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1 Introduction

At the beginning of the twentieth century, A. Ein-
stein’s theory opened a door to use of new ge-
ometries. One of them, Minkowski space-time
which is simultaneously the geometry of special
relativity. The geometry induced on each fixed
tangent space of an arbitrary Lorentzian mani-
fold and some of the classical differential geome-
try topics were introduced and treated by some
researchers (see for instance, [1,2]). Recently, the
theory of degenerate submanifolds has been ex-
tended to Lorentz manifolds [3].
A Minkowski space-time plane R2

1 is pseudo-
Euclidean plane, i.e., there are three types of di-
rections; the spacelike, timelike and lightlike di-
rections. The unit ball in such a plane consists
of two conjugate hyperbolas with lightlike asymp-
totes. Many authors discussed this space from the
relativity point of view with some mathematical
concepts (see for more details [3–5]).
In the classical differential geometry, the notions
of pedal curves of regular curves in the Euclidean
plane or Euclidean 3-space are classical topics.
Pedal curves belong to curves associated with
the given ones by means of some geometrical
construction, as evolutes, involutes, parallels,
etc. These curves were introduced by well-known
scotch mathematician Collin MacLaurin as locus
of the foot of the perpendicular from the given

point to the tangent to a given curve in the early
of 18th century. In [6], T. Nishimura gave the
concept and the classification of the singulari-
ties of pedal curves of regular curves in the unit
sphere. Also, Božek and Foltán have discussed the
connections between singular points of the pedal
curves and inflexion points of regular curves in the
Euclidean plane [7].
Unfortunately, if the curve is not regular at some
points, then as the classical way, we cannot de-
fine the pedal curve at this point. T. Fukunaga
and M. Takahashi studied frontals (or fronts) in
Euclidean plane and Legendrian curves (or Leg-
endrian immersions) in the unit tangent bundle of
R2 (see [8–10]). The differential geometric prop-
erties of the frontal are studied in [11, 12]. Li
and D. Pei defined the pedal curves of fronts and
gave the classification of singularities of the pedal
curves of fronts in the sphere. The most difference
between a regular curve and a frontal is that the
frontal might exist singular points. A key tool for
studying of the frontal is so called moving frame
defined in the unit tangent bundle.
In this paper, by using the moving frame, we give
a new definition of pedal curve of the frontal in
the Minkowski space-time plan. We remark that
this new definition of the pedal curve is consistent
with the classical one when the curve is a regular
curve.
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Evolute curve is defined to be the envelope along
the curve ζ of the family of normal lines. The
envelope of the tangent line family along ζ is the
original curve of the tangent line at each ζ curve’s
inflection point together. The definition of evolu-
toids was introduced by Giblin and Warder as a
one-parameter family of associated curves of ζ,
which fills in the gap between the evolute and the
original curve [13]. In addition, the envelope of
the family of lines is defined as each member of
the evolutoids, so that each line has a constant
angle with the tangent line at the same point of
the original curve.
Similar to the evolutoids, we introduce the con-
cept of pedaloids which are a family of relatives
of a pedal curve. Also, we obtain a relationship
between the pedaloids and evolutoids of a regu-
lar curve and use this relationship to investigate
frontal curves.
During this paper, we assume that the curve ζ is
a timelike curve and all maps are class C∞ unless
the contrary is explicitly stated.

2 Differential Geometric Prop-

erties

The Minkowski plane R2
1 is the plane R2 en-

dowed with the metric induced by the pseudo-
scalar product 〈x,y〉 = −x1y1 + x2y2, where
x = (x1, x2) and y = (y1, y2). We say that, a
vector x in R2

1 is spacelike, lightlike or timelike if
〈x,x〉 > 0, 〈x,x〉 = 0 or 〈x,x〉 < 0, respectively.
The norm of a vector x = (x1, x2) ∈ R2

