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1 Introduction 
A large number of works have been devoted to 
Riemann boundary value problems and to the 
associated singular integral equations. An important 
place within this topic is occupied by the study of 
problems with shift and integral equations with shift. 
Interest toward these problems has not diminished 
and remains high. 
     Since until now the methods to factorize a matrix 
function in general form are not known, important 
special cases of function matrices are considered for 
which effective methods of calculating or estimating 
partial indices [1, 2] and constructing factorization 
factors [3, 4] are proposed. 
Some relevant studies can be found in [5, 6]. 
     In the article [5], we built operator identities that 
transform singular integral operators with involutions 
generated by linear fractional Carleman operators 
into equivalent vector characteristic operators 
without shift. This transformation is carried out using 
invertible operators. The simplicity of shifts allows 
us to obtain vector singular integral operators without 
additional operators and to avoid the appearance of 
compact terms that do not influence the construction 
of Fredholm theory, but that substantially affect the 
dimension, kernel structure and methods of finding 
solutions of the corresponding equations.  

     So, for a singular integral operator B  with 
involution that changes orientation, the operator 
identity has the form .RH B E D


  Here, H  and E  

are invertible operators and 
RD

 is a vector 

characteristic operator. Based on this approach, 
applications have been found in which the main 
method of investigation are operator identities [6-9]. 
     In [10], we proposed new applications of operator 
identities. A definition of factorization for functional 
operators with involutive rotation on the unit circle 
was given, partial indices were defined and their 
uniqueness was proven.  
     In this work, operator identities were applied to 
the study of factorization representations of 
functional operators with shift-reflection and 
continuation on the real axis. 
     In  Section 2, we  present  information  about the  
operator  identities  considered  in our case, where  
shift  is  a reflection  on  the real axis. We also present   
some auxiliary formulas, which will be used in 
subsequent sections.                                              
     In Section 3, we introduce the definition of 
factorization    for   functional   operators   with 
reflection and continuation. 
     In Section 4, we prove the equivalence of 
factorization for functional operators with reflection 
and factorization of the corresponding matrix 
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functions. Note that this theorem opens up the 
possibility of transferring well-known results on 
factorization of matrices of second order to 
multiplicative representations of functional operators 
with fractional linear involutive shift. 
 
 
2 On operator identities for shift-

reflection on the real axis 
Let  and   be contours, and let    . The 
extension of a function ( )f t , t  , to  /  by the 

value zero will be denoted by   \ ,J f t t  . 

The restriction of a function  t , t , to   will 

be denoted by  ( )C t , t  .  Symbol  1 2,H H , 
will be used for the set of linear bounded operators 
acting from the Banach space  1H  on  Banach space 

 2H ;    1 1 1,H H H .  

     Let R  denote the real axes, R  its positive part 
and R  its negative part. Consider spaces with 

weight  2
2 ,L R  ,  2

2 ,L R  , 
1
4( ) ,t t



  which 
are determined in the usual way: 

   2
2 2, ( ) ( ) : ( ) ( ) ( )L R t f t t f t L R   ,  

   2
2 2, ( ) ( ) : ( ) ( ) ( )L R t f t t f t L R     . 

We  introduce  operators  on  the  contour :R  let RI   
be the identity operator and RW  be the reflection 
operator: 

 ( )( )RI t t  ,     ( )( )RW t t   ,     t R , 

 2,R RI W L R   ,   2 2, ( )RC L R L R
    ,    

 2 2, ( )RJ L R L R
    . 

