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Abstract: This article is concerned with an exponentially fitted numerical integration method based on uniform mesh for
solving singularly perturbed two point boundary value problems. Exact and approximate rule of integration with finite dif-
ference approximation of first derivatives are used to derive a three term scheme. Theory of singular perturbation is used to
introduce a fitting factor in the derived scheme. Thomas algorithm is employed to solve the resulting tridiagonal system of
equations. Convergence of the proposed method is also analyzed. Solutions of several linear and nonlinear example problems
are presented in terms of maximum absolute errors (MAE) to show the applicability of the proposed scheme. It is easily
observed that the proposed method is able to approximate the solution very well.
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1 Introduction

Differential equations where the highest order derivative is
multiplied by an arbitrarily small parameter known as the
singular perturbation parameter. These problems are arise
frequently in the applied sciences and engineering, typi-
cal examples include Navier-Stokes flow problems involv-
ing high Reynolds number [1,2,3], mathematical models of
liquid crystal materials and chemical reactions, control the-
ory, electrical networks[4,5,6]. These problems have been
received a significant amount of attention in past and re-
cent years. It is a known fact that the solution of these
types of problems exhibit sharp boundary layers or interior
layers when the value of is taken very small, i.e., the so-
lution exhibits rapid variation near the layer region while
in regular region it varies slowly. Typically thin transition
layers are present where the solutions can jump abruptly,
while away from the layers the solution exhibits regular
behaviour and varies slowly. So it becomes extremely diffi-
cult to solve singularly perturbed problems as severe com-
plications have to be confronted to obtain numerical solu-
tions accurately. Thus solution techniques which are more
efficient with simpler computations are needed to solve
singular perturbation problems. Readers may consult the
books: [7,8,9,10,11] for a detailed analytical discussion
on various methods to solve singular perturbation prob-
lems. Also, recent books [12,13,14,3,15]and their corre-
sponding references present some numerical methods and
their convergence analysis. In the recent past, the authors
in [16,17] have suggested exponentially fitted finite differ-
ence methods on uniform mesh for solving model equa-
tion of the form (1). Reddy and Mohapatra[16] have pre-

sented an efficient numerical method with exponentially
fitted factor to obtain the solution of singularly perturbed
two point boundary value problems exhibiting boundary
layer at one end point (either left or right). Gbsl Sou-
janya et al.[18] have developed an exponentially fitted
non-symmetric finite difference method to solve singularly
perturbed problems with layer behaviour using Numerovs
method. Articles[19,20,21,22,23] propose different numer-
ical approaches combining fitted mesh methods and fitted
operator methods employed by several researchers for solv-
ing SPPs where as Kadalbajoo and Kumar[24] presents
a detailed outline on the numerical methods for solving
SPPs. But these existing numerical methods are mostly
based on fitted operator techniques or use reasonable the-
oretical information regarding the solutions which forms
a limitation of these approaches. Ranjan and Prasad[25]
have presented an efficient method of numerical integra-
tion for a class of singularly perturbed two point boundary
value problem at one end point (either left or right). Ran-
jan, Prasad and Alam[26] have developed a simple method
of numerical integration for a class of singularly perturbed
two point boundary value problems at one end point (ei-
ther left or right). Ranjan and Prasad[27] have propose a
fitted finite difference scheme for solving singularly per-
turbed two point boundary value problems having bound-
ary layer at left or right end points.

The main purpose of this paper is to present compu-
tationally a new exponentially fitted numerical integration
scheme for solving singularly perturbed two-point bound-
ary value problems(SPTPBVP) having boundary layer at
left or right end points of the interval considered. In this pa-

Received: July 2, 2020. Revised: December 1, 2020. Accepted: December 19, 2020. Published: December 28, 2020.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2020.19.67

Mohammad Javed Alam, 
Hari Shankar Prasad, Rakesh Ranjan

E-ISSN: 2224-2880 610 Volume 19, 2020



per we have presented fitted schemes using the usual rule of
evaluating exact and approximate value of the definite in-
tegral with finite difference approximation of derivatives to
solve a class of SPTPBVP. The computational results show
that the present method is capable of producing accurate re-
sults with minimal computational effort when perturbation
parameter for any fixed value of the mesh size.

