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Abstract: - The doubly non-central generalized beta type 1 and type 2 distributions have been derived by using two
independent non-central gamma variables with different scale parameters. These distributions generalize several
well known central and non-central beta distributions. The doubly non-central generalized beta densities are much
more flexible than many exiting beta models and can assume a large variety of shapes. Several properties of these
distributions have been studied.
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1 Introduction
The two-parameter univariate beta distribution is one
of the most frequently used distributions and has been
studied extensively in the scientific literature. Since
the beta distribution features two shape parameters,
there is high shape flexibility for various combina-
tions of parameter values. For basic properties, the
reader may consult Bury [1, Chapter 14], and Johnson
Kotz and Balakrishnana[2, Chap. 24]. Also, Some
relevant studies can be found in Kala [3] and Liu and
Miao [4].

The beta distribution can be used to model the dis-
tribution of measurements whose values lie between
zero and one. This distribution can also be used
to represent proportion or probability outcomes. In
Bayesian analysis, this distribution is taken as a con-
jugate prior in binomial sampling models. The well
known uniform distribution is a special case of the
beta distribution. The distribution of the order statis-
tic from a uniform distribution on (0, 1) is beta. Fur-
ther, several test statistics are functions of beta vari-
ables.

It is well know that if X1 and X2 are indepen-
dent standard gamma random variables with respec-
tive shape parameters a and b, then the random vari-
able U = X1/(X1 + X2) has a standard beta dis-
tribution (type 1) with two parameters, denoted by
U ∼ B1(a, b).

If independent random variables X1 and X2 have
two parameter gamma distributions, X1 ∼ Ga(a, θ1)
and X2 ∼ Ga(b, θ2), with densities

fX1
(x1; a, θ1) =

exp(−x1/θ1)x
a−1
1

θa1Γ(a)
,

x1 > 0, a > 0, θ1 > 0 (1)

and

fX2
(x2; b, θ2) =

exp(−x2/θ2)x
b−1
2

θb2Γ(b)
,

x2 > 0, b > 0, θ2 > 0, (2)
then the density function of U = X1/(X1 +X2) has
the form

fGB1(u; a, b;λ) =
λaua−1(1− u)b−1

B(a, b)[1− (1− λ)u]a+b
,

0 < u < 1, (3)
where λ = θ2/θ1 and B(a, b) is the usual beta func-
tion.

The above distribution was first derived by Libby
and Novic [5]. Chen and Novic [6] called this distri-
bution a G3B distribution and studied several of its
properties.

It is interesting to note that through the addition
of a single scale-like parameter, a distribution is pro-
vided that can take on a wide range of values for the
mean, variance, skewness, and kurtosis.

One can easily check that for λ = 1 the density (3)
reduces to a standard beta type 1 density and forλ = 2
it slides to a beta type 3 density studied by Cardeño,
Nagar and Sánchez [7], Gupta and Nagar [8], Nagar
and Ramirez-Vanegas [9, 10], and Nagar and Tabares-
Herrera [11].

The density of the quotient V = X1/X2, where
X1 andX2 are independent and follow two parameter
gamma distributions defined by (1) and (2), can be
obtained directly from the density of U . Since, we
have V = U/(1 − U), we can obtain the density of
V from (3) as

fGB2(v; a, b;λ) =
λava−1

B(a, b)(1 + λv)a+b
, v > 0. (4)
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It is easy to observe that for a = ν1/2, b = ν2/2
and λ = ν1/ν2 with ν1 > 0, ν2 > 0, the GB2 in (4)
becomes a Snedecor F (ν1, ν2) distribution while for
λ = 1, it is simply a standard type 2 beta distribution
(inverted beta distribution). Also, for a = 1, the GB2
distribution slides to a Lomax distribution. In general,
(λb/a)V has a Snedecor F (2a, 2b) distribution and
the distribution of λV is standard beta type 2.

