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Abstract: Ageneral multi-resource network with users requiring service from a number of shared resources simul-
taneously is considered. It is demonstrated that the Shortest Remaining Processing Time (SRPT) service protocol
minimizes, in a suitable sense, the system resource idleness with respect to customers with residual service times
not greater than any threshold value on every network route. Our arguments are pathwise, with no assumptions
on the model stochastic primitives and the network topology.
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1 Introduction
The Shortest Remaining Processing Time (SRPT) ser-
vice discipline assigns preemptive priority to the task
with the smallest residual service time. It is well
known in queueing theory for minimizing the mean
sojourn time (Schrage and Miller [1]) and the queue
length in a single-server system (Schrage [2]). A
summary of early work on SRPT may be found in
a survey paper by Schreiber [3]. Some of more re-
cent studies of this protocol discuss advisability of
implementing it from the point of view of fairness
(e.g., Wierman and Harchol-Balter [4]) or tail behav-
ior (Núñez-Queija [5], Nuyens and Zwart [6]). Heavy
traffic limit of the invariant queue length distributions
in an M/G/1 SRPT system was developed by Pavlov
[7] and Pechinkin [8]. There is also a growing body
of literature concerning functional limit theorems for
SRPT queues, see a recent paper by Banerjee, Budhi-
raja and Puha [9] and the references given there. So
far, vast majority of studies in this area, including the
ones cited above, has been concentrated on the perfor-
mance of single-server systems. Consequently, rela-
tively little is known about the performance of queue-
ing networks using the SRPT protocol.

Amongmany network types in operations research
literature, there are resource sharing networks, also
called bandwidth sharing models or flow level mod-
els. These systems were introduced byMassoulié and
Roberts [10, 11] in order to study problems of con-
gestion control of the Internet traffic. In such mod-
els flows, corresponding to continuous transmissions
of elastic documents, are being transferred on type-
specific routes, needing simultaneous service at all the

resources on their paths. Few results on the imple-
mentation of the SRPT protocol in such systems are
available in the existing literature. Verloop, Borst and
Núñez-Queija [12] demonstrated that strictly subcrit-
ical networks with resource sharing and linear topol-
ogy, working under SRPT, as well as the shortest ex-
pected remaining processing time (SERPT) and the
least attained service (LAS) scheduling, can be un-
stable. This suggested applying SRPT only locally,
as an intra-route discipline, on the top of another pol-
icy allocating bandwidth to routes in a resource shar-
ing network, see Aalto and Ayesta [13]. Chojecki and
Kruk [14] constructed a related example of a strictly
subcritical multiclass queueing network which is un-
stable with the SRPT, SERPT and the shortest job
first (SJF) scheduling policies. Note that in multiclass
queueing networks, customers visit different stations
along their routes in succession, so these systems dif-
fer notably from the ones considered here.

In this paper, we propose a new performance eval-
uation methodology for size-based policies in general
resource sharing networks. To this end, we introduce
a suitable idleness (equivalently, transmission time)
based optimality criterion, described below. For ev-
ery i from the set I of the network routes and any
times t, s ≥ 0, we define Yi(t, s) as the cumulative
idleness by time t with regard to transferring flows
having residual transmission times (evaluated during
their processing) not greater than s. We compare the
effects of implementing different service disciplines
for a given network by comparing the corresponding
vector-valued functions Y = (Yi)i∈I with respect to
the pointwise functional inequality. This introduces
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a partial ordering which is, in general, not linear. A
minimizing discipline with respect to this relation (if
it exists) is called minimal. Note that some pairs
of service disciplines may not be comparable in this
sense, so in general more than one minimal protocol
may exist. However, in the absence of any distribu-
tional assumptions on the underlying stochastic prim-
itives, we show that the SRPT resource sharing disci-
pline is minimal. A partial converse to this finding is
the fact that in a minimal network with resource shar-
ing, flows on each route are transmitted according to
the SRPT discipline. Consequently, a single-server,
single customer class queue is minimal if and only if
it is working under the SRPT protocol.

Our minimality notion is a counterpart of path-
wise minimality for real-time resource sharing net-
works introduced by Kruk [15], where lead times of
the flows, rather than their residual service times,
correspond to the second coordinate of the functions
(Yi)i∈I. Related minimality criteria for real-time net-
works with resource sharing may also be found in
Kruk [16]. For real-time systems, the Earliest Dead-
line First (EDF), rather than SRPT, is optimal. Al-
though our results are qualitatively similar to those
from [15], their proofs turn out to be notably differ-
ent. Indeed, the flow’s lead time always decreases
at the unit rate, regardless of its transmission, so, in
particular, the relative priorities of flows in the EDF
system are always the same. In contrast, the residual
transfer times of the flows decrease at their transmis-
sion rates, which vary over time and are different for
different flows. Hence, in SRPT systems, tasks may
change their relative priorities over time, making the
corresponding arguments more involved.

To our knowledge, our study is the first one in
which SRPT resource sharing networks with arbi-
trary topology are investigated. In contrast to pre-
vious research concerning the SRPT protocol (with
the notable exception of the classic result of Schrage
[2]), our arguments are pathwise, and hence they
are not constrained to any particular class of inter-
arrival and/or service time distributions. Moreover,
we present an advantage of implementing the SRPT
protocol in this context, namely its minimality in
the sense discussed above, while the previous study
[12] exhibited its disadvantage (instability). Conse-
quently, although our work is theoretical in nature, it
may be regarded as an encouragement for practition-
ers to use SRPT as a transmission protocol whenever
possible (i.e., when the corresponding document sizes
are known in advance), at least as an intra-route dis-
cipline.

Finally, let us mention that there are numerous
practice-oriented papers on the Internet traffic avail-
able in the computer science and engineering litera-
ture. Some recent studies of this kind can be found,

e.g., in [17] and [18].