1 is defined

by ‖x‖=
√
|〈x,x〉|. We denote by x⊥ the vector

given by x⊥ = (x2, x1). Thus, x⊥ is orthogonal
to x (i.e.,

〈
x,x⊥

〉
= 0) and ‖x‖=‖x⊥‖. We have

x⊥ = ±x if and only if x is lightlike, and x⊥ is
timelike (respectively, spacelike) if and only if x
is spacelike (respectively, timelike).
Let ζ : I −→ R2

1 be a spacelike or a timelike
curve, we may take the arc-length parameter s
of ζ. It follows that, ‖ζ ′(s)‖= 1 for all s ∈ I,
where ζ ′(s) = (dζ/ds)(s). We denote by e1(s)
the unit tangent vector and e2(s) the unit nor-
mal vector to ζ(s) such that {e1(s), e2(s)} is ori-
ented anti-clockwise. Actually, e1(s) = ζ ′(s) and
e2(s) = (−1)w+1ζ ′⊥, where w = 1 if ζ is a time-
like and w = 2 if ζ is a spacelike. So, we have the
Serret-Frenet equations:(

e′1(s)

e′2(s)

)
=

(
0 κ(s)

κ(s) 0

)(
e1(s)

e2(s)

)
,

where κ(s) is the curvature of ζ and is defined by

κ(s) =
〈e′1(s), e2(s)〉
〈e2(s), e2(s)〉

= (−1)w+1
〈
e′1(s), e2(s)

〉
=
〈
ζ ′′(s), ζ ′⊥

〉
.

Even if ζ is not parameterized by the arc-length
and t denotes the parameter, then the unit tan-
gent and the unit normal vectors of ζ(t) are ori-
ented anti-clockwise and given by

e1(t) =
ζ̇(t)

‖ζ̇(t)‖
, e2(t) = (−1)w+1 ζ̇(t)⊥

‖ζ̇(t)‖
. (1)

Also, we have(
ė1(t)

ė2(t)

)
=

(
0 ‖ζ̇‖κ(t)

‖ζ̇‖κ(t) 0

)(
e1(t)

e2(t)

)
,

and the curvature is given by

κ(t) =
〈
ζ̈(t), ζ̇(t)⊥

〉
/‖ζ̇(t)‖3,

and we call a point ζ(t0) an inflection point if〈
ζ̈(t), ζ̇(t)⊥

〉
= 0, [14, 15].

An inflection point of a spacelike, or a timelike
regular curve ζ is a point ζ(t) such that κ(t) =
0. Although at the arbitrary point selected, the
definition of pedals is defined in R2

1, the origin is
chosen. A pedal of ζ (with respect to 0 ∈ R2

1)
is defined to be Peζ(s) = 〈ζ(s), e2(s)〉 e2(s). At
each point of the curve, the pedal of a curve is
considered to be the locus of the projection image
of the origin to the tangent line in the normal
direction. Since

Pe′ζ(s) =κ(s)(〈ζ(s), e1(s)〉 e2(s)

+ 〈ζ(s), e2(s)〉 e1(s)),

the singular points of the pedal of ζ are the point
s0 where ζ(s0) = 0 or κ(s0) = 0 (i.e., s0 is
the inflection point of ζ). If we take ζ does not
pass through the origin, the singular points of the
pedal Peζ are the inflection points of ζ. The pedal
curve is known to be the envelope of a family of
circles, as follows:
Let F : I × R2

1 −→ R be a function defined by

F (s,u) = 〈u,u− ζ(s)〉 , (2)

we have the equation
∂F/∂s(s,u) = 〈u,−e1(s)〉. Since {e1(s), e2(s)} is
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an orthonormal basis of R2
1, we can write

u = ηe1(s) + ξe2(s) and we have

F (s,u) = ∂F/∂s(s,u) = 0,

〈u,u− ζ(s)〉 = 〈u,−e1(s)〉 = 0,

−η2 + ξ2 − η 〈e1(s), ζ(s)〉 − ξ 〈e2(s), ζ(s)〉

= η = 0,

if and only if η = 0 and ξ (ξ − 〈e2(s), ζ(s)〉) = 0.
The final condition is equivalent to ξ = 0 or
u = 〈ζ(s), e2(s)〉 e2(s). This implies that the
pedal Peζ(s) is the envelope of the above fam-
ily of the circles. On the other hand, we define
the evolute of ζ by

Evζ(s) = ζ(s)− 1

κ(s)
e2(s), (3)

where κ(s) 6= 0. Evolute curve is known the oscu-
lating circle’s center locus. And we get Ev′ζ(s) =

(κ′2)(s)e2(s), s0 ∈ I is a singular point of Evζ if
and only if κ′(s0) = 0.