 
      We write out some relations based on which the 
operator identities have been obtained [7, 8]. 
Presently, they will be used for the study of 
factorization representations of functional operators 
with Carleman shift-reflection. For this, we need the 
operators: 
 

1 1
1 2

2 2

( ),
( ) ( )

( ),R R R R

t t R
M J t W J t

t t R

 
 

   





  
   

  
, 

 

      
   

1
( )( ),

,
R

R

R R

C tt t R
M

t t R C W t




 











  
    

      

, 

                 1 1 11
1 12R RZ

 

  
    

 
,  

        2( ) ( ),RN t t 


      
1

1 2( ) ( )RN t t 


  , 
 

 1 2
2 2, ( )RM L R L R






   ,  2

2 2, ( )RM L R L R
 

   ,        

 2 2
2 2, , ( )RN L R L R

  
   ,  1 2 2

2 2, ( , )RN L R L R 




 
   . 

 
We define operator H  by the composition of the 

operators 
 

1 1 1
R R RH N Z M
  

   ,    2
2 2, ( , )H L R L R 

   . 
 

Under the action of a similarity transformation with 
operator ,H  shift operator  2RW L R     is 
transformed into a matrix multiplication operator 

R
V  in    2

2 ,L R t : 
 

        1
RHW H   R

V ,   
R

V  =
1 0
0 1
 
 

 
.        (1) 

 
We also indicate that the operator of multiplication 
by a scalar function  ( )R Ra t I  becomes: 
 
                     1( )R RHa t I H    

[ ( ) ( )] [ ( ) ( )]1 .
2 [ ( ) ( )] [ ( ) ( )]

R R R R

R R R R

a t a t a t a t

a t a t a t a t

    
 

     

 (2) 

 
These formulas can be verified by direct 

calculations. The functional operator with shift, as 
follows from (1) and (2), becomes the operator of 
multiplication by a matrix function in  2

2 , ( )L R t : 
 

 1[ ( ) ( ) ]R R R RH a t I b t W H  = 11 12

21 22

( ) ( )1 ,
( ) ( )2

g t g t

g t g t

 
 
 

    (3) 

 
where 
 

11

12

( ) [ ( ) ( )] [b ( ) ( )],

( ) [ ( ) ( )] [b ( ) ( )],
R R R R

R R R R

g t a t b t t a t

g t a t b t t a t

     

     

21

22

( ) [ ( ) ( )] [b ( ) ( )],

( ) [ ( ) ( )] [b ( ) ( )].
R R R R

R R R R

g t a t b t t a t

g t a t b t t a t

     

     
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     The formula constructed is very important for 
what follows, since it connects function operators 
with reflection with matrix functions of second order.  
Due to (3), the factorization factors in the 
multiplicative representation of the matrix function 
will be represented as the corresponding functional 
operators with reflection, and the factor with the 
partial indices of the matrix will be an operator of a 
special form with shift, which is one-to-one 
determined by these partial indices. 
 

 

3 Factorization of Functional 

Operators with Reflection 
We  review  known  definitions  from  [11, 12].  Let 

       2 2 2 2, , , , , ,R RL R P L R L R P L R       

where 
RP  are the projections associated with the  

Cauchy singular integral operator along R : 
1 ( )
2R R RP I S   ,     

1 ( )
R

R

S t d
i t

 
 

 


 . 

Singular integral operator RS  acts boundedly in the 

space with weight     1/4
2 , ,L R t t   . Let us 

introduce similar notation for operators acting in the 
space of vector functions  2

2 ,L R  :  

RI ,  RS  ,  R


P  = 

1
2

(  RI + RS ),  R


P  = 

1
2

( RI - RS  ) .       

We also introduce vector spaces: 
 2

2 ,L R  
R


P  2

2 ,L R  ,  2
2 ,L R  

R


P  2

2 ,L R  . 

By ( )L   we denote the set of all measurable 
essentially bounded functions on the contour  , by 

2 ( )L   we denote the set of all matrix functions with 
elements from ( )L  .  
     We give a definition of factorization of a matrix 
function. 
 