The presence of the parameter λ allows three-
parameter generalized beta distributions to take a
much wider variety of shapes than the standard beta
distributions and therefore GB1 and GB2 distribu-
tions are more flexible than standard beta distribu-
tions and have been used in statistical modeling and
applications. The first is used in several statistical
models, e.g. in fitting utility functions (Libby and
Novic [5]), in Bayesian analysis with binomial sam-
pling (Chen and Novic [6]) etc., while the second
is used in the analysis of carcinogenesis data, in the
study of system availability or in measuring infor-
mation in predictive distributions. Systematic studies
of these distributions including problem of parameter
estimation was done by Pham-Gia and Duong [12].
While defining the three-parameter generalized beta
distributions, Libby and Novic [5] have also given
their multivariate (bivariate) generalizations. The
non-central counterpart of Libby and Novic’s bi-
variate beta distribution is given in Gupta, Orozco-
Castañeda and Nagar [13]. Sarabia and Castillo [14]
have proposed several bivariate extensions of Libby
and Novic’s three-parameter generalized beta type 1
distribution. Also, for some pertinent and interest-
ing generalizations of beta models, the reader is re-
ferred to Chen and Singh [15], Gómez-Déniz and
Sarabia [16] and Alshkaki [17]. For a systematic
treatment of matrix variate beta distribution the reader
is referred to Gupta and Nagar [18].

Although in recent years, several generalizations
of beta distribution have been developed to achieve
more flexibility, not much work has been done in
the area of non-central beta distributions (Johnson,
Kotz and Balakrishnana [2], Nagar and Ramirez-
Vanegas [9, 10], Firmino et al. [19], Nadarajah [20]).

The non-central beta densities are usually obtained
by using non-central gamma variables. The random
variableX is said to have a non-central gamma distri-
bution with parameters κ (> 0), θ (> 0) and δ (≥ 0),
denoted by X ∼ Ga(κ, θ, δ), if its p.d.f. is given by

{θκΓ(κ)}−1 exp
(
− δ − x

θ

)
xκ−1

0F1

(
κ;

δx

θ

)
,

where x > 0 and 0F1(c; z) is defined as

0F1(c; z) =

∞∑
i=0

Γ(c)zi

Γ(c+ i) i!
.

For δ = 0, the non-central gamma distribution re-
duces to a gamma distribution.

If independent random variables X1 and X2 have
non-central gamma distributions, X1 ∼ Ga(a, θ1, δ1)
and X2 ∼ Ga(b, θ2, δ2), then U = X1/(X1 + X2)
follows a doubly non-central generalized beta type 1
distribution. Likewise, the quotient V = X1/X2 fol-
lows a doubly non-central generalized beta type 2 dis-
tribution. For θ1 = θ2 these distributions reduce to
standard doubly no-central beta distributions.

In this article, we will derive and study doubly
non-central generalized beta type 1 and 2 distribu-
tions. Since, the distributions defined in this article
have increased number of parameters guaranteeing
more flexibility than many existing beta models, they
can serve as an alternative to many beta distributions
and can be applied in various real-life problems.

2 Some Definitions and Preliminary
Results

In this section, we give some definitions and prelim-
inary results that have been used in subsequent sec-
tions. Throughout this work, we will use the Pocham-
mer symbol (a)n defined by (a)n = a(a+1) · · · (a+
n − 1) = (a)n−1(a + n − 1) for n = 1, 2, . . . , and
(a)0 = 1. The integral representations of the conflu-
ent hypergeometric function and the Gauss hyperge-
ometric function are given as (Luke [21]):

1F1(a; c; z) =
Γ(c)

Γ(a)Γ(c− a)

×
∫ 1

0
ta−1(1− t)c−a−1 exp(zt) dt, (5)

and
2F1(a, b; c; z) =

Γ(c)

Γ(a)Γ(c− a)

×
∫ 1

0

ta−1(1− t)c−a−1

(1− zt)b
dt, (6)

respectively, where Re(a) > 0 and Re(c − a) > 0.
Using power series expansion of exp(zt) in (5) and
(1−zt)−a in (6), the series expansions of 1F1(a; c; z)
and 2F1(a, b; c; z) are obtained as

1F1(a; c; z) =

∞∑
k=0

(a)k
(c)k

zk

k!

and

2F1(a, b; c; z) =

∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, |x| < 1.

The Humbert’s confluent hypergeometric function
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Ψ2 is defined by

Ψ2[a; c1, c2; z1, z2] =

∞∑
r,s=0

(a)r+s

(c1)r(c2)s

zr1z
s
2

r! s!
,

=

∞∑
r=0

(a)r
(c1)r

zr1
r!

1F1(a+ r; c2; z2)

=

∞∑
s=0

(a)s
(c2)s

zs2
s!

