fx1)

≤ F (ψ(db(x1, fx1)) + θ(N(x0, x1)), ϕ(db(x1, fx1))).
(7)

But

N(x0, x1)

= min{db(x0, x1), db(x0, fx0), db(x1, fx1),
db(x0, fx1), db(x1, fx0)}

= 0.

(8)

Thus,

0 < db(x1, fx1)

≤ F (ψ(db(x1, fx1)), ϕ(db(x1, fx1)))
(9)

Using ψ(t) < t for each t > 0, we obtain

0 < db(x1, fx1)

≤ F (ψ(db(x1, fx1)), ϕ(db(x1, fx1)))

≤ ψ(db(x1, fx1))

< db(x1, fx1),

(10)

which is a contradiction. Hence,
max

{
db(x0, x1), db(x1, fx1)

}
= db(x0, x1). Using

again equation (5) and the fact thatψ is nondecreasing
and θ is a continuous function, we obtain that

0 < db(x1, fx1) ≤ ψ(db(x0, x1)).

This implies that there exists x2 ∈ fx1 (of course,
x2 = x1 ) such that

0 < db(x1, x2) < ψ(db(x0, x1)).

Because α(x0, x1) ≥ s, x1 ∈ fx0 and x2 ∈ fx1, by
the fact that f is α-admissible, we have α(x1, x2) ≥
s. If x2 ∈ fx2, x2 is a fixed point of f. Otherwise,
x2 /∈ fx2, so we have db(x2, fx2) > 0. It following
equation (2), we have

0 < db(x2, fx2)

≤ H(fx1, fx2)

≤ F (ψ(M(x1, x2)) + θ(N(x1, x2)), ϕ(M(x1, x2))),
(11)

where
M(x1, x2)

= max
{
db(x1, x2),

db(x2, fx2)[1 + db(x1, fx1)]

1 + db(x1, x2)
,

db(x2, fx1)[1 + db(x1, fx2)]

1 + db(x1, x2)
,

db(x1, fx2) + db(x2, fx1)

2s

}
≤ max

{
db(x1, x2), db(x2, fx2), db(x2, fx1),

db(x1, fx2)

2s

}
≤ max

{
db(x1, x2), db(x2, fx2),

db(x1, x2) + db(x2, fx2)

2s

}
≤ max

{
db(x1, x2), db(x2, fx2)

}
.

(12)
Similarly as above, we obtain that
max{db(x1, x2), db(x2, fx2)} = db(x1, x2). Using
(11) and (12),

0 < db(x2, fx2) ≤ ψ(db(x1, x2)) < ψ2(db(x0, x1)).
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This implies again that there exists x3 ∈ fx2 (of
course, x3 = x2 ) such that

0 < db(x2, x3) < ψ2(db(x0, x1)).

Because α(x1, x2) ≥ s, x2 ∈ fx1 and x3 ∈ fx2, by
the fact that f is α-admissible, we have α(x2, x3) ≥
s. If x3 ∈ fx3, x3 is a fixed point of f. Otherwise,
x3 /∈ fx3, so we have db(x3, fx3) > 0. In the same
way, we get

0 < db(x3, fx3) ≤ ψ(db(x2, x3)) < ψ3(db(x0, x1)).

By continuing this process, we can construct a se-
quence {xn} in X such that xn /∈ fxn, xn+1 ∈
fxn, α(xn, xn+1) ≥ s and

0 < db(xn, fxn) ≤ db(xn, xn+1) ≤ ψn(db(x0, x1))

for all n ∈ N. Let m,n ∈ N be such that m > n.
Then,

db(xn, xm) ≤
m−1∑
i=n

si−n+1db(xi, xi+1)

≤
∞∑
i=n

siψi(db(x0, x1))

Because ψ ∈ Ψ, {xn} is a Cauchy sequence in the
complete b-metric space (X, db). Thus, there exists
u∗ ∈ X such that un → u∗. Because xn+1 ∈ fxn,
we have (xn, xn+1) ∈ Gr(f). The graph is closed,
so as n→ ∞, we obtain that (xn, xn+1) → (u∗, u∗),
with (u∗, u∗) ∈ Gr(f). We deduce that u∗ ∈ fu∗,
that is, u∗ is a fixed point of f.