The rest of the paper is organized as follows: Some
assumptions on the statement of the continuous problem
is given in Section 2. In Subsection 2.1 and Subsection
2.2, we present in detail the construction of the numerical
method having boundary layer at left and right end points
of the underlying interval respectively. A study of the con-
vergence analysis is presented in Section 3. In Section 4,
some numerical examples are presented to show the appli-
cability and the effectiveness of the proposed method. The
numerical results are reported with the maximum absolute
error in tables. Finally, the conclusion is given in Section
5. The paper ends with the references.

2 Statement of the problem
In this paper, we consider the second order singularly per-
turbed problem of the form:

εy′′(x) + α(x)y′(x) + β(x)y(x) = γ(x); 0 ≤ x ≤ 1 (1)

subject to the interval and boundary conditions

y(0) = η and y(1) = δ (2)

where ε (0 < ε << 1) is a perturbation parameter and
η, δ are known finite constants. Also it is assumed
that α(x), β(x), γ(x) are sufficiently smooth and bounded
functions on [0, 1] along with β(x) ≤ 0 throughout of the
interval [0, 1] . If we assume that α(x) ≥ W > 0 through-
out the interval [0, 1] , where W is a positive constant, the
equation (1) along with (2) has a unique solution y(x) with
boundary layer at x = 0 i.e. at left end point of the inter-
val for small values of ε, while the boundary layer will be
present in the neighbourhood of x = 1 if α(x) ≤ W < 0
throughout the interval [0, 1] , where W is a negative con-
stant.

The operator Lτ = ε d
2

dx2 + α(x) ddx + β(x) in (1) sat-
isfies the following minimum principle [17].
Lemma 2.1. Suppose ω (x) represents a smooth func-
tion satisfying the conditions ω (0) ≥ 0, ω (1) ≥ 0. Then
Lτω (x) ≤ 0, ∀x ∈ (0, 1) implies ω (x) ≥ 0, ∀x ∈ [0, 1].
proof : Let m ∈ [0, 1] be such that ω (m) < 0 and
ω (m) = min

x∈[0,1]
ω (x) . Clearly m /∈ {0, 1} , therefore

ω′ (m) = 0 and ω′′ (m) ≥ 0. Hence, we obtain

Lτω (m) = εω′′ (m) + α(m)ω′ (m) + β(m)ω (m) > 0,

which contradicts our assumption. Hence it is proved that
ω (m) ≥ 0 and thus ω (x) ≥ 0∀x ∈ [0, 1].

Lemma 2.2. Let y(x) be the solution of the problem (1)
and (2) then we have

‖y‖ ≤ a−12 ‖γ‖+max(|η0|, |δ|).

where ‖ · ‖ is the L∞ norm given by ‖y‖ = max
0≤x≤1

|y(x)|.

proof : Let ω± (x) be two barrier functions defined by

ω± (x) = a−12 ‖γ‖+max(|η0|, |δ|)± y(x)

Then this implies

ω± (0) = a−12 ‖γ‖+max(|η0|, |δ|)± y(0)
= a−12 ‖γ‖+max(|η0|, |δ|)± η0 since, y(0) = η(0) = η0
≥ 0

ω± (1) = a−12 ‖γ‖+max(|η0|, |δ|)± y(1)
= a−12 ‖γ‖+max(|η0|, |δ|)± δ since, y(1) = δ
≥ 0

⇒ Lτω
± (x) = ε(ω± (x))

′′
+ α(x)(ω± (x))

′
+ β(x)ω± (x)

= β(x)
[
a−12 ‖γ‖+max(|η0|, |δ|)

]
± Lτy(x)

= β(x)
[
a−12 ‖γ‖+max(|η0|, |δ|)

]
± γ(x) using (1)

As β(x) ≤ −a2 < 0 implies β(x)a−12 ≤ −1 and since
‖γ‖ ≥ γ(x), we have

⇒ Lτω
± (x) ≤ (−‖γ‖ ± γ(x))+β(x)max(|η0|, |δ|) ≤ 0, ∀x ∈ [0, 1].