Definition 1 
Factorization of non-degenerate matrix function

( )tG
2 (R)L in the space    2 1/4

2 , ,L R t t    
is expressed as 
                    ( )tG = ( )t

Ψ ( )R tΛ ( )t
Ψ ,          (4) 

were matrix functions ( )t
Ψ  possess the properties:  

 2
2 ,( )t

L R
t i







Ψ
,  2

2

1
(

,
)t

L R
t i







   



Ψ
,  (5) 

 
1

2 1
2

)
,

(t
L R

t i





 


  Ψ
,  2 1

2
( ) ,t

L R
t i




 


Ψ
, (6) 

 
and were 

          ( )R tΛ =
1 21 1,

1 1
t t

diag
t t

      
    

      

, 

numbers 1 ,  2  are integers and 1 2  . 
     The numbers 1 2,   are called partial indices of 
the matrix function ( )tG  and their sum is called the 
total index. It is known [11, 12] that the partial 
indices are invariants of factorization and they do not 
depend on a particular type of representation (4). 
That is, they are uniquely defined by ( )tG .  
     Let us give a definition of factorization of a 
functional   operator   with   shift-reflection based on 
operator      identities     and      the      definition    of   
factorization of matrix functions. To do this, we use 
the operator    2

2 2, ,L R L RH 
    and its 

property (3). Let functions ( ),Ra t ( ),Rb t ( ),Rc t

( )Rd t  belong to (R)L .  
 
Definition 2 
Factorization of the invertible functional operator    
           2( ) ( ) , (R)R R R RA a I b W At Lt    
with the invertible continuation  operator 
                   ( ) ( ) ,R R R RK c I dt t W   
will be called its representation in the form 
                                A                                        (5)  

( ) ( ) ( ) ( ) ( )R R R Rt t tA I B W A I B Wt t             
                                                                       
under the continuation condition 
                                 K                                     (6) 

( ) ( ) ( ) ( ) ( )R R R Rt t tC I D W C I D Wt t            , 
where 
                    ( )t   H

1 [ ( )R tΛ ] H,     

            ( )t H
1 [ 1( ) ( )R Rt tΛ Λ ] H ( )t . 

 
Moreover, the matrix functions  
                             ( )t

Ψ =

RR R R R RR RR      

           J A B V W J C D V , 
 
where 
 

R R R  

    A B V
1( ) ( )R RH A I B W Ht t     , (7) 

R R R  

    C D V
1( ) ( )R RH C I D W Ht t        (8)                                                    
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should not degenerate and should have properties 
(E): 
 

 
1

R R RR R R R R R

t i

      


           



J A B V W J C D V

belongs to   2
2 ,L R   and 

 
1

R R RR R R R R R

t i

      

           



J A B V W J C D V

belongs to  2
2 ,L R  . 

 
 
4 Relationship between the 

factorization of functional operators 

with reflection and the factorization of 

the corresponding matrix functions 
Let an invertible functional operator 

( ) ( ) ,R R R RA a I bt t W   ( ), ( ) (R)R Rt tc d L  
Admit factorization in 2 (R)L  with a continuation 
operator 

( ) ( ) ,R R R RK c I dt t W    ( ), ( ) (R)R Rt tc d L .  
We introduce a matrix function ( )R t


G  defined on 

the positive semi-axis R  that equals  1HAH   and a 
matrix function ( )tK  defined on R  that equals 

1.HKH   From these operators 1( )R At H H


G and
1( )t HKH  K ,   we compose a matrix function, 

defined on the whole real axis R :  
             ( ) ( ) ( )R R R R Rt t t

  
  K

G J G W J K . 
Note that ( )tK  is a vector function defined on the 
negative semi axis R .  
     And now, we will  prove that this matrix function 

( )R tK
G  admits factorization     
                ( ) ( ) ( ) ( )R R R Rt t t t K

G Ψ Λ Ψ  

in space    2 1/4
2 , ,L R t t   . 