3 Evolutoids and Pedaloids

In this section, we are interested in the line L ob-
tained by rotating the tangent fixed angle ϕ1. The
direction of L is therefore cosϕ1e1(s)+sinϕ1e2(s)
and sinϕ1e1(s) + cosϕ1e2(s) is perpendicular to
L. The vector equation of the line L is F (s,u) =
0, where

F (s,u) =(u− ζ(s)) (sinϕ1e1(s) + cosϕ1e2(s)) ,

∂F

∂s
(s,u) =− e1(s) (sinϕ1e1(s) + cosϕ1e2(s))

+ (u− ζ(s))(κ(s) sinϕ1e2(s)

+ κ(s) cosϕ1e1(s)).

Since any vector is a linear combination as
ηe1(s) + ξe2(s). So, for the vector u − ζ(s) and

by substituting in F (s,u) =
∂F

∂s
(s,u) = 0, we

obtain
(ηe1(s) + ξe2(s)) (sinϕ1e1(s) + cosϕ1e2(s)) = 0,

sinϕ1 + (ηe1(s) + ξe2(s)) (κ sinϕ1e2(s)

+κ cosϕ1e1(s)) = 0,

it follows that−η sinϕ1 + ξ cosϕ1 = 0,

−ηκ cosϕ1 + ξκ sinϕ1 = − sinϕ1.

By solving these equations with respect to η and
ξ, we get

η =
− sinϕ1 cosϕ1

κ(s)
(
2 sin2 ϕ1 − 1

) , ξ =
− sin2 ϕ1

κ(s)
(
2 sin2 ϕ1 − 1

) .
Since, u− ζ(s) = ηe1(s) + ξe2(s), the concept of
evolutoids is defined as follows:
For ϕ1 ∈ [0, 2π), we have

Ev[ϕ1]ζ(s) =ζ(s)− sinϕ1

κ(s)
(
2 sin2 ϕ1 − 1

)(cosϕ1e1(s)

+ sinϕ1e2(s)), (4)

where κ(s) 6= 0 and ϕ1 6= π/4. So, for each ϕ1,
Eq.(4) is called a ϕ1-evolutoid of ζ.
If ϕ1 = π/2, 3π/2, then Ev[ϕ1]ζ(s) = Evζ(s), and
if ϕ1 = 0, π, then Ev[ϕ1]ζ(s) = ζ(s).
By differentiation Eq. (4), we obtain

Ev[ϕ1]
′
ζ =

−1(
2 sin2 ϕ1 − 1

) (cosϕ1 −
κ′

κ2
sinϕ1

)
(cosϕ1e1 + sinϕ1e2), (5)

and s0 ∈ I is a singular point of Ev[ϕ1]ζ if and
only if κ2(s) cosϕ1 − κ′(s) sinϕ1 = 0.
For ϕ2 ∈ [0, 2π), we introduce the notion of ped-
aloids as follows:

Pe[ϕ2]ζ(s) =
1

|2 cos2 ϕ2 − 1|
〈ζ,− cosϕ2e1 + sinϕ2e2〉

(− cosϕ2e1 + sinϕ2e2) , (6)

we refer to this as ϕ2-pedaloid of ζ.
If ϕ2 = π/2, 3π/2, then Pe[ϕ2]ζ(s) = Peζ(s), and
if ϕ2 = 0, π, then Pe[ϕ2]ζ(s) = 〈ζ(s), e1(s)〉 e1(s),
this is classified as a counterpedal (i.e. a C-pedal
for short), we refer to the C-pedal by CPeζ(s).
By differentiation Eq. (6), we get