2 Notation
Let R denote the set of real numbers and let R+ =
[0,+∞). For a, b ∈ R, we write a ∨ b (a ∧ b) for the
maximum (minimum) of a and b, and a+ for a ∨ 0.
Vector inequalities should be understood component-
wise: for a, b ∈ Rn, a = (a1, ..an), b = (b1, ..., bn),
a ≤ b if and only if ai ≤ bi for i = 1, ..., n. Func-
tional inequalities should be understood in a point-
wise sense, i.e., for f, g : A → Rn, we write f ≤ g if
and only if f(x) ≤ g(x) for all x ∈ A. A sum over
the empty set of indices will be regarded as zero.

The σ-field of the Borel subsets of R+ will be de-
noted by B(R+). We write IB for the indicator of a
set B ∈ B(R+). For a function f(x, y) of two vari-
ables, let dxf(x, y) denote the differential of f(x, y)
with respect to x, i.e., dgy(x), where gy(x) = f(x, y)
is a function of x depending on a parameter y.

Let M be the set of nonnegative, finite measures
on B(R+). When µ ∈ M and a, b ∈ R+ ∪ {∞},
we write µ(a, b), µ[a, b), µ(a, b], µ[a, b] instead of
µ((a, b)), µ([a, b)), µ((a, b]), µ([a, b]) respectively.
We also often write µ(x) instead of µ({x}) to denote
the measure µ of a set consisting of a single element
x. For µ ∈ M, let Lµ = sup{x ∈ R+ : µ[0, x) = 0}.
Thus, we have µ(R+) = 0 if and only if Lµ = ∞.
The family M is equipped with the weak topology,
which makes it a Polish space (see Prohorov [19]).
We denote the measure inM that puts the unit of mass
at a point x ∈ R by δx.

Random processes analyzed in this article have
sample paths that are right continuous with finite left
limits (r.c.l.l.). For a Polish space S , D([0,∞),S)
is the space of r.c.l.l. functions from [0,∞) into S .
For x ∈ D([0,∞),Rn) and t > 0, let △x(t) =
x(t)− x(t−), where x(t−) = lim

s→t−
x(s).

3 Stochastic model
3.1 Network description
We consider a network possessing a finite set of
routes, indexed by i = 1, ..., I , and a finite number
of resources (nodes), indexed by j = 1, ..., J . Every
route may be formally regarded as a nonempty subset
of J = {1, ..., J}, namely the set of resources used
by this route. We define the J × I incidence matrix
A = [aji], letting aji = 1 if resource j is used by
route i and aji = 0 otherwise. Let I = {1, ..., I}.
In terms of A, the set of resources used by route i
may be defined as R(i) = {j ∈ J : aji = 1} and
the set of routes using the resource j is described as
F(j) = {i ∈ I : aji = 1}.

By a flow on route i we mean a continuous trans-
mission of a file through the resources used by this
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route. As it is standard in the resource sharing net-
work literature, we assume that a flow takes simul-
taneous possession of all the resources on its route
during the transmission. For convenience, we also
assume that all the network resources have the same
maximal capacity (i.e., service rate). Without loss
of generality, this common transmission rate may be
taken to be one (if this is not the case, we can perform
an obvious time rescaling).

Let (Ω,A,P) be the underlying probability space.
The initial condition for the network model consists
of the nonnegative, integer-valued random variables
Qi(0), i ∈ I, representing the numbers of initial
flows on each route at time zero, and the strictly pos-
itive random initial flow sizes ṽi,k, where i ∈ I,
k = 1, ..., Qi(0). The initial flow with service time
ṽi,k will be referred to as flow k on route i. Put
Q(0) = (Q1(0), ..., QI(0)).

For i ∈ I and t ≥ 0, let Ni(t) denote the number
of flows arriving to the i-th route in the time interval
(0, t]. The k-th arrival modelled by the process Ni(·)
will be referred to as flow Qi(0) + k on route i. Its
arrival time equals Ui,k = inf{t ≥ 0 : Ni(t) ≥ k}.
For i ∈ I and t ≥ 0, let Ai(t) = Qi(0) +Ni(t).

For i ∈ I, k ≥ 1, let vi,k denote the initial file size
of the Qi(0) + k-th flow on route i. By assumption,
all the random variables vi,k are greater than zero.

3.2 Basic performance processes
For i ∈ I, t ≥ 0 and k ≤ Ai(t), let wi,k(t) denote
the residual file size (transmission time) of flow k on
route i at time t. Note that wi,k(·) decreases during
the transmission of the flow k on route i according
to the transmission rate assigned to this flow and it is
constant otherwise. For convenience, we denote by
w0
i,k the initial file sizes, i.e., w0

i,k = ṽi,k for initial
flows k ≤ Qi(0) and w0

i,k = vi,k−Qi(0) for incoming
flows k > Qi(0).

The stochastic primitives described above deter-
mine the measure-valued arrival process

Ai(t) =

Qi(0)∑
k=1

δṽi,k
+

Ni(t)∑
k=1

δvi,k
, i ∈ I, t ≥ 0.

For i ∈ I and t ≥ 0, let us define the measure-valued
state descriptor for route i as

Qi(t) =

Ai(t)∑
k=1

I(0,∞)(wi,k(t))δwi,k(t).

The random measure Qi(t) has the unit mass at the
residual transmission time of each flow on route i at
time t. The quantity Qi(t) = Qi(t)(R+) denotes the
number of flows on the route i ∈ I at time t. Let
Q(t) = (Q1(t), ..., QI(t)).

We define the current shortest remaining process-
ing time process for route i by the formula Ci(t) =
LQi(t), t ≥ 0.

3.3 SRPT discipline
In what follows, we will study the SRPT service pro-
tocol, dynamically allocating bandwidth to flowswith
the shortest residual transmission times. We assume
preempt-resume and no overhead. Below, we shall
define this protocol carefully, introducing notation
which will be used in the proofs of our results.