Thus using the minimum principle we obtain, ω± (x) ≥
0 , ∀x ∈ [0, 1]. Now for computing the error that has oc-
curred in our numerical approximations, the derivative of
the solution y(x) should possess a boundedness which re-
mains valid for all x ∈ (0, 1].

With the help of Lemma 2.1, the required estimate is
obtained.

2.1 Description of the method for left-end
boundary layer problems

First, equation (1) can be written in the given form:

[A(x)y′(x)]
′
−A′(x)y′(x) + y′(x) + C(x)y(x)

= H(x); 0 ≤ x ≤ 1
(3)

whereA(x) =
ε

α(x)
, C(x) =

β(x)

α(x)
, H(x) =

γ(x)

α(x)
. (4)

Consider the partition 0 = x0 < x1 < x2, ..., < xN−1 <
xN = 1 of the interval [0, 1] with the uniform mesh size h
defined by the relation xi = x0 + ih, for i = 0, 1, 2, ..., N.
Integrate equation (3) in the interval [xi, xi+1] and rear-
range to get:

A(xi+1)y
′(xi+1)−A(xi)y′(xi)−A′(xi+1)

y(xi+1) +A′(xi)y(xi) +
∫ xi+1

xi
A′′(x)y(x)dx+

y(xi+1)− y(xi) +
∫ xi+1

xi
C(x)y(x)dx =∫ xi+1

xi
H(x)dx

(5)
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Now, apply trapezoidal rule of Integration on the equation
(5) to get:

A(xi+1)y
′(xi+1)−A(xi)y′(xi)−A′(xi+1)y(xi+1)

+h
2 [A′′(xi)y(xi) +A′′(xi+1)y(xi+1)]

+A′(xi)y(xi) +
h
2 [C(xi)y(xi) + C(xi+1)y(xi+1)]

+y(xi+1)− y(xi) = h
2 [H(xi)+ H(xi+1)]

(6)

Use the first order backward/forward finite difference ap-
proximations: y′(xi+1) = (y(xi+1)−y(xi))

h andy′(xi) =
(y(xi)−y(xi−1))

h and notations: y(xi) = yi, y(xi+1) =
yi+1, A(xi) = Ai, C(xi) = Ci, α(xi) = αi etc. in equa-
tion (6) , we obtain the scheme:

1
h [Ai+1yi+1 −Ai+1yi −Aiyi +Aiyi−1]−
A′i+1yi+1 +A′iyi +

h
2

[
A′′i yi +A′′i+1yi+1

]
− yi+

yi+1 +
h
2 [Ciyi + Ci+1yi+1] =

h
2 [Hi+ Hi+1]

(7)

Now, fitting factor σ (ρ) is introduced into equation (7) to
get:

σ(ρ)
ρ

[{
1

αi+1
yi+1 − 1

αi+1
yi − 1

αi
yi +

1
αi
yi−1

}
−

h

{(
1

αi+1

)′
yi+1 −

(
1
αi

)′
yi

}
+

h2

2

{(
1
αi

)′′
yi+

(
1

αi+1

)′′
yi+1

}]
+ yi+1 − yi+

h
2 [Ciyi + Ci+1yi+1] =

h
2 [Hi+ Hi+1]

(8)

where ρ = h
ε and σ(ρ) is the fitting factor which can be

determined in such a way that the solution of equation (8)

converges uniformly to the solution equations (1) and (3).
Taking limits as h→ 0, we obtain