Pe[ϕ2]
′
ζ(s) =

1

|2 cos2 ϕ2 − 1|



(− cos2 ϕ2 + κ 〈ζ, e2〉

−κ sin 2ϕ2 〈ζ, e1〉)e1

+(cosϕ2 sinϕ2

+κ 〈ζ, e1〉

−κ sin 2ϕ2 〈ζ, e2〉)e2.
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It follows that

κ(s) 〈ζ(s), e2(s)〉

−κ(s) sin 2ϕ2 〈ζ(s), e1(s)〉 = cos2 ϕ2,

κ(s) 〈ζ(s), e1(s)〉

−κ(s) sin 2ϕ2 〈ζ(s), e2(s)〉 = − cosϕ2 sinϕ2,

for 〈ζ(s), e2(s)〉 and 〈ζ(s), e1(s)〉, hence s0 ∈ I is
a singular point of Pe[ϕ2]ζ if and only if

κ(s) 〈ζ(s), e2(s)〉 =
cos2 ϕ2

(
1− 2 sin2 ϕ2

)
1− 4 sin2 ϕ2 cos2 ϕ2

,

κ(s) 〈ζ(s), e1(s)〉 =Π1 sinϕ2 cosϕ2,

where

Π1 =

(
1−

2 cos2 ϕ2

(
1− 2 sin2 ϕ2

)
1− 4 sin2 ϕ2 cos2 ϕ2

)
.

Thus, the relation between evolutoids and ped-
aloids is given in following theorem:

Theorem 1 Suppose that κ(s) 6= 0, ϕ2 6= π/4,
and (2 sin2 ϕ2 − 1)(κ2 cosϕ2 − κ′ sinϕ2) 6= 0 (i.e.,
the ϕ2+π/2-evolutoid is non-singular). Then, the
following equation is satisfied

PeEv[ϕ2 + π/2]ζ(s) = Pe[ϕ2]ζ(s). (7)

Proof: Since F [ϕ2] : I × R2
1 −→ R, where

F [ϕ2](s,u) =
〈
u,u− Ev [ϕ2 + π/2]ζ (s)

〉
.

Because Ev [ϕ2 + π/2]ζ (s) is a regular curve,

so the envelope is given by F [ϕ2](s,u) = 0,
and it is the pedal PeEv[ϕ2 + π/2]ζ(s) of
Ev [ϕ2 + π/2]ζ (s).

From Eq. (4), we get

Ev[ϕ1]
′
ζ(s) = Π2 (cosϕ1e1(s) + sinϕ1e2(s)) ,

where

Π2 =
−1(

2 sin2 ϕ1 − 1
) (cosϕ1 −

κ′

κ2
sinϕ1

)
.

Also, we obtain

∂F [ϕ2]

∂s
(s,u) = Π2 〈u, cosϕ1e1(s) + sinϕ1e2(s)〉 .

Since {e1, e2} is an orthonormal frame, there exist
η, ξ ∈ R, such that u = ηe1(s) + ξe2(s), it follows
that

∂F [ϕ2]

∂s
(s,u) = Π2 〈ηe1 + ξe2, cosϕ1e1 + sinϕ1e2〉 ,

where ϕ1 = ϕ2 + π/2.

From which,
∂F [ϕ2]

∂s
(s,u) = 0 if and only if

−η cos (ϕ2 + π/2) + ξ sin (ϕ2 + π/2) = 0, which
is equivalent to −η sinϕ2 − ξ cosϕ2 = 0.
For ϕ1 = ϕ2 + π/2, we have

F [ϕ1](s,u) =
〈
u,u− Ev [ϕ1]ζ (s)

〉
,

=− η2 + ξ2 − η 〈e1, ζ〉 − ξ 〈e2, ζ〉

+
sinϕ1

κ
(
2 sin2 ϕ1 − 1

)(−η cosϕ1

+ ξ sinϕ1),

=− η2 + ξ2 − η 〈e1, ζ〉 − ξ 〈e2, ζ〉 .
(8)

Let ϕ2 6= 0, π (i.e., sinϕ2 = cosϕ1 6= 0) and using
∂F [ϕ2]

∂s
(s,u) = 0, we obtain

η = ξ
sinϕ1

cosϕ1
.