1F1(a+ s; c1; z1),

(7)

where |z1| < ∞ and |z2| < ∞. The integral repre-
sentation of Φ1 is given by

Ψ2[a; c1, c2; z1, z2]

=
1

Γ(a)

∫ ∞

0
exp(−t)ta−1

0F1(c1; tz1)0F1(c2; tz2) dt,

|z1| < ∞, |z2| < ∞, (8)

where Re(a) > 0. For properties and further results
on these functions the reader is referred to Luke [21]
and Srivastava and Karlsson [22].

3 Doubly Non-Central Generalized
Beta Distributions

In this section, doubly non-central generalized beta
type 1 and 2 densities are derived and different shapes
of these densities are shown graphically.
Theorem 3.1. LetX1 andX2 be independent random
variables, X1 ∼ Ga(a, θ1, δ) and X2 ∼ Ga(b, θ2, µ).
Then, U = X1/(X1 + X2) follows a doubly non-
central generalized beta type 1 distribution with the
pdf

fNCGB1(u; a, b;λ; δ, µ)

=
λa exp[−(δ + µ)]

B(a, b)

ua−1(1− u)b−1

[1− (1− λ)u]a+b

×Ψ2

[
a+ b; a, b;

δλu

1− (1−λ)u
,

µ(1− u)

1− (1−λ)u

]
, (9)

where 0 < u < 1 and λ = θ2/θ1.
Proof. Using independence, the joint pdf of X1 and
X2 is given by

K exp
[
−
(
x1
θ1

+
x2
θ2

)]
xa−1
1 xb−1

2

× 0F1

(
a;

δx1
θ1

)
0F1

(
b;
µx2
θ2

)
, (10)

where x1 > 0, x2 > 0, a > 0, b > 0, θ1 > 0, θ2 > 0,
δ ≥ 0, µ ≥ 0, and

K = [θa1θ
b
2Γ(a)Γ(b) exp(δ + µ)]−1.

Now, making the transformationU = X1/(X1+X2),
and S = X1 + X2 with the Jacobian J(x1, x2 →
u, s) = s in (10), the joint density of U and S is ob-
tained as

Kua−1(1− u)b−1 exp
[
−{1− (1− λ)u} s

θ2

]
sa+b−1

× 0F1

(
a;

δus

θ1

)
0F1

(
b;
µ(1− u)s

θ2

)
, (11)

where 0 < u < 1 and s > 0. Finally, integrating (11)
with respect to s by using (8), we obtain the marginal
density of U .

If the density of U is given by (9), then we will
write U ∼ NCGB1(a, b;λ; δ, µ).

The graphs of the doubly non-central generalized
beta type 1 density function for different values of pa-
rameters are shown in Figure 1.
Theorem 3.2. LetX1 andX2 be independent random
variables, X1 ∼ Ga(a, θ1, δ) and X2 ∼ Ga(b, θ2, µ).
Then, V = X1/X2 follows a doubly non-central gen-
eralized beta type 2 distribution with the the pdf
fNCGB2(v; a, b;λ; δ, µ)

=
λa exp[−(δ + µ)]

B(a, b)

va−1

(1 + λv)a+b

×Ψ2

[
a+ b; a, b;

δλv

1 + λv
,

µ

1 + λv

]
, v > 0, (12)

where λ = θ2/θ1.
The above density will be denoted by V ∼

NCGB2(a, b;λ; δ, µ).
The graphs of the doubly non-central generalized

beta type 2 density function for different values of pa-
rameters are shown in Figure 2.

For δ = µ = 0, the densities in (9) and (12) slide
to generalized beta type 1 and generalized beta type 2
densities, respectively. For µ = 0, the densities in (9)
and (12) reduce to
fNCGB1(u; a, b;λ; δ, 0)

=
λa exp(−δ)

B(a, b)

ua−1(1− u)b−1

[1− (1− λ)u]a+b

× 1F1

(
a+ b; a;

δλu

1− (1−λ)u

)
, 0 < u < 1 (13)

and
fNCGB2(v; a, b;λ; δ, 0)

=
λa exp(−δ)

B(a, b)

va−1

(1 + λv)a+b

× 1F1

(
a+ b; a;

δλv

1 + λv

)
, v > 0, (14)
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Figure 1: Graph of the density function fNCGB1(u; a, b;λ; δ, µ) for different values of (a, b;λ; δ, µ)
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Figure 2: Graphs of the density function fNCGB2(v; a, b;λ; δ, µ) for different values of (a, b;λ; δ, µ)

respectively, where 1F1 is the confluent hypergeomet-
ric function.