     We carry out transformations of  ( )R t K
G  

1 1 1 1( ) ( )R R R RH H H H H H Ht tH
  

     J G W J K  
1[ W ]R R R RR H a I b H



J + R R
W J 1[c W ]R R R RH I d H  , 

then use representations (5), (6) and continue 
calculations of  ( )R tK

G  

    1[ ]( WRR RH A t I B t H


  J   1H t H  

    1[ W ]R RH A t I B t H   )+ 

     1 1[ W ]( RR RR H HH C t I D t H t


      W J

    1[ W ] )R RH C t I D t H                                              
using representation  (7),  we continue the 
calculations of  ( )R tK

G  
 

 ( )R R R R R RR R R R RC t
      

               J A B V Λ A B V W J

 ( ) .R R R RR RR RtC
     

              C D V Λ C D V  

Finally we get ( )R t K
G

  ( )R R RR R R R RR R t
      

           J A B V W J C D V Λ

 RR R R R RR RR      

           J A B V W J C D V . 

 
From the definition of factorization of the operator 
A  with continuation operator K , it follows that the 
factors 
 ( )R t Ψ  

( ) ( ) ( ) ( ) ,R RR R R R R RRt t t t
      

           J A B V W J C D V

( )R t Ψ  
( ) ( ) ( ) ( )R R R RR RR RRt t t t

      

           J A B V W J C D V

 
possess property (E). Hence, it follows that the matrix 
function ( )R tK

G admits factorization. 

Note that ( ),R t t R Ψ , are boundary values of 
analytic non-singular matrix functions in the upper  
and lower  half-plane, respectively. 
     We shall now prove the converse statement. 
Assuming the admissibility of factorization of some 
matrix function 

RG  in  2
2 ,L R  : 

                 ( ) ( ) ( ) ( )R R R Rt t t t G Ψ Λ Ψ . 
Let us build   functional operators A  and K  which 
are related to 

RG in the following way: 
 

1( ) ( ) ( )R R R R R Ra I b W H tC Ht t


     G , 2( ),A L R  
1( ) ( ) ( )R R R R R Rc I d W H Ct t Ht



     G , 2 ( )K L R . 
 
     Now, we will prove the admissibility of 
factorization of the functional operator  

( ) ( )R R R RA a bt I t W   in 2 (R)L  with the 
continuation  ( ) ( ) ,R R R RK c I dt t W   2 ( )K L R . 
If we denote  

( ) ( )R R Rt tC
 

   G G  and  ( ) ( )R R t tC


   G K , 
we get   
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  ( ) ( )R R R R Rt t t
  

 G J G W J K   
and     

1 ( )RA H Ht


 G ,   1 ( )K H Ht K . 

     Factorization representation of the matrix ( )R tG  
can be written in an equivalent form: 

( ) ( ) ( ), ;( )R R R Rt t Rt t t


 

G Ψ Λ Ψ  

(( ) ( ) ) ( ),R R Rt t t Rt t 

    K Ψ Λ Ψ . 

     Applying operator 1H  on the left side, and 
operator H on the right side to the factorization 
representation, we obtain: 
 
                            1 ( )RH t H



 G  
1 1 1( ) ( ) ,) ;(R R RH HH t H t t t RH H



      Ψ Λ Ψ  
 
                            1 ( )t HH   K  

1 1 1( ( )) ( ) ,R R RH H RH t H t t H t  



    Ψ Λ Ψ . 
 
     Proceeding to the functional operators with 
reflection, we have: 
 
                    ( ) ( )R R R Ra I bt t W   

 ( ) ( ) ( ) ( ) ,R R R Rt t tA I B W A B Wt tI           
 
                     ( ) ( )R R R Rc I dt t W   

 ( ) ( ) ( ) ( )R R R Rt t tC I D W C I D Wt t            , 
 
where  
 

1 ( ) ( ) ( )R R RH A I BH t t t W        Ψ , 
1 ( ) ( ) ( )R R RH A I BH t t t W        Ψ , 
1 ( ) ( ) ( )R R RH C I Dt WH t t         Ψ , 
1 ( ) ( ) ( )R R RH C I Dt WH t t         Ψ . 