Let t ≥ 0 be such that Q(t) ̸= 0 and let i0 ∈ I,
k0 ≤ Ai0(t) be such that wi0,k0

(t) is the minimum of
the residual transmission times of the flows present
in the network at time t. Throughout this paper, we
assume an arbitrary tie-breaking rule. The flow k0
on route i0 is selected for transmission at time t. De-
fine J1 = J \ R(i0), I1 = {i ∈ I : R(i) ⊆ J1}.
If

∑
i∈I1 Qi(t) = 0 (for example, if I1 = ∅), then

the assignment of flows for transmission at time t is
finished. In the opposite case, let i1 ∈ I1, k1 ≤
Ai1(t) be such that wi1,k1

(t) is the minimum of the
residual transmission times of the flows which are
on routes belonging to I1 at time t. We choose the
flow k1 on route i1 for transmission at time t. Take
J2 = J1 \ R(i1), I2 = {i ∈ I : R(i) ⊆ J2}. If∑

i∈I2 Qi(t) = 0 (for example, if I2 = ∅), we are
done, otherwise we continue in this way until, at some
step n, we get

∑
i∈In Qi(t) = 0, ending the selection

procedure at time t. This assignment is used until ei-
ther one of the current transmissions is finished, or a
new flow arrives at the network, when, according to
the same algorithm, rescheduling can occur.

We will also analyze protocols allocating trans-
mission rates to routes differently than SRPT, but
scheduling flows on any route according to the SRPT
policy, that is, prioritizing the files with the small-
est residual transmission times. For example, we
can consider a resource sharing network having fixed
route priorities, in which files on each route are trans-
mitted in the SRPT order.

3.4 Network equations
For i ∈ I and t, s ≥ 0, define

Ei(t, s) =

Ni(t)∑
k=1

δvi,k
(0, s]=Ai(t)(0, s]−Qi(0)(0, s],

Zi(t, s) = Qi(t)(0, s].

Note that Ni(t) = lims→∞Ei(t, s), Qi(t) =
lims→∞ Zi(t, s). Let E(t, s) = (Ei(t, s))i∈I,
Z(t, s) = (Zi(t, s))i∈I. Let the vectors D(t) =
(Di(t))i∈I, T (t, s) = (Ti(t, s))i∈I denote the number
of departures (that is, service completions) and the cu-
mulative transmission time by time t corresponding
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to every route i of flows with residual transmission
times (evaluated at the times of their processing) not
greater than s. Let Yi(t, s) = t − Ti(t, s), i ∈ I, de-
note the cumulative idleness by time t with regard to
the service of of flows on route i with residual trans-
mission times (evaluated at the times of their process-
ing) not greater than s and let Y (t, s) = (Yi(t, s))i∈I.
For i ∈ I, t, s ≥ 0, let P (t, s) denote the number of
flows arriving to route i by time t (including the initial
ones) with transmission times initially greater than s,
but partially processed so that their residual transmis-
sion times at time t are not greater than s. Let us stress
that the functions Pi depend on the network discipline
or, more precisely, on the functions Ti corresponding
to this protocol. This fact is not reflected in the nota-
tion.

For t ≥ 0 and s ≥ 0, define

X(t, s) = (Z(t, s), D(t), T (t, s), Y (t, s)). (1)

Note that all the coordinate processes of X are non-
negative. The processes D(·), T (·, s), Y (·, s) are
nondecreasing, with D(0) = T (0, s) = Y (0, s) = 0
for s ≥ 0. Also, the functions Z(t, ·) and the incre-
ments T (t̃, ·) − T (t, ·), Y (t, ·) − Y (t̃, ·) are nonde-
creasing for every t̃ ≥ t ≥ 0. The following network
equations

Z(t, s) = Z(0, s) + E(t, s) + P (t, s)−D(t), (2)
Di(t) = Pi(t, 0), i ∈ I, (3)

Ti(t, s) + Yi(t, s) = t, i ∈ I, (4)∑
i∈F(j)

(
Ti(t̃, s)− Ti(t, s)

)
≤ t̃− t, j ∈ J, (5)

hold for t̃ ≥ t ≥ 0, s ≥ 0. The equation (5)
above reflects the capacity constraints of the network
resources. We also impose the following additional
condition∫ t

0
I[Zi(u,s)=0] duTi(u, s) = 0, i ∈ I, (6)

valid for all t, s ≥ 0. It expresses a natural require-
ment that flows that are not present in the system can-
not be transmitted.

The equations (2)-(6) hold for the performance
processes of the form (1) describing the impleman-
tation of any reasonable protocol, including SRPT, in
the network under consideration. Hence, in the next
sections, we will always assume their validity.

4 An auxiliary result
The following proposition gives us a useful one-to-
one correspondence between the performance pro-
cesses Zi and Yi (or, equivalently, Ti), i ∈ I.

Proposition 1. Consider two performance pro-
cesses: X(t, s) given by (1) and X′(t, s) =
(Z ′(t, s), D′(t), T ′(t, s), Y ′(t, s)), t ≥ 0, s ≥ 0
satisfying the same conditions as X(t, s). By E′

i,
i ∈ I we denote the random field, analogous to
Ei, corresponding to the process X′. Let i ∈ I,
T ∈ (0,+∞). If Zi(0, ·) = Z ′

i(0, ·) and Ei(t, ·) ≡
E′

i(t, ·), Yi(t, ·) ≡ Y ′
i (t, ·) for every t ∈ [0, T ], then

Zi(t, ·) ≡ Z ′
i(t, ·) for every t ∈ [0, T ].

Proof. Recall that for each t ≥ 0, Zi(t, ·) is a distri-
bution function of a finite measure Qi(t) with atoms
of integer sizes. Denote by Q′

i(t) the measure deter-
mined by Z ′

i(t, ·). Let

t0 = sup{t̄ ≥ 0 : Z ′
i(t, ·) ≡ Zi(t, ·) ∀t ∈ [0, t̄]}.