The distributions defined by densities (13) and
(14) will be designated by NCGB1(a, b;λ; δ) and
NCGB2(a, b;λ; δ). In Figure 3 and Figure 4 graphs
of NCGB1 and NCGB2 density functions are given
for different values of their parameters. Here one can
appreciate the wide range of forms that result from the
densities (13) and (14).

From the density of the doubly non-central gener-
alized beta type 1 variable, it can be shown that

∫ 1

0

ua−1(1− u)b−1

[1− (1− λ)u]a+b

×Ψ2

[
a+ b; a, b;

δλu

1− (1− λ)u
,

µ(1− u)

1− (1− λ)u

]
du

= exp(δ + µ)λ−aB(a, b)

Using series expansion (7) of the Humbert’s con-
fluent hypergeometric function Ψ2, it can easily be

shown that

fNCGB1(u; a, b;λ; δ, µ)

=

∞∑
r=0

p(r, δ)fNCGB1(u; a+ r, b;λ; 0, µ)

=

∞∑
s=0

p(s, µ)fNCGB1(u; a, b+ s;λ; δ, 0)

=

∞∑
r=0

∞∑
s=0

p(r, δ)p(s, µ)fGB1(u; a+ r, b+ s;λ), (15)

where p(x; δ) = exp(−δ)δx/x!, x = 0, 1, 2, . . .
is the Poisson density. Thus, from (15), it is clear
that the density fNCGB1(u; a, b;λ; δ, µ) is a mixture of
central/non-central generalized beta type 1 densities.
Similarly, one can show that the non-central beta type
2 density is a mixture of central/non-central general-
ized beta type 2 densities. That is

fNCGB2(v; a, b;λ; δ, µ)

=

∞∑
r=0

p(r, δ)fNCGB2(v; a+ r, b;λ; 0, µ)
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Figure 3: Graphs of the density function fNCGB1(u; a, b;λ; 0, µ) for different values of (a, b;λ; 0, µ)
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Figure 4: Graphs of density function fNCGB2(v; a, b;λ; 0, µ) for different values of (a, b;λ; 0, µ)

=

∞∑
s=0

p(s, µ)fNCGB2(v; a, b+ s;λ; δ, 0)

=

∞∑
r=0

∞∑
s=0

p(r, δ)p(s, µ)fGB2(v; a+ r, b+ s;λ). (16)

4 Expected Values
Using the series representation of the doubly non-
central generalized beta type 1 density function given
in (15), one obtains

E
[

Uh(1− U)k

[1− (1− λ)U ]t

]
=

∞∑
r=0

∞∑
s=0

p(r, δ)p(s, µ)EGB1

[
Uh(1−U)k

[1− (1−λ)U ]t

]
, (17)

where

EGB1

[
Uh(1− U)k

[1− (1− λ)U ]t

]
=

∫ 1

0

uh(1− u)k

[1− (1−λ)u]t
f GB1(u; a+ r, b+ s;λ) du (18)

and fGB1(u; a + r, b + s;λ) is the generalized beta
type 1 density with parameters a + r, b + s and λ.
Now, substituting for fGB1 in (18) and evaluating the
resulting integral by using (6), we have

EGB1

[
Uh(1− U)k

[1− (1− λ)U ]t

]
=

λa+r

B(a+ r, b+ s)

∫ 1

0

ua+h+r−1(1− u)b+k+s−1

[1− (1− λ)u]a+b+r+s+t
du

=
λa+rB(a+ h+ r, b+ k + s)

B(a+ r, b+ s)
2F1(a+ h+ r,

a+b+r+s+ t; a+b+h+k+r+s; 1−λ). (19)
Finally, substituting (19) in (17), the expression for
the expected value of Uh(1−U)k

[1−(1−λ)U ]t is given by

E
[

Uh(1− U)k

[1−(1− λ)U ]t

]
=

∞∑
r=0

∞∑
s=0

p(r, δ)p(s, µ)
λa+rB(a+ h+ r, b+ k + s)

B(a+ r, b+ s)

× 2F1(a+ h+ r, a+ b+ r + s+ t;

a+ b++k + r + s; 1− λ).
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Now, substituting k = t = 0 in the above expression,
the h-th moment of U is obtained as