From Eq. (8), we get

−ξ2 sin2 ϕ1

cos2 ϕ1
+ ξ2 − ξ sinϕ1

cosϕ1
〈e1, ζ〉 − ξ 〈e2, ζ〉 = 0,

it follows that, η = ξ = 0 or ξ 6= 0. If ξ 6= 0, then

ξ =
− cosϕ1

2 sin2 ϕ1 − 1
(sinϕ1 〈e1, ζ〉+ cosϕ1 〈e2, ζ〉) ,

η =
− sinϕ1

2 sin2 ϕ1 − 1
(sinϕ1 〈e1, ζ〉+ cosϕ1 〈e2, ζ〉) ,

and then, we obtain

u =ηe1(s) + ξe2(s),

=
− sinϕ1

2 sin2 ϕ1 − 1
(sinϕ1 〈e1, ζ〉+ cosϕ1 〈e2, ζ〉) e1

− cosϕ1

2 sin2 ϕ1 − 1
(sinϕ1 〈e1, ζ〉+ cosϕ1 〈e2, ζ〉) e2,

=
−1

2 cos2 ϕ2 − 1
(〈− cosϕ2e1 + sinϕ2e2, ζ〉)

(cosϕ2e1 − sinϕ2e2)

=Pe[ϕ2]ζ(s).
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If η = ξ = 0, then u = 0 satisfies the condition

F [ϕ1](s0,u) =
∂F [ϕ1]

∂s
(s0,u) = 0, it follows that

〈sinϕ1e1(s0) + cosϕ1e2(s0), ζ(s0)〉

= sinϕ1 〈e1(s0), ζ(s0)〉+ cosϕ1 〈e2(s0), ζ(s0)〉 = 0.

Thus, Pe[ϕ2]ζ(s0) = u = 0 and it means that,
the envelope of the family F [ϕ2](s,u) = 0 is the
ϕ2-pedaloid Pe[ϕ2]ζ(s). Hence, the proof is com-
pleted. ut

4 Pedaloids and Evolutoids of

Frontals

The notion of frontals is one of the natural sin-
gular curves, so we can establish the differential
geometry of these curves in the Minkowski plane.
We say that (ζ,ν) : I −→ R2

1 × S1
1 is a Legen-

drian curve if (ζ,ν)∗θ = 0, where θ is the canon-
ical contact 1-form on the unit tangent bundle
e1R2

1 = R2
1 × S1

1 .
Furthermore, (ζ,ν)∗θ = 0 is equivalent to〈
ζ̇(t),ν(t)

〉
= 0 for any t ∈ I.

So, ζ : I −→ R2
1 is a frontal if there exists

ν : I −→ S1
1 such that (ζ,ν) is a Legendrian

curve. If (ζ,ν) is an immersion, ζ is said to
be a front. A differential geometry on frontals
was constructed in [4]. For a Legendrian curve
(ζ,ν) : I −→ R2

1 × S1
1 , we define a unit vector

field µ(t) = J(ν(t)) along ζ.
Then, we have the following Serret-Frenet equa-
tions:(

ν̇(t)

µ̇(t)

)
=

(
0 `(t)

`(t) 0

)(
ν(t)

µ(t)

)
, (9)

where `(t) = 〈ν̇(t),µ(t)〉. Moreover, there exists

β(t) such that ζ̇(t) = β(t)µ(t) for any t ∈ I. The
pair (`, β) is called a curvature of the Legendrian
curve (ζ,ν). By definition, t0 ∈ I is a singular
point of ζ if and only if β(t0) = 0. Furthermore,
for a regular curve ζ, we have µ(t) = e1(t) and

`(t) = ‖ ˙ζ(t)‖κ(t). The Legendrian curve (ζ,ν)
is immersive (i.e., ζ is a front) if and only if
(`(t), β(t)) 6= (0, 0) for any t ∈ I. So, the in-
flection point t0 ∈ I of the frontal ζ is a point
`(t0) = 0 (for more details, see [8, 15–17]).
The evolute of a frontal ζ is defined by

Evζ(t) = ζ(t)− β(t)

`(t)
ν(t), (10)

by using the hypothesis that there exists α(t)
such that β(t) = α(t)`(t) for any t ∈ I. Further,
Evζ(t) is a frontal and it is a front if ζ is a front [9].