Observe that if t0 > 0, then Zi(t0, ·) = Z ′
i(t0, ·). In-

deed, Qi(t0−) = Q′
i(t0−) implies in particular that

Qi(t0−)(0) = Q′
i(t0−)(0). Since Ei(t, ·) ≡ E′

i(t, ·)
for t ∈ [0, T ], Ni ≡ N ′

i on [0, T ], where N ′
i(t) =

lims→∞E′
i(t, s). Moreover, the random measure

A′
i(t) =

Q′
i(0)∑

k=1

δṽ′
i,k

+

N ′
i(t)∑

k=1

δv′
i,k
,

where ṽ′i,k and v′i,k are defined analogously as ṽi,k and
vi,k, is equal to Ai(t) for t ∈ [0, T ]. Flows whose
residual processing times reach zero at time t0 leave
the system at this time, so

Qi(t0) = Qi(t0−)−Qi(t0−)(0)δ0
+Ai(t0)−Ai(t0−) =

= Q′
i(t0−)−Q′

i(t0−)(0)δ0

+A′
i(t0)−A′

i(t0−) = Q′
i(t0),

and hence Zi(t0, ·) ≡ Z ′
i(t0, ·).

If t0 = T , the proof is finished, so assume that
t0 < T . Let ε be the minimal distance between the
atoms of the measureQi(t0) = Q′

i(t0) (i.e. the resid-
ual transmission times of the flows present in both
systems at time t0). Put

t1 = inf{t0 < t ≤ T : △N(t) ̸= 0 or △Q(t) ̸= 0

or △Q′(t) ̸= 0},

and let t ∈ (t0, t1), t − t0 ≤ ε/2, be such that
Zi(t, ·) ̸= Z ′

i(t, ·). By the definition of t1 there are
no external arrivals and no departures in both systems
under consideration in the time interval (t0, t1). Let

s∗ = sup{s̄ ≥ 0 : Z ′
i(t, s) ≡ Zi(t, s) ∀s ∈ [0, s̄]}.

By definition, Zi(t, s∗) ̸= Z ′
i(t, s∗), otherwise we

would have Zi(t, s) = Z ′
i(t, s) for s ∈ [0, s∗ + ε)

since the functions Zi(t, ·), Z ′
i(t, ·) are r.c.l.l. and
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piecewise constant (as distribution functions of purely
atomic measures with finitely many atoms), but this
would contradict the definition of s∗. We can assume
that Zi(t, s∗) < Z ′

i(t, s∗). This means that in the sys-
tem X′ there is at least one flow with residual trans-
mission time s∗ more than in the system X and its
residual transmission time in the system X is greater
than s∗.

Let s∗ be the smallest atom ofQi(t)+Q′
i(t) greater

than s∗, i.e.

s∗ = min{s > s∗ : (Qi(t) +Q′
i(t))(s) > 0}.

For any k ≤ Ai(t) we have 0 ≤ wi,k(t)−wi,k(t0) ≤
t − t0 ≤ ε/2. Therefore, if wi,k(t) = s∗, then
wi,k(t0) = S∗, where S∗ is the unique (by the defi-
nition of ε) atom of Qi(t0) = Q′

i(t0) in the interval
[s∗, s∗ + ε/2]. Furthermore, by the definition of ε,
if wi,k(t0) ̸= S∗, then either wi,k(t0) ≤ S∗ − ε ≤
s∗ − ε/2 or wi,k(t0) ≥ S∗ + ε ≥ s∗ + ε. Analogous
observations also hold for the system X′.

Observe that s∗ ≤ S∗. The number of flows with
residual transmission times s∗ at time t is greater in
the system X′, while the same number of flows with
residual transmission times S∗ at time t0 is present
in both systems by the definition of t0. Therefore,
there must exist at least one flow in the system X
with residual transmission time S∗ at t0, the residual
transmission time of which is greater than s∗ at time
t. This residual transmission time cannot be greater
than S∗, because it cannot increase and it cannot be
smaller than s∗ by the definition of s∗. This implies
in particular that s∗ − s∗ ≤ ε/2. Moreover, for
u ∈ [t0, t], if wi,k(u) ∈ [s∗, s

∗], then wi,k(t0) = S∗,
since s∗ ≤ s∗ + ε/2 and S∗ is the unique atom of
Qi(t0) in the interval [s∗, s∗ + ε/2]. Similarly, if
w′
i,k(u) ∈ [s∗, s

∗], then w′
i,k(t0) = S∗. Thus

(Ti(t, s
∗)− Ti(t, s∗))− (Ti(t0, s

∗)− Ti(t0, s∗))

= (s∗ − s∗)

Qi(t)(s∗) +
∑

S∗−ε/2≤s<s∗

Qi(t)(s)

 .

Indeed, the left-hand side of this equality is the
amount of work done on route i in the time interval
[t0, t] to process flows with residual processing times
in (s∗, s

∗]. By the definitions of s∗, s∗ and S∗ those
flows have wi,k(t) ≤ s∗ and wi,k(t0) = S∗ at the
times of their processing in this time interval. This
work changed their residual transmission times from
s∗ to s∗, therefore the amount of work is the right-
hand side of the equality. The last sum represents
tasks which had wi,k(t0) = S∗ and ended up with
wi,k(t) < s∗, if such tasks exist. Such tasks are iden-
tical in both systems under consideration. Similarly,

we have
(T ′

i (t, s
∗)− T ′

i (t, s∗))− (T ′
i (t0, s

∗)− T ′
i (t0, s∗))

= (s∗ − s∗)

Q′
i(t)(s∗) +

∑
S∗−ε/2≤s<s∗

Q′
i(t)(s)

 .

This means that if Ti(t, ·) ≡ T ′
i (t, ·) for all t ∈ [0, T ],

then Qi(t)(s∗) = Q′
i(t)(s∗), which in turn contra-

dicts the definition of s∗.