Theorem 3.3. Let (X, db, s) be a b-metric space with
constant s ≥ 1 and f : X → CL(X) be an (α, F )-
set-valued mapping. Assume that:
(C1) f is α-admissible of type S and ψ, θ are

continuous;

(C2) there exist x0 ∈ X and x1 ∈ fx0 such that
α(x0, x1) ≥ s;

(C3) if {xn} is a sequence in X with xn → u∗ ∈ X
and α(xn, xn+1) ≥ s for all n ∈ N ∪ {0}, then
α(xn, u

∗) ≥ s for all n ∈ N ∪ {0}.
Then, f has a fixed point.
Proof. From the proof of Theorem 3.2, there exists a
sequence {xn} such that

xn+1 ∈ fxn, xn /∈ fxn and α(xn, xn+1) ≥ s (13)

for all n ∈ N ∪ {0}. Next, we will show {xn} is a
Cauchy sequence in X, which converges to some u∗
as n→ ∞. Using condition (C3), we obtain

α(xn, u
∗) ≥ s for all n ∈ N ∪ {0}. (14)

If u∗ ∈ fu∗, the proof is completed. We assume that
db(u

∗, fu∗) > 0. Then

0 < db(u
∗, fu∗)

≤ s[db(u
∗, xn+1) + db(xn+1, fu

∗)]

≤ sdb(u
∗, xn+1) + sH(fxn, fu

∗)

≤ sdb(u
∗, xn+1)

+ sF (ψ(M(xn, u
∗)) + θ(N(xn, u

∗), ϕ(M(xn, u
∗)))

≤ sdb(u
∗, xn+1) + s[ψ(M(xn, u

∗)) + θ(N(xn, u
∗)]

(15)
where

M(xn, u
∗)

= max
{
db(xn, u

∗),
db(u

∗, fu∗)[1 + db(xn, fxn)]

1 + db(xn, u∗)
,

db(u
∗, fxn)[1 + db(xn, fu

∗)]

1 + db(xn, u∗)
,

db(xn, fu
∗) + db(u

∗, fxn)

2s

}
≤ max

{
db(xn, u

∗), db(u
∗, fu∗), db(u

∗, fxn),

db(xn, fu
∗) + db(u

∗, fxn)

2s

}
≤ max

{
db(xn, u

∗), db(u
∗, fu∗), db(u

∗, xn+1),

db(xn, fu
∗) + db(u

∗, xn+1)

2s

}
(16)

and

N(xn, u
∗)

= min{db(xn, u∗), db(xn, fxn), db(u∗, fu∗),
db(xn, fu

∗), db(u
∗, fxn)}.

(17)

Taking n → ∞, we have lim supn→∞M(xn, u
∗) ≤

db(u
∗, fu∗) and lim supn→∞N(xn, u

∗) ≤ 0.
Using the continuity of ψ and θ, we have
lim supn→∞ ψ(M(xn, u

∗)) ≤ ψ(db(u
∗, fu∗))

and lim supn→∞ ψ(N(xn, u
∗)) ≤ ψ(0) = 0. Taking

n→ ∞ in equation (15), we obtain

0 < db(u
∗, fu∗) ≤ sψ(db(u

∗, fu∗)) < db(u
∗, fu∗),

which is a contradiction. Hence, u∗ ∈ fu∗ and so f
has a fixed point.

Corollary 3.4. Let (X, db, s) be a b-metric space with
a constant s ≥ 1 and f : X → CL(X) be an (α, F )
set-valued mapping. Assume that there existα : X →
[0,∞), ψ ∈ Ψ, θ ∈ Θ, and ϕ ∈ Φ such that

α(x, y)H(fx, fy))

≤ F (ψ(M(x, y)) + θ(N(x, y), ϕ(M(x, y)))
(18)

whereM(x, y) and N(x, y) were defined by (4) and
(5) for all x, y ∈ X. Assume that:
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(C1) f is α-admissible of type S and ψ, θ are
continuous;

(C2) there exist x0 ∈ X and x1 ∈ fx0 such that
α(x0, x1) ≥ s;

(C3) {xn} is a sequence in X with xn → u∗ ∈ X
and α(xn, xn+1) ≥ s for all n ∈ N ∪ {0}, then
α(xn, u

∗) ≥ s) for all n ∈ N ∪ {0}.