σ(ρ)
ρα(0) lim

h→0
[y(ih+ h)− 2y(ih) + y(ih− h)] +

lim
h→0

[y(ih+ h)− y(ih)] = 0
(9)

under the assumption that the expression[
A′iyi −A′i+1yi+1

]
+ 1

2

[
A′′i yi +A′′i+1yi+1

]
+

1
2 [Ciyi + Ci+1yi+1] and 1

2 [Hi+ Hi+1] are bounded.
It is well known that the solutions of equation (1) with
equation (2) is of the following form (cf.[10], pp.22-26):

y(x) = y0(x) +
α(0)
α(x) (α− y0(0)) e

−
∫ x
0

(
α(x)
ε −

β(x)
α(x)

)
dx

+ o(ε) (10)

where y0(x) is the solution of the reduced problem:

α(x)y′0(x) + β(x)y0(x) = γ(x); y0(1) = δ (11)

Under the consideration of Taylor’s series expansions for
α(x) and β(x) about the point ′x = 0′ upto their first terms
only, the equation(10) becomes:

y(x) = y0(x) + (α− y0(0)) e−
(
α(0)
ε −

β(0)
α(0)

)
x
+ o(ε) (12)

Further, considering equation (12) at the point x = xi =
ih, i = 0, 1, 2, ..., N and taking the limit as h → 0 we
obtain

lim
h→0

y(ih) = y0(0) + (α− y0(0)) e
−
(
α2(0)−εβ(0)

α(0)

)
iρ
+ o(ε) (13)

where ρ = h/ε.
Using the equation (13) for y(ih−h), y(ih), y(ih+h) in
equation (9) and then simplifying, we get the value of the
fitting factor as

σ(ρ) =
α(0)ρ

2

 e
−
(
α2(0)−εβ(0)

α(0)

)
ρ
2

sinh
((

α2(0)−εβ(0)
α(0)

)
ρ
2

)
 (14)

Finally, by making use of equation (8) and σ(ρ) given by
equation (14), we can get the following three-term recur-
rence relationship of the form:

Eiyi−1 − Fiyi +Giyi+1 = Ri, (i = 1, 2, 3, ..., N − 1) (15)

where

Ei =
σAi
h

Fi = 1 + σ(Ai+1+Ai)
h − σA′i −

hσA′′i
2 − hCi

2

Gi = 1 + σAi+1

h − σA′i+1 +
hσA′′i+1

2 + hCi+1

2

Ri =
h
2 [Hi +Hi+1]

(16)

Equation (15) gives a system of (N − 1) equations with
(N − 1) unknowns y1 to yN−1. These (N − 1) equations
together with the equation (2) are sufficient to solve the tri-
diagonal system by using Thomas Algorithm also called
’Discrete Invariant Imbedding algorithm’.

2.2 Description of the method for right-end
boundary layer problems

Now, integrating equation (3) in [xi−1, xi] and rearranging
we obtain:

A(xi)y
′(xi)−A(xi−1)y′(xi−1)−A′(xi)y(xi)+

A′(xi−1)y(xi−1) +
∫ xi
xi−1

A′′(x)y(x)dx+ y(xi)

−y(xi−1) +
∫ xi
xi−1

C(x)y(x)dx =
∫ xi
xi−1

H(x)dx
(17)

Evaluate the integrals in equation (17) using trapezoidal
rule of Integration to get:

A(xi)y
′(xi)−A(xi−1)y′(xi−1)−A′(xi)y(xi)+

A′(xi−1)y(xi−1) + y(xi) +
h
2 [A′′(xi−1)y(xi−1)+

A′′(xi)y(xi)]− y(xi−1) + h
2 [C(xi−1)y(xi−1)+

C(xi)y(xi)] =
h
2 [H(xi−1)+ H(xi)]

(18)