E(Uh)=

∞∑
r=0

∞∑
s=0

p(r, δ)p(s, µ)

× λa+rB(a+ h+ r, b+ s)

B(a+ r, b+ s)

× 2F1(a+ h+ r, a+ b+ r + s;

a+ b+ h+ r + s; 1− λ). (20)

Substituting h = 1 and h = 2 in (20) and simplifying,
we obtains the first and second order moments of the
random variable U which has a doubly non-central
generalized beta type 1 distribution:

E(U) =

∞∑
r=0

∞∑
s=0

p(r, δ)p(s, µ)
λa+r(a+ r)

a+ b+ r + s

×2F1(a+ 1 + r, a+ b+ r + s;

a+ b+ 1 + r + s; 1− λ)

and

E(U2) =

∞∑
r=0

∞∑
s=0

p(r, δ)p(s, µ)

× λa+r(a+ r)(a+ r + 1)

(a+ b+ r + s)(a+ b+ r + s+ 1)

×2F1(a+ 2 + r, a+ b+ r + s;

a+ b+ 2 + r + s; 1− λ).

Using the series representation of the doubly non-
central generalized beta type 2 density function given
in (16), we get

E
[

V h

(1 + λV )t

]
=

∞∑
r=0

∞∑
s=0

p(r, δ)p(s, µ)

× EGB2

[
V h

(1 + λV )t

]
, (21)

where

EGB2

[
V h

(1 + λV )t

]
=

∫ 1

0

vh

(1 + λv)t
fGB2(v; a+ r, b+ s;λ) dv (22)

and fGB2(v; a + r, b + s;λ) is the generalized beta
type 2 density with parameters a+r, b+s and λ. Now,
substituting fGB2 in (22) and evaluating the resulting

integral, we have

EGB2

[
V h

(1 + λV )t

]
=

λa+r

B(a+ r, b+ s)

∫ ∞

0

va+h+r−1

(1 + λv)a+b+r+s+t
du

=
λ−hB(a+ h+ r, b+ s+ t− h)

B(a+ r, b+ s)
. (23)

Finally, substituting (23) in (21), the expression for
the expected value V h

(1+λV )t is derived as

E
[

V h

(1 + λV )t

]
= λ−h

∞∑
r=0

∞∑
s=0

p(r, δ)p(s, µ)

× B(a+ h+ r, b+ s+ t− h)

B(a+ r, b+ s)
.

Substituting t = 0 in the above expression, we obtain
the h-th moment of V as

E(V h) = λ−h
∞∑
r=0

∞∑
s=0

p(r, δ)p(s, µ)

× B(a+ h+ r, b+ s− h)

B(a+ r, b+ s)
. (24)

Further, substituting h = 1 and h = 2 in (24) and sim-
plifying, the first and the second order moments of the
doubly non-central generalized beta type 2 variable is
obtained as

E(V ) = λ−1
∞∑
r=0

∞∑
s=0

p(r, δ)p(s, µ)
a+ r

b+ s− 1

and

E(V 2) = λ−2
∞∑
r=0

∞∑
s=0

p(r, δ)p(s, µ)

× (a+ r)(a+ r + 1)

(b+ s− 1)(b+ s− 2)
.

5 Discussion and Conclusion
By using the traditional method of transformation of
variables, we have obtained probability density func-
tions of doubly non-central generalized beta type 1
and type 2 distributions. These probability density
functions have been expressed in terms of the well
known Humbert’s confluent hypergeometric function
Ψ2. The doubly non-central generalized beta type 1
and type 2 distributions are generalizations of Libby
and Novic’s three-parameter beta distributions, beta
type 3 distribution, standard non-central beta distribu-
tions, and doubly non-central beta distributions. Nu-
merous properties of proposed distributions have also
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been studied. It has also been shown graphically, that
doubly non-central generalized beta densities can as-
sume a broad variety of shapes surpassingmany exist-
ing beta models. Further, infinite mixture representa-
tions of doubly non-central generalized beta densities
facilitate us to compute cumulative distribution func-
tion, moment generating function, and other results in
amicable forms.

Further, results such as probability density func-
tions of sum, difference, product and quotient of two
independent random variables both having doubly
non-central generalized beta type 1 distribution can
also be derived. These probability density functions
will involve the first hypergeometric function of Ap-
pell (see Nagar and Ramirez-Vanegas [10], Nadara-
jah [20]).
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