Then, f has a fixed point.

Proof. Using inequality (18) and the contraction (2)
holds for all x, y ∈ X such that α(x, y) ≥ s. Thus,
f is an (α, F )-set-valued mapping. Using Theorem
3.3, f has a fixed point.

Corollary 3.5. Let (X, db, s) be a b-metric space with
constant s ≥ 1 and f : X → CL(X) be an (α, F )-
set-valued mapping. Suppose there exist α : X →
[0,∞), ψ ∈ Ψ, θ ∈ Θ, and ϕ ∈ Φ such that

α(x, y)H(fx, fy))

≤ F (ψ(M(x, y)) + θ(N(x, y), ϕ(M(x, y)))
(19)

M(x, y) and N(x, y) were defined by (4) and (5) for
all x, y ∈ X. Assume that:

(C1) f is α-admissible of type S;

(C2) there exist x0 ∈ X and x1 ∈ fx0 such that
α(x0, x1) ≥ s;

(C3) the graph of f is closed.

Then, f has a fixed point.

Proof. Using inequality (19) and the contraction (2)
holds for all x, y ∈ X with α(x, y) ≥ s. Thus, f is an
(α, F )-set-valued mapping. Using Theorem 3.3, the
set-valued mapping f has a fixed point.

Corollary 3.6. Let (X, db, s) be a b−metric space
with constant s ≥ 1 and f : X → X. Suppose there
exist α : X ×X → [0,∞), F ∈ C, ψ ∈ Ψ, θ ∈, and
ϕ ∈ such that

x, y ∈ X with α(x, y) ≥ s

⇒ db(fx, fy))

≤ F (ψ(M(x, y)) + θ(N(x, y)), ϕ(M(x, y))),
(20)

M(x, y) and N(x, y) were defined by (4) and (5) for
all x, y ∈ X. Assume that:

(C1) σ, η ∈ X, α(σ, η) ≥ s implies α(fσ, fη) ≥ s.
Also, ψ, θ are continuous;

(C2) there exists σ0 ∈ X such that α(σ0, fσ0) ≥ s;

(C3) if for µ0 ∈ X, the sequence {µn = fnµ0}
in X is such that fnµ0 → µ ∈ X and
α(fnµ0, f

n+1µ0) ≥ s for each integer n ≥ 0,
then α(fnµ0, µ) ≥ s for each n ≥ 0.

Then, f has a fixed point.
Example 3.7. Let X = [0,∞) be endowed with the
b-metric db(x, y) = (x−y)2 with s = 3 for all x, y ∈
X . Define f : X → CL(X) and α : X → [0,∞) by

fx =

{[
0, x9

]
if x ∈ [0, 1][

x, x2
]

if x ∈ (1,∞)

and
α(x, y) =

{
3 if x ∈ [0, 1]

0 otherwise.
Define the functions byψ(t) = t, θ(t) = t andϕ(t) =
80
81 t. Take F (r, t) = r − t for all r, t ∈ [0,∞).

Firstly, we show that f is α-admissible of type S.
Let x ∈ X and y ∈ fx with α(x, y) ≥ s = 3. Then,
x, y ∈ [0, 1]. Let u ∈ fy, then u ∈ [0, y9 ] ⊂ [0, x

81 ] ⊂
[0, 1]. Then,

α(y, u) = 3 = s.

Thus, f is α-admissible of type S. For x0 = 1
3 and

x1 = 1
9 ∈ fx0, we have α(x0, x1) = 3 = s. For

any sequence {xn = fnx0} ⊆ X (where x0 ∈ X
is arbitrary) such that xn → u∗ as n → ∞ and
α(xn, xn+1) = 3 = s for each n ∈ N, we have
xn, u

∗ ∈ [0, 1], and α(xn, u∗) = 3 = s for each
n ∈ N.