Corollary 1. Under the assumptions of Proposition
1, we have Di(t, ·) ≡ D′

i(t, ·) for t ∈ [0, T ], i ∈ I.
Indeed, Di and D′

i are piecewise constant func-
tions and for t ∈ [0, T ],
△Di(t)=△Ni(t)−△Qi(t)=△N ′

i(t)−△Q′
i(t)=

=△D′
i(t).

5 Minimality
Recall that the equations (2)-(6) are of a very gen-
eral nature and they hold for networks equipped with
many different protocols. In particular, they do not
impose any lower bounds on the transmission rates,
allowing for arbitrarily large system idleness. In fact,
even an idle networkwithZ(t, s) = Z(0, s)+E(t, s),
Yi(t, s) = t and D(t) = T (t, s) = P (t, s) = 0 for
each i ∈ I, t, s ≥ 0, satisfies (2)-(6), as well as the
assumptions listed below (1). We will now introduce
a concept of minimality implying the transmition of
flows on every given route in the SRPT order (see
Theorem 2, to follow) and enforcing a counterpart of
non-idleness (known from multiclass queueing net-
works) suitable for networks with resource sharing.
Definition 1. Suppose that two performance pro-
cesses of the form (1) for resource sharing networks,
namely, X(1) = (Z(1), D(1), T (1), Y (1)) and X(2) =

(Z(2), D(2), T (2), Y (2)), satisfy (2)-(6), as well as the
remaining requirements listed below (1). We assume
that they have common stochastic primitives (i.e., the
initial condition Z(1)(0, ·) ≡ Z(2)(0, ·) and the ex-
ternal arrival function E), and possess the same in-
cidence matrix A. By X(1) ≼ X(2) we denote the
relation Y (1)(ω) ≤ Y (2)(ω) (which is equivalent to
T (1)(ω) ≥ T (2)(ω)) holding for all ω ∈ Ω.

Let us remark that by the notational conventions
from Section 2, the above condition Y (1)(ω) ≤
Y (2)(ω)means that Y (1)

i (t, s)(ω) ≤ Y
(2)
i (t, s)(ω) for

all i ∈ I and t, s ≥ 0.
Definition 2. Let X be a performance process, satis-
fying (1)- (6) and the nonnegativity and monotonic-
ity requirements listed below (1). We say that X is
minimal if for any process X′, the inequality X′ ≼ X
implies that X = X′.
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The relation “≼” is reflexive and transitive. More-
over, Proposition 1 and Corollary 1 imply that it is
also antisymmetric. Therefore “≼” is a partial order-
ing and a performance process is minimal if and only
if it is a minimal element relative to this ordering.

Remark. A random variable is usually understood as
an equivalence class of measurable mappings which
are equal with probability one. Consequently, its val-
ues are determined only up to P-negligible set (i.e.,
a set of P measure zero). From this point of view,
we should require that Y (1)(ω) ≤ Y (2)(ω) for al-
most all (instead of all) ω ∈ Ω in Definition 1. In-
stead, we have taken a slightly different, but equiv-
alent, route, regarding each random variable in our
stochastic models as a representative from the core-
sponding equivalence class (arbitrarily chosen, but
fixed thereafter), with well-defined values for each
ω ∈ Ω. This allows us to make pathwise comparisons
for every (instead of almost every) future realization
of the stochastic dynamics, but it does not notably al-
ter the results obtained. Indeed, a stochastic model of
our network is defined by a countable number of ran-
dom variables (the initial queue lengths, interarrival
and transmission times), so changing their represen-
tatives results in a modification of the underlying sys-
tem only on a P-negligible set.

For given stochastic primitives we have, in gen-
eral, multiple minimal elements. For instance, min-
imality of each network with resource sharing and
fixed priorities of routes, in which flows on any given
route are processed according to SRPT, may be es-
tablished. For networks with shared resources, min-
imality assures that the system transmits flows along
every route in the SRPT order, see Theorem 2, to fol-
low. Furthermore, a minimal network is necessarily
as efficient (i.e., non-idle) as it can be, given the net-
work topology, the stochastic primitives and the pre-
scribed algorithm for bandwidth allocation between
the routes. For a formal justification of this claim, see
the remainder of the proof of Theorem 2, where it is
demonstrated that a service protocol underutilizing all
the resources on any active route cannot be minimal.
The theorems presented below are the main results of
this article.

Theorem 1. The vector X of performance processes
defined by (1), corresponding to a resource shar-
ing network operating under the SRPT discipline de-
scribed in Section 3.3, is minimal.

Proof. Let us fix an arbitrary ω ∈ Ω. In the
following argument, all random quantities are eval-
uated at this ω. We argue by contradiction. Suppose
that the process X(ω) is not minimal and let a pro-
cess X′ = (Z ′, D′, T ′, Y ′) be such that X′ ≼ X, but

X′ ̸= X. LetQ′(t) = lims→∞ Z ′(t, s), t ≥ 0, and let

t0 = sup{t̃ ≥ 0 : Y ′(t, ·) = Y (t, ·) ∀t ∈ [0, t̃]}. (7)

By assumption, we have Y ′(0, ·) = Y (0, ·) = 0,
so the set on the right-hand side of (7) is not empty.
However, Proposition 1, Corollary 1 and the relation
X′ ̸= X imply that t0 < ∞. By (5) and the fact that
T (·, s), T ′(·, s) are nondecreasing for each s, the lat-
ter functions are Lipschitz continuous. Thus, by (4),
Y (·, s), Y ′(·, s) are Lipschitz for each s and hence
Y ′(t, ·) = Y (t, ·) for all 0 ≤ t ≤ t0. Therefore, by
(4), Proposition 1 and Corollary 1, we have

X(t, ·) = X′(t, ·), 0 ≤ t ≤ t0. (8)

Put

t1 = inf{t > t0 : △N(t) ̸= 0 or △Q(t) ̸= 0 (9)
or △Q′(t) ̸= 0},

and let t ∈ [t0, t1). In what follows, we use the nota-
tion from Section 3.3.