For line L∗ obtained by rotating the tangent
fixed angle ϕ1; the direction of L∗ is cosϕ1µ(t) +
sinϕ1ν(t). Because, sinϕ1µ(t)+cosϕ1ν(t) is per-
pendicular to L∗, the vector equation of the line
L∗ is given by G(t,x) = 0, where

G(t,x) = (x− ζ(t)) (sinϕ1µ(t) + cosϕ1ν(t)) ,

∂G

∂t
(t,x) = −β(t)µ(t) (sinϕ1µ(t) + cosϕ1ν(t)) +

(x− ζ(t)) (`(t) sinϕ1ν(t) + `(t) cosϕ1µ(t)) .

From which, any vector is a linear combination in
the form η1µ(t)+η2ν(t). Using this to the vector

x− ζ(t) and substituting in G(t,x) =
∂G

∂t
(t,x) =

0, we obtain
(η1µ(t) + η2ν(t)) (sinϕ1µ(t) + cosϕ1ν(t)) = 0,

β(t) sinϕ1 + (η1µ(t) + η2ν(t)) (`(t) sinϕ1ν(t)

+`(t) cosϕ1µ(t)) = 0,

it follows that−η1 sinϕ1 + η2 cosϕ1 = 0,

−η1`(t) cosϕ1 + η2`(t) sinϕ1 = −β(t) sinϕ1.

By solving these equations with respect to η1 and
η2, we get

η1 =
−β(t) sinϕ1 cosϕ1

`(t)
(
2 sin2 ϕ1 − 1

) , η2 =
−β(t) sin2 ϕ1

`(t)
(
2 sin2 ϕ1 − 1

) .
Since, x − ζ(t) = η1µ(t) + η2µ(t), the notion of
evolutoids is defined by

Evζ [ϕ1](t) =ζ − β

`

sinϕ1(
2 sin2 ϕ1 − 1

)(cosϕ1µ

+ sinϕ1ν), (11)

it leads to Evζ [0](t) = Evζ [π](t) = ζ(t) and
Evζ [π/2](t) = Evζ [3π/2](t) = Evζ(t).

Proposition 2 Let (ζ,ν) be a Legendrian curve
with the curvature (`, β), and there exists α(t)
where β(t) = α(t)`(t) for any t ∈ I. Then, the
ϕ1-evolutoid Evζ [ϕ1] is a frontal with the curva-
ture (`, `). If `(t) 6= 0, then Evζ [ϕ1] is a front.
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Proof: By differentiation Eq. (11), we get

d

dt
Evζ [ϕ1](t) =− 1

2 sin2 ϕ1 − 1
(β(t) cosϕ1

+ α̇(t) sinϕ1)(cosϕ1µ(t)

+ sinϕ1ν(t)),

And then, we obtain

ν[ϕ1](t) = J (cosϕ1µ(t) + sinϕ1ν(t))

= (sinϕ1µ(t) + cosϕ1ν(t)) .

If ( Evζ [ϕ1],ν[ϕ1]) : I −→ R2
1 × S1

1 , then〈
d

dt
Evζ [ϕ1](t),ν[ϕ1](t)

〉
= 0,

it follows that ( Evζ [ϕ1],ν[ϕ1]) is a Legendrian
curve, which means that Evζ [ϕ1] is a frontal.
Furthermore, we obtain

µ[ϕ1](t) = Jν[ϕ1](t) = − (cosϕ1µ(t) + sinϕ1ν(t)) ,

and

d

dt
ν[ϕ1](t) = `(t) (cosϕ1µ(t) + sinϕ1ν(t)) ,

where

`[ϕ1](t) =

〈
d

dt
µ[ϕ1](t),ν[ϕ1](t)

〉
= `(t),

d

dt
ν[ϕ1](t) = −`(t)µ[ϕ1](t).