Next, we will show that the conditions of Theorem
3.3 are fulfilled for all x, y ∈ X with α(x, y) ≥ s,
that is, x, y ∈ [0, 1] with x ̸= y. Then,

H(fx, fy) =
(x− y)2

81
.

Hence,
H(fx, fy)

=
(x− y)2

81

=
1

81
db(x, y)

≤M(x, y)

= F (ψ(M(x, y)) + θ(N(x, y)), ϕ(M(x, y))).

All hypotheses of Theorem 3 are satisfied and f has a
fixed point.

4 Application
LetX be the set of continuous functions specified on
the closed interval [a, b].We endowX by the standard
b-metric db : X ×X → [0,∞) :

db(x, y) = ( sup
t∈[a,b]

|x(t)− y(t)|)2,
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for all x, y ∈ X. Then, (X, db) is a complete b-metric
space with constant s = 3.We consider the following
integral equation:

y(r) = y0 +

∫ b

a
Q(r, t)R(t, y(t)) dt (21)

where y0 ∈ R and Q : [a, b] × [a, b] → [0,∞), R :
[a, b] × R → R are continuous functions. Define f :
X → X as

fy(r) = y0 +

∫ b

a
Q(r, t)R(t, y(t)) dt. (22)

Then, a solution of equation (21) is equivalent to stat-
ing that the map f has a fixed point.
Theorem 4.1. Assume that the following conditions
are satisfied:
(C1) there exists α : X × X → [0,∞) such that if

α(σ, η) ≥ s = 3 for σ, η ∈ X, we have for each
t ≥ 0,

|R(t, σ(t)−R(t, η(t)| ≤
√
ln(1 + (|σ(t)− η(t)|)2),

and

sup
r∈[a,b]

∫ b

a
Q(r, t) dt ≤ 1;

(C2) σ, η ∈ X, α(σ, η) ≥ 1 implies α(fσ, fη) ≥ 1;

(C3) there exists σ0 ∈ X such that α(σ0, fσ0) ≥ s =
3;

(C4) if {µn =: fnµ0} (where µ0 is arbitrary in X)
is a sequence in X with µn → µ ∈ X and
α(µn, µn+1) ≥ s for each integer n ≥ 0, then
α(µn, µ) ≥ s for each n ≥ 0.

Then, the integral equation (21) has a solution in X.
Proof. For all σ, η ∈ X, we have

db(σ, η) = ( sup
t∈[a,b]

|σ(t)− η(t)|)2,

and for r ∈ [a, b], we obtain

(|fσ(r)− fη(r)|)2

= (|
∫ b

a
Q(r, t)|R(t, σ(t))−R(t, η(t))|dt|)2

≤ (

∫ b

a
Q(r, t)|R(t, σ(t))−R(t, η(t))|dt)2

≤ (

∫ b

a
Q(r, t)

√
ln(1 + (|σ(t)− η(t)|)2)dt)2

≤ (

∫ b

a
Q(r, t)

√
ln(1 + db(σ, η))dt)

2

≤ (

∫ b

a
Q(r, t)dt)2 ln(1 + db(σ, η))

≤ ln(1 + db(σ, η)).

Hence,

H(fσ, fη)

≤ ln(1 + db(σ, η))

≤ ln(1 +M(σ, η) +N(σ, η))

=M(σ, η) +N(σ, η)

−(M(σ, η) +N(σ, η)− ln(1 +M(σ, η) +N(σ, η)))

= F (ψ(M(σ, η)) + θ(N(σ, η)), ϕ(M(σ, η))),

where ψ(t) = t, θ(t) = t (it is continuous), ϕ(t) =
t − ln(1 + t), and F (s, t) = s − t. Using condi-
tion (C3) and (C4) hold, all hypotheses of Corollary
4 hold. Thus, f has a fixed point, that is, the integral
equation (21) has a solution in X.

5 Conclusion
We introduced the existence and uniqueness of fixed
point results for (α, F )-admissible set-valued map-
pings in b-metric spaces using C-functions and α-
admissible set-valued mappings of type S in this pa-
per. To illustrate the superiority of our results, we
provided an example and an application of integral
equations.
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