Using the finite difference approximations of first deriva-
tives: y′(xi) = (y(xi+1)−y(xi))

h and y′(xi−1) =
(y(xi)−y(xi−1))

h and the following notations: y(xi) =

yi, y(xi−1) = yi−1, A(xi) = Ai, C(xi) = Ci, α(xi) =
αi etc. in equation (18), we obtain the scheme:

1
h [Aiyi+1 −Aiyi −Ai−1yi +Ai−1yi−1]−
A′iyi +A′i−1yi−1 +

h
2

[
A′′i−1yi−1 +A′′i yi

]
+ yi−

yi−1 +
h
2 [Ci−1yi−1 + Ciyi] =

h
2 [Hi−1+ Hi]

(19)

noindent Introducing the fitting factor σ(ρ) into equation
(19), we obtain

σ(ρ)
h [Aiyi+1 −Aiyi −Ai−1yi +Ai−1yi−1+

h
[
A′i−1yi−1 −A′iyi

]
+ h2

2

[
A′′i−1yi−1 +A′′i yi

]]
+

yi − yi−1 + h
2 [Ci−1yi−1+ Ciyi] =

h
2 [Hi−1+ Hi]

(20)
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yx0
= η; yxN = δ And, the fitting factor σ(ρ) is to be

determined in such a way that the solution of equation (20)
converges uniformly to the solution equations (1) and (2).
Now, taking limits as h→ 0 we obtain

lim
h→0

σ(ρ)A(ih) [y(ih+ h)− 2y(ih) + y(ih− h)]
+ lim
h→0

[y(ih)− y(ih− h)] = 0
(21)

where
[
A′i−1yi−1 −A′iyi

]
+ 1

2

[
A′′i−1yi−1 +A′′i yi

]
+

1
2 [Ci−1yi−1 + Ciyi] and 1

2 [Hi+ Hi−1] are bounded func-
tions.
It is well known that the solutions of equations (1) with (2)
is of the following form (cf.[10], pp.22-26):

y(x) = y0(x) +
α(1)
α(x) (α− y0(1)) e

∫ 1

x

(
α(x)
ε −

β(x)
α(x)

)
dx

+o(ε)
(22)

where y0(x) represents the solution of the reduced prob-
lem:

α(x)y′0(x) + β(x)y0(x) = γ(x); y0(1) = η (23)

Expanding α(x) and β(x) in equation (21) with the help of
the Taylor’s series about the point ′x = 1′ and restricting
to their first terms, we obtain:

y(x) = y0(x) + (γ − y0(1)) e
(
α(1)
ε −

β(1)
α(1)

)
(1−x)

+ o(ε) (24)

Further, considering equation (23) at the point x = xi =
ih, i = 0, 1, 2, ..., N and taking the limit as h → 0 we
obtain

lim
h→0

y(ih) = y0(0) + (γ − y0(1)) e

(
α2(1)−εβ(1)

α(1)

)
( 1
ε−iρ)

+ o(ε) (25)

where ρ = h/ε.

Using the equation (25) for y(ih−h), y(ih), y(ih+h) in
equation (21) and then simplifying, we get the value of the
fitting factor as

σ(ρ) =
α(1)ρ

2

 e
−
(
α2(1)−εβ(1)

α(1)

)
ρ
2

sinh
((

α2(1)−εβ(1)
α(1)

)
ρ
2

)
 (26)

Finally, by making use of equation (26) and σ(ρ) given by
equation (20), we can get the following three-term recur-
rence relationship of the form:

Eiyi−1 − Fiyi +Giyi+1 = Ri, (i = 1, 2, 3, ..., N − 1) (27)

where

Ei = −1 + σAi−1

h + σA′i−1 +
hσA′′i+1

2 + hCi−1

2

Fi = −1 + σ(Ai−1+Ai)
h + σA′i −

hσA′′i
2 − hCi

2

Gi =
σAi
h

Ri =
h
2 [Hi +Hi+1]

Equation (27) gives a system of (N − 1) equations with
(N − 1) unknowns y1 to yN−1. These (N − 1) equations
together with the equation (2) are sufficient to solve the tri-
diagonal system by using Thomas Algorithm also called
‘Discrete Invariant Imbedding algorithm’.