 
We remind that  t = 1 ( )RRH C t H



  
 Λ  and   

( )t H
1 [ 1( ) ( )R Rt tΛ Λ ] H ( )t . 

     It remains to make sure that in the representation 
of the matrix function ( )R tG , factors ( )t

Ψ  have 

properties (E). Functions  ( )t
Ψ  can be represented 

as  
1 1( )R R RHH C HHt

 

     J Ψ  
1 1( )R R R R tHH C HH

 

    W J Ψ = 

1( ) ( )R R RH A It B W Ht


     J  
1( ) ( )R R R RH C I D t W Ht



    W J  
 
It follows that the required properties (E) are 
fulfilled. So we have proven the theorem. 
 
Theorem  

An invertible functional operator with reflection 
 
    ( ) ( ) ,R R R RA a I bt t W   ( ), ( ) (R)R Rt tc d L  
 
and with an invertible continuation operator  
 
   ( ) ( ) ,R R R RK c I dt t W    ( ), ( ) (R)R Rt tc d L  
 
admits factorization in 2 (R)L  if and only if the 
corresponding non-singular matrix function ( )R tG  

admits factorization in  2
2 ,L R  , where the 

operators are related by the formulas: 
 
   1 1( ) ,R R R RAHH H K Ht

 

        G J W J  
1 ( )R R tA H C H



    G ,     1 ( )R tK H H G . 

 
Corollary  

Partial indices 1 , 2  of the invertible functional 
operator with reflection ( ) ( )R R R RA a bt I t W   and 
continuation ( ) ( )R R R RK c dt I t W   that admits 
factorization in 2 (R)L  are uniquely determined. 
They do not depend on a particular type of 
factorization representation of operators A , K   and 
coincide with the partial indices of the corresponding 
matrix function ( )R tG . 
 
 
5   Discussion  
An effective solution of Riemann boundary value 
problem has not yet been found and the problem of 
factorization of matrix functions is closely connected 
with effective solution of matrix Riemann problem. 
Therefore, advances in these areas are valuable. 
Recently, there have been works devoted to the 
factorization of special cases of matrix functions, 
estimates for partial indices and approximate 
methods. Our research has a different focus. We 
wanted to apply another mathematical apparatus to 
the study of factorization problems: functional 
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operators with Carleman shifts and operator 
identities. In [12], for these purposes, functional 
operators with Carleman orientation preserving 
rotations were used. In this paper, we used functional 
operators and operator identities with reversing 
reflection on the real axis. Note a significant 
difference from [12]: when applying the operator 
identity to a functional operator with reflection, we 
obtain the corresponding matrix function, but on a 
part of the contour, the semi axis. The question arises 
of extending the matrix to the entire axis. This will be 
a topic for further study of factorization of functional 
operators. 

 

6 Conclusion                                                                       
This paper presents the concept of factorization of 
functional operators with shift-reflection on the real 
axis. The main method of investigation is operator 
identities, which are similarity transformation with 
reciprocal operators 1,H H   constructed by the 
authors: 1

RAH H


 G .  Based on this relation, the 
theorem on the equivalence of factorization of matrix 
functions and factorization of functional operators 
with shift-reflection was proven.                                                                                    
     Singular integral equations with Carleman linear 
fractional shift and their corresponding scalar 
Riemann boundary value problems with shift are 
equivalently transformed with the action of operator 
identities in characteristic vector singular integral 
equations without shift and in their corresponding 
matrix Riemann  boundary value problems without 
shift. It is known that factorization problems for 
matrix functions are closely related to matrix 
Riemann boundary value problems. In [15, p.24], a 
method scheme is proposed that shows how, using 
the known factorization of a matrix, a solution to the 
matrix Riemann problem function is obtained. 
Through the application of operator identities, we 
identified a range of equivalent problems that makes 
it possible to transfer results obtained in one problem 
to other problems. 
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