Then, the curvature of Evζ [ϕ1] is (`, `), and if
`(t) 6= 0, then ( Evζ [ϕ1],ν[ϕ1]) is immersive.
Hence, this completes the proof. ut

In what follows, we define a ϕ2-pedaloid of a
frontal ζ as:

Pe[ϕ2]ζ(t) =
1

|2 cos2 ϕ2 − 1|
〈ζ,− cosϕ2µ + sinϕ2ν〉

(− cosϕ2µ(t) + sinϕ2ν(t)) . (12)

For a Legendrian curve (ζ,ν), we are able to de-
fine the ϕ2 as follows

Peζ(t) = Pe[π/2]ζ(t) = Pe[3π/2]ζ(t),

CPeζ(t) = Pe[0]ζ(t) = Pe[π]ζ(t).

We call Peζ(t) as a pedal of ζ and CPeζ(t) a
contrapedal of ζ [17, 18].

Proposition 3 By using a hypothesis that there
exist δ(t) and σ : I −→ S1

1 such that ζ(t) =
δ(t)σ(t) for any t ∈ I. Let (ζ,ν) be a Legen-
drian curve with the curvature (`, β), then the
pedal Peζ(t) of ζ is a frontal.

Proof: By differentiation Eq. (12), we get

d

dt
Peζ(t) =`(t) (〈ζ(t),ν(t)〉µ(t) + 〈ζ(t),µ(t)〉ν(t)) ,

=`(t)δ(t) (〈σ,ν〉µ(t) + 〈σ,µ〉ν(t)) .

The unit vector field ν̄ along ζ can be defined as

ν̄(t) =
1√∣∣∣〈σ,µ〉2 + 〈σ,ν〉2

∣∣∣(〈σ(t),µ(t)〉µ(t)

+ 〈σ(t),ν(t)〉ν(t)),

it follows that
〈
d
dtPeζ(t), ν̄(t)

〉
= 0. Thus, the

proof is completed. ut

From Proposition 3, we note that it is satisfied
if ζ(t) = 0. So, the curvature of Peζ(t) is rather
complicated even for regular curve ζ. Then, we
obtain the next generalization of Theorem 1.

Theorem 4 Let (ζ,ν) be a Legendrian curve
with the curvature (`, β), and there exists α(t)
such that β(t) = α(t)`(t) for any t ∈ I. Then
we have

Pe[ϕ2]ζ(t) = PeEvζ [ϕ2+π/2](t). (13)

Proof: From aforementioned calculations, we
have

PeEvζ [ϕ1](t) = 〈Evζ [ϕ1](t),ν[ϕ1](t)〉ν[ϕ1](t),

= 〈ζ, sinϕ1µ + cosϕ1ν〉 (sinϕ1µ

+ cosϕ1ν).

Using ϕ2 + π/2 instead of ϕ1, we get

PeEvζ [ϕ2+π/2](t) = 〈ζ(t),− cosϕ2µ(t) + sinϕ2ν(t)〉

(− cosϕ2µ(t) + cosϕ2ν(t)) ,

= Pe[ϕ2]ζ(t).

Hence, this completes the proof. ut

Corollary 5 Let (ζ,ν) be a Legendrian curve
with the curvatue (`, β), and there exists α(t), δ(t)
and σ : I −→ S1

1 such that β(t) = α(t)`(t) and
Evζ [ϕ2 + π/2](t) = δ(t)σ(t) for any t ∈ I. Then
the ϕ2-pedaloid Pe[ϕ2]ζ is a frontal.
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5 Computational Examples

In this section, we give and illustrate two compu-
tational examples to investigate some geometric
properties of the evolutoid and pedaloid curves in
Minkowski plane.