First, let us suppose thatQ(t0) ̸= 0. By the defini-
tion of the SRPT discipline, the k0-th flow from route
i0 is processed in the time slot [t0, t1) by the SRPT
system. We consider three cases.

1. For t ∈ [t0, t1) and s ≥ wi0,k0
(t0), by the rela-

tion X′ ≼ X, (8) and monotonicity of the process Y ′,
we have

Y ′
i0(t, s) ≤ Yi0(t, s) = Yi0(t0, s) = Y ′

i0(t0, s)

≤ Y ′
i0(t, s).

Hence, for t, s as above,

Y ′
i0(t0, s) = Y ′

i0(t, s) = Yi0(t, s) = Yi0(t0, s). (10)

2. For t ∈ [t0, t1) and s ≤ wi0,k0
(t0) − (t1 − t0),

we have s < wi0,k0
(t0) − (t − t0) = wi0,k0

(t) and
hence, by the definition of i0, k0, Zi0(t, s) = 0. In
particular, Zi0(t0, s) = 0. By (8),

Z ′
i0(t0, s) = 0. (11)

The equations (11), (2) and (8)-(9) imply that
Z ′
i0
(t, s) = 0 for t ∈ [t0, t1), because there are no new

arrivals or service completions in the systemX′ in the
time interval (t0, t1) and P ′

i (t, s) = 0 (s < wi0,k0
(t),

so it would be impossible to lower the residual pro-
cessing time of a flow to s). Together with (6), this
implies that

Ti0(t, s)− Ti0(t0, s) = T ′
i0(t, s)− T ′

i0(t0, s) = 0
(12)

for t ∈ [t0, t1), so for such t, by (4),

Yi0(t, s)−Yi0(t0, s) = Y ′
i0(t, s)−Y ′

i0(t0, s) = t− t0.
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But Yi0(t0, s) = Y ′
i0
(t0, s) by (8), so Yi0(t, s) =

Y ′
i0
(t, s).
3. Finally, let t ∈ [t0, t1) and wi0,k0

(t0) − (t1 −
t0) < s < wi0,k0

(t0). For t ∈ [t0, t0+wi0,k0
(t0)−s),

we havewi0,k0
(t) > s. Reasoning similarly as in case

2 (with t1 := t0 + wi0,k0
(t0) − s), we obtain that

Yi0(t, s) = Y ′
i0
(t, s) for t ∈ [t0, t0 + wi0,k0

(t0) − s).
By continuity, Yi0(t0 + wi0,k0

(t0)− s, s) = Y ′
i0
(t0 +

wi0,k0
(t0) − s, s). For t ∈ (t0 + wi0,k0

(t0) − s, t1),
we have wi0,k0

(t) < s. Reasoning similarly as in
case 1 (for t ∈ [t0 + wi0,k0

(t0) − s, t1)), we have
Y ′
i0
(t, s) = Yi0(t, s). Therefore Y ′

i0
(t, s) = Yi0(t, s)

for t ∈ [t0, t1).
We have demonstrated that Y ′

i0
(t, s) = Yi0(t, s)

for all t ∈ [t0, t1), s ≥ 0.
Proceeding similarly, for Ĩ := {i0, ..., in−1}, we

get

Y ′
i (t, s) = Yi(t, s), t ∈ [t0, t1), s ≥ 0, i ∈ Ĩ.

(13)
If Ĩ = I, we have obtained

Y ′(t, ·) = Y (t, ·), t ∈ [0, t1). (14)

Otherwise, let i ∈ I \ Ĩ. By the definition of the ser-
vice discipline in the SRPT resource sharing network,
at any time t ∈ [t0, t1) no flow on route i is being
transmitted. This may be either because of the equal-
ity Qi(t) = 0 on [t0, t1), or because i /∈ In. In the
first case, using (8), we get Q′

i(t0) = Qi(t0) = 0.
This, together with (9), implies that Q′

i(t) = 0 for
each t ∈ [t0, t1). Hence, by (6), for any s ≥ 0, we
have (12) with i instead of i0, implying

Y ′
i (t, s) = Yi(t, s), t ∈ [t0, t1), s ≥ 0, (15)

by the same argument, as the one following (12).
If i /∈ In, we have R(i) ∩ R(im) ̸= ∅ for some
im ∈ Ĩ. By the description of the SRPT disci-
pline, for t ∈ [t0, t1) and s ≥ wim,km

(t0), we have
Tim(t, s) − Tim(t0, s) = t − t0. Thus, by (4) and
(13), T ′

im
(t, s) − T ′

im
(t0, s) = t − t0, so by (5)

with j ∈ R(i) ∩ R(im) and monotonicity of T ,
T ′, we have (12) with i instead of i0. The incre-
ment T ′

i (t, ·) − T ′
i (t0, ·) is nondecreasing and non-

negative, and hence validity of (12), with i instead
of i0, for s ≥ wim,km

(t0), implies its validity also for
s < wim,km

(t0). Therefore, by (4) and (8), the rela-
tion (15) follows. Consequently, in each case, under
the assumption Q(t0) ̸= 0, (14) holds, contradicting
(7) and (9).

It remains to consider the event in which Q(t0) =
0. In this situation, for every i ∈ I we can argue as
in the case of i ∈ I \ Ĩ and Qi(t) = 0 for t ∈ [t0, t1)
analyzed above. 2

Our next theoremmay be regarded as a partial con-
verse to Theorem 1.

Theorem 2. Suppose that the process X modelling
the performance of a network with resource sharing
is minimal. Then the flows on every route in this net-
work are prioritized by the SRPT policy.