3 Convergence
In this section, we discuss the convergence analysis of the
method. Writing the tri-diagonal system of equation (27)
in matrix-vector form[28], we get

DY =M (28)

where D = (ui,j) , 1 ≤ i, j ≤ N − 1 is a tri-diagonal
matrix of order N − 1, with

ui,i+1 = −
[
σAi+1 + h− hσA′i+1 +

h2Ci+1

2 +
h2σA′′i+1

2

]
ui,i =

[
σAi+1 + σAi + h− hσA′i − h2Ci

2 − h2σA′′i
2

]
ui,i−1 = − [σAi]

and M = (di) is a column vector with di =

−h
2

2 [Hi +Hi+1] , where i = 1, 2, ..., N − 1 with local
truncation error:

τi(h) =
h2

2
[C ′iyi + Ciy

′
i + y′′i −H ′i] + o(h3 (29)

we also have
DY − τ(h) =M (30)

where Y =
(
Y0, Y1, Y2, ..., YN

)t
denotes the actual so-

lution and τ(h) = (τ1(h), τ2(h), ..., τN (h))
t is the local

truncation error. From the equations (28) and (30), we
have

D
(
Y − Y

)
= τ(h) (31)

Thus, we obtained the error equation is

DE = τ(h) (32)

where E = Y − Y = (e0, e1, e2, ..., eN )
t
.

Let Yi be the sum of elements of ith row of D, then we
have

Y1 =
∑N−1
i=1 u

1,j
= σA1

−h (σA′1 − σA′2)− h2

2 (C1 + C2 + σA′′1 + σA′′2)

YN−1 =
∑N−1
j=1 uN−1,j = σAN

+h
(
1− σA′N−1

)
− h2

2

(
CN−1 + σA′′N−1

)
Yi =

∑N−1
j=1 ui,j = h

[
σA′i+1 − σA′i

]
− h2

2 [Ci+

Ci+1 + σA′′i + σA′′i+1

]
= hVi + o(h2); i = 2(1)N − 2

where Vi =
[
σA′i+1 − σA′i

]
.

Since 0 < ε << 1; for sufficiently small h the matrix
D is irreducible and mono-tone. Hence D−1 exists and
D−1 ≥ 0. Hence, from the error equation (32) we have

E = D−1τ(h) (33)

‖E‖ ≤
∥∥D−1∥∥ ‖τ(h)‖

Let uk,i be the (k, i)th elements of D−1: Since uk,i ≥ 0,
from the theory of matrices we have,

N−1∑
i=1

u
k,i
Yi = 1; k = 1, 2, ..., N − 1 (34)
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Therefore, it follows that

N−1∑
i=1

u
k,i
≤ 1

min
0≤i≤N−1

Yi
=

1

hVi0
≤ 1

h ‖Vi0‖

for some i0 lies between 1and N − 1.
Now, we define

∥∥D−1∥∥ = max
0≤i≤N−1

∑N−1
i=1

∣∣u
k,i

∣∣ and

‖τ(h)‖ = max
0≤i≤N−1

|τ(h)|.

Therefore, from the equations (29), (33) and (34), we ob-
tain

ej =
N−1∑
i=1

u
k,i
τi(h); j = 1(1)N − 1

and therefore

|ej | ≤
kh2

h |Vi0 |
; j = 1(1)N − 1 (35)

where k =
[
C′i
2 |yi|+

C
2 |y

′
i|+ 1

2 |y
′′
i | −

H′i
2

]
is constant

independent of h.
Therefore, using the definitions and equation (35),we have

‖E‖ = o(h)

This implies that the scheme (15) derived for the solution
of left layer problems is of first order convergence on uni-
form mesh.