Example 5.1 Consider the curve
ζ1 : [−π, π] −→ R2

1 defined by

ζ1(t) =
1

2

(
cos3(t), sin3(t)

)
,

then, we get

ν(t) = 1
ρ1

(− sin(t), cos(t)) ,

µ(t) = 1
ρ1

(− cos(t), sin(t)) ,

`(t) = −1
ρ21
, β(t) = 3

2ρ cos(t) sin(t),

α(t) = −3
2ρ

3
1 cos(t) sin(t),

(14)

where ρ1(t) =
√∣∣sin2(t)− cos2(t)

∣∣, therefore we

obtain 〈ζ̇1(t),ν(t)〉 = 0 and (`(t), β(t)) 6= (0, 0).
Hence, we can easily show that ζ1 is a front. The
curve ζ1 and 0-pedaloid Pe[0]ζ1 are shown in Figs.
1a and 1b, respectively.

(a) (b)

Figure 1: (a) ζ1(t) = 1
2

(
cos3(t), sin3(t)

)
.

(b) The 0-pedaloid of ζ1.

Also, the π/2-pedaloid Pe[π/2]ζ1 is shown in
Fig. 2a and the pedaloids altogether are shown in
Fig. 2b.

(a) (b)

Figure 2: (a) The π/2-pedaloid of ζ1. (b) ζ1 and

pedaloids.

On the other hand, the π/2-evolutoid
Evζ1 [π/2] and 0-evolutoid Evζ1 [0] are shown in
Figs. 3a and 3b, respectively.

(a) (b)

Figure 3: (a) The π/2-evolutoid of ζ1. (b) The

0-evolutoid of ζ1.

Furthermore, the evolutoids altogether are
shown in Fig. 4.

Figure 4: Evolutoids of ζ1.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.10 A. A. Abdel-Salam, M. Khalifa Saad

E-ISSN: 2224-2880 103 Volume 20, 2021



Example 5.2 Consider ζ2 : [−π, π] −→ R2
1 is

given by

ζ2(t) = (cos(t), cos(t) sin(t)) ,

then, we obtain

ν(t) = 1
ρ2

(− cos(2t), sin(t)) ,

µ(t) = 1
ρ2

(− sin(t), cos(2t)) ,

`(t) = 1
ρ22

(−2 sin(t) sin(2t) + cos(t) cos(2t)) ,

β(t) = ρ2(t),

α(t) = 1
ρ2

(−2 sin(t) sin(2t) + cos(t) cos(2t)) ,

where ρ2(t) =
√∣∣sin2(t)− cos2(2t)

∣∣, then we have

〈ζ̇2(t),ν(t)〉 = 0 and (`(t), β(t)) 6= (0, 0). There-
fore, we can easily show that ζ2 is a front. The
curve ζ2 is shown in Fig. 5a and the 0-pedaloid
Pe[0]ζ2 is shown in Fig. 5b.

(a) (b)

Figure 5: (a) ζ2(t) = (cos(t), cos(t) sin(t)).

(b) The 0-pedaloid of ζ2.

Also, the π/2-pedaloid Pe[π/2]ζ2 is shown in
Fig. 6a, and we obtain the pedaloids altogether as
shown in Fig. 6b.

(a) (b)

Figure 6: (a) The π/2-pedaloid of ζ2.

(b) ζ2 and pedaloids.

After that, we can get the images of π/2-
evolutoid Evζ2 [π/2] and 0-evolutoid Evζ2 [0] as
shown in Figs. 7a and 7b, respectively.

Finally, we obtain the images of evolutoids al-
together, as shown in Fig. 8.

(a) (b)

Figure 7: (a) The π/2-evolutoid of ζ2.

(b) The 0-evolutoid of ζ2.

Figure 8: Evolutoids of ζ2.

Conclusions

In the Minkowski space-time plane, the families of
relatives of pedals and evolutes have been studied.
Also, some relationships between these families
of curves in R2

1 have been investigated. Besides,
these notions to the category of frontal curves
in R2

1 have been classified. We believe that in
Minkowski plane, these families of curves have
the same differential geometric properties as in
the Euclidean plane. Finally, computational ex-
amples to confirm our main results are given and
plotted.
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