Proof. Suppose, to the converse, that for some
ω ∈ Ω and ī ∈ I, the scheduling discipline on
the route ī of the system modelled by the path X(ω)
(called system X for simplicity) differs from the
SRPT policy. In what follows, all random quanti-
ties are evaluated at this ω. Define t0 as the first time
at which task prioritizing on route ī in the system X
does not coincide with the SRPT protocol. Deviations
from the SRPT order may have three reasons. In the
first case, the system X may transmit a flow with the
remaining transfer time greater than Cī(t0). In the
second one, there may be (at least) two flows on route
ī, say k and p, with residual transmission times equal
to Cī(t0) at time t0 such that both of them are trans-
mitted by X immediately after t0. Finally, it may be
the case thatX uses a service rate lower than the high-
est available one, although there are flows ready for
transmission on route ī and there is unused capacity
at all resources j ∈ R(̄i). In each of the above cases,
we shall find a protocol π′, being a suitable modifica-
tion of the discipline π fromX, such that the resulting
trajectory X′ = X′(ω) has

T ′(ω) ≥ T (ω), T ′(ω) ̸= T (ω). (16)

(We do not change any trajectory X(ω̃), ω̃ ̸= ω, so
X′(ω̃) = X(ω̃) for ω̃ ̸= ω by construction.) Once this
task is accomplished, we will get a contradiction with
the assumed minimality of X. In the following argu-
ment, for t ≥ 0, i ∈ I and k ≤ Ai(t), we will denote
the residual transmission time of flow k on route i at
time t in the system X′ by w′

i,k(t).
By definition, the mappings Ti(·, s), i ∈ I, s ≥ 0,

are nondecreasing. Thus, by (5), they are actually
Lipschitz, so absolutely continuous and consequently
differentiable almost everywhere (a.e.) with respect
to the one-dimensional Lebesgue measure (see, e.g.,
[20]). Similarly, the residual job service times are
Lipschitz, and thus differentiable a.e. with respect to
the Lebesgue measure. Note that

∂

∂t
Ti(t, s) = −

∑
l:0<wi,l(t)≤s

d

dt
wi,l(t) a.e.,

(17)
where the derivative on the left-hand side of the equal-
ity is the right derivative of Tī(t, s) with respect to
time. Clearly, the above statements are true for the
modified system as well.
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Suppose that k is a flow on route ī with residual
transmission time Cī(t0) at time t0. The transmission
protocol π′ coincides with π for each route i ̸= ī, and
also for route ī, except as described in the following
paragraph.

In the first case, denote by p a flow on route ī,
with residual transmission time at time t0 greater than
Cī(t0), which is being served at time t0 under the pro-
tocol π. Starting from time t0, when π works on the
flow p, π′ transfers the flow k, with the same rate,
until the completion time t1 of the latter transfer. In
particular,

w′
ī,k(t1) = 0. (18)

From time t1, π′ transfers the flow p when π trans-
mits k, with the same rate. Let t2 = sup{t ≥ t0 :
wī,k(t) > 0} be the time at which the system X fin-
ishes transferring the flow indexed by k on route ī. We
will continue the proof under the additional assump-
tion that t1, t2 < ∞; the proof for the opposite case
is an easy modification of the argument given below.
By definition,

wī,k(t2) = 0. (19)

For t ∈ [t0, t1), we have

d

dt
w′
ī,k(t) =

d

dt
wī,k(t)+

d

dt
wī,p(t),

d

dt
w′
ī,p(t) = 0,

(20)
a.e., while for t ∈ [t1, t2) we have a.e.

w′
ī,k(t) = 0,

d

dt
w′
ī,p(t) =

d

dt
wī,k(t)+

d

dt
wī,p(t).

(21)
All other residual transmission times are equal in both
systems.

Clearly, for t ≥ t0, we have

w′
ī,k(t) ≤ wī,k(t), (22)

with strict inequality for t ∈ (t0, t2). Furthermore,
by (20)-(21) and the inequalityw′

ī,k
(t0) = wī,k(t0) <

wī,p(t0), for t ≥ t0,

w′
ī,k(t) ≤ wī,p(t), (23)

with strict inequality before the time of service com-
pletion of the flow p in the system X.

We claim that for all t ≥ t0,

w′
ī,p(t) ≥ wī,p(t). (24)

This is obvious for t ∈ [t0, t1]. Integrating the first
identity in (20) on [t0, t1] and using (18), we get

wī,k(t0) = w′
ī,k(t0) =

= wī,k(t0)− wī,k(t1) + wī,p(t0)− wī,p(t1),

and hence

wī,k(t1) = wī,p(t0)− wī,p(t1). (25)

Integrating the second identity in (21) on [t1, t2] and
using (19), (25), we get

w′
ī,p(t2) = w′

ī,p(t1)− wī,k(t1) + wī,p(t2)− wī,p(t1)

= w′
ī,p(t1)− wī,p(t0) + wī,p(t2) = wī,p(t2),

(26)

becausew′
ī,p
(t1) = w′

ī,p
(t0) = wī,p(t0) by the second

identity in (20) and the definition of X′. The second
identity in (21) implies that for t ∈ [t1, t2] we have
d
dtw

′
ī,p
(t) ≤ d

dtwī,p(t) a.e., which, together with (26),
implies (24) for t ∈ [t1, t2]. Finally, (26) and the def-
inition of X′ imply that

w′
ī,p(t) = wī,p(t), t ≥ t2, (27)

and the proof of (24) is complete.
By the definition of π′, for 0 ≤ t ≤ t0 we have

T ′
ī
(t, ·) = Tī(t, ·). By (17), (20) and (22)-(23), for t ∈

[t0, t1), we have ∂
∂tT

′
ī
(t, s) ≥ ∂

∂tTī(t, s). Integrating
this inequality with respect to t from t0 to t, we get

T ′
ī (t, s) ≥ Tī(t, s), t ∈ [t0, t1], s ≥ 0. (28)

Moreover, for t ∈ (t0, t1) and s = w′
ī,k
(t), the in-

equality in (28) is strict due to strict inequalities in
(22), (23).

For t, s ≥ 0, let T̃ī(t, s) denote the cumulative
transmission time of all the flows on route ī except for
k, p by time twith residual transmission times (evalu-
ated at the times of their processing) less than or equal
to s. Note that this quantity is the same in both sys-
tems by the definition of X′. For any t, s ≥ 0, we
have

Tī(t, s) = T̃ī(t, s) + (w0
ī,k ∧ s)

− (wī,k(t) ∧ s) + (w0
ī,p ∧ s)− (wī,p(t) ∧ s),

T ′
ī (t, s) = T̃ī(t, s) + (w0

ī,k ∧ s)

− (w′
ī,k(t) ∧ s) + (w0

ī,p ∧ s)− (w′
ī,p(t) ∧ s),

so the inequality in (16) is equivalent to the relation

(wī,k(t)∧s)+(wī,p(t)∧s)≥(w′
ī,k(t)∧s)+(w′

ī,p(t)∧s),

taking the form

(wī,k(t) ∧ s) + (wī,p(t) ∧ s) ≥ w′
ī,p(t) ∧ s (29)

for t ≥ t1, due to (18).
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If either wī,k(t) ≥ s or wī,p(t) ≥ s, then (29)
clearly holds. In the opposite case, (29) is implied by
the equality

wī,k(t) + wī,p(t) = w′
ī,p(t). (30)

For t = t1, (30) holds by (25), the second equation
in (20) and the equality wī,p(t0) = w′

ī,p
(t0). This,

together with the second equation in (21), yields (30)
for t ∈ [t1, t2]. Finally, by (19), for t ≥ t2, (30) boils
down to (27). We have proved (29) for t ≥ t1, so
the proof of (16) in the case under consideration is
complete.

The proof of (16) in the second case is almost the
same as in the previous one, the only notable dif-
ference is that now we have w′

ī,k
(t0) = wī,k(t0) =

wī,p(t0) instead of the strict inequality above (23)
It remains to consider the third case. Here, starting

from time t0, when we have unused capacity at every
resource j ∈ R(̄i) under π, the protocol π′, in addi-
tion to executing the transfers of π, transfers the flow
k, with the highest possible rate, until the ending time
t1 of this transfer. Starting from the time t1, whenever
π transfers the flow k, the protocol π′ lets its transfer
rate on route ī go unused (i.e., idles).

We will proceed with a more formal description of
π′. For j ∈ J and t, s ≥ 0, let

T j(t, s) =
∑

i∈F(j)

Ti(t, s)

be the cumulative transfer time devoted to flows with
residual transmission times less than and equal to s by
the resource j on the time horizon [0, t] and let

T̄j(t) = lim
s→∞

T j(t, s)

be the total transfer time of j on [0, t]. By defini-
tion, the mappings T̄j are nondecreasing. Thus, by
(5), they are also Lipschitz, and hence differentiable
a.e.. For t ≥ t0, let r(t) be the spare capacity of the
system X for route ī in [t0, t], so that r(t0) = 0 and

dr(t)

dt
=I[Qī(t)>0]

(
1− max

j∈R(̄i)

dT̄j(t)

dt

)
a.e. on [t0,∞).

(31)
By the assumption of this case, we have r(t) > 0 for
every t > t0. By the definition of the policy π′, for
t ≥ t0, we have w′

ī,k
(t) = (wī,k(t)− r(t))+, so

w′
ī,k(t) ≤ wī,k(t), t ≥ t0, (32)

w′
ī,k(t) < wī,k(t), t0 < t < inf{t ≥ t0 : wī,k(t) = 0}.

(33)

For t, s ≥ 0, let T̃ī(t, s) denote the cumulative
transmission time of all the flows on route ī except for

k by time t with residual transmission times (evalu-
ated at the times of their processing) less than or equal
to s. Note that this quantity is the same in both sys-
tems by the definition of π′. As in the first case, if
0 ≤ t ≤ t0 then T ′

ī
(t, ·) = Tī(t, ·). For t > t0, we

have

Tī(t, s) = T̃ī(t, s) + (w0
ī,k ∧ s)− (wī,k(t) ∧ s),

T ′
ī (t, s) = T̃ī(t, s) + (w0

ī,k ∧ s)− (w′
ī,k(t) ∧ s),

so (32)-(33) imply that T ′
ī
≥ Tī, T ′

ī
̸= Tī and (16)

holds. 2

An immediate consequence of Theorems 1 and 2
for the case of I = J = 1 is

Corollary 2. The performance process correspond-
ing to a one-server queue with a single customer class
is minimal if and only if the underlying queue disci-
pline is SRPT.

6 Conclusion
In this paper, we investigate general resource shar-
ing networks with arbitrary topology, making no dis-
tributional assumptions on the underlying interarrival
or service times. We introduce a new idleness-based
optimality criterion, suitable for performance anal-
ysis of job size-based policies for such networks,
which is particularly sensitive to the service of small
tasks. We then use it to make pathwise comparisons
of the outcomes of implementing different transmis-
sion schemes for a given network. It turns out that
the “greedy” SRPT network protocol is minimal with
respect to our criterion and, moreover, any minimiz-
ing policy necessarily applies SRPT as an intra-route
discipline.

Our study appears to be the first one addressing
the implementation of the SRPT protocol to networks
with shared resources in this generality. It also iden-
tifies a natural optimality criterion characterizing, to
some extent, the SRPT policy in this context. It may
be somewhat surprising that any strictly subcritical
SRPT resource sharing network is minimal, as de-
fined in this paper, although it may actually turn out
to be unstable [12]. This indicates that these two per-
formance criteria are different in nature.

A natural extension of the results presented here
will be an investigation of a stronger, more refined no-
tion of edge minimality, analogous to the one devel-
oped in [16] for real-time networks. Its usage as a per-
formance criterion would enforce assigning transmis-
sion priorities to routes, as well as intra-route flow pri-
orities, consistently with the SRPT protocol. It would
also be useful to generalize our findings to networks
with different resource capacities. Both these direc-
tions should be investigated in future work.
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