4 Numerical illustrations
In this section, the numerical results of some test problems
are chosen.

4.1 Numerical example problems with left-
end boundary layer

To demonstrate the applicability of proposed method com-
putationally for left-end boundary layer problems, we have
considered the following one linear and one non-linear
model test problems:
Example 01 : Consider the following constant coefficient
non-homogeneous singular perturbation problem from [8]:

εy′′(x) + y′(x) = 1 + 2x; x ∈ [0, 1]
with boundary conditions y(0) = 0 and y(1) = 1.

The exact solution of this example is given by: y(x) =

x (x + 1 − 2ε) +
(2ε− 1)(1− e−x/ε)

(1− e−1/ε)
which has a bound-

ary layer at the left side of the domain near x = 0. Clearly,
the MAE presented in Table-3 for problem-1 show that the
present scheme is capable of producing uniformly conver-
gent solution in case when ε tends to zero for any fixed
value of the step size h = 1/N. The comparison in MAE
for Problem 1 with the existing methods in [16,17,18] for
various values of ε and grid point N is presented in Tables

1 and 2.
Example 02 : Consider the following non-linear singular
perturbation problem from ([11], p. 463, Eq.(9.7.1))

εy′′(x) + y′(x) + e(y(x)) = 0; x ∈ [0, 1]
with boundary conditions y(0) = 0 and y(1) = 0.

The linear problem concerned to this example is:

εy′′(x) + 2y′(x) + 2
x+1y(x) =

2
x+1

[
ln
(

2
x+1

)
− 1
]
;

x ∈ [0, 1]

The uniform valid approximation of Bender and
Orszag ([11], P. 463, Eq. (9.7.6)) is
y(x) = ln

(
2

x+1

)
− ln(2)e−2x/ε, which has a boundary

layer of thickness o(ε) near x = 0. Clearly, the MAE
presented in Table-5 for problem-2 show that the present
scheme is capable of producing uniformly convergent so-
lution in case when ε tends to zero for any fixed value of
the step size h = 1/N. The comparison in MAE for Prob-
lem 1 with the existing methods[29,17] for various values
of ε and grid point N is presented in Tables 4.

4.2 Numerical example problems with right-
end boundary layer

To demonstrate the applicability of proposed method com-
putationally for right-end boundary layer problems, we
have considered the following one linear model test prob-
lem:
Example 03 : Consider the following homogeneous sin-
gular perturbation problem from [16,17,18]:

εy′′(x)− y′(x)− (1 + ε)y(x) = 0; x ∈ [0, 1]

with boundary conditions y(0) = 1+exp(−(1+ε)/ε) and
y(1) = 1 + 1/e.
The exact solution is given by: y(x) = exp(−x) +

exp [(1 + ε) (x− 1) /ε] ,which has a boundary layer at the
right side of the domain near x = 1. Clearly, the MAE
presented in Table-8 for problem-3 show that the present
scheme is capable of producing uniformly convergent so-
lution in case when ε tends to zero for any fixed value of
the step size h = 1/N. The comparison in MAE for Prob-
lem 1 with the existing methods in [16,17,18]:for various
values of ε and grid point N is presented in Tables 6 and 7.

5 Conclusion
We have derived an exponentially fitted tri-diagonal
scheme for solving singularly perturbed two-point bound-
ary value problems with boundary layer at one end
points(left or right). Derived scheme is applied on four
standard model example problems for different values of
N = 1/h and perturbation parameter ε. Computational re-
sults are presented in tables and compared with the existing
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Table 1: Comparison of computational results (MAE) with existing results for various values of ε andN for example problem-
1.

ε = 10−4 ε = 10−8

N ↓ Mohapatra and Mohapatra and Our Result Mohapatra and Mohapatra and Our Result
Mahalik[16] Reddy[17] Mahalik[16] Reddy[17]

16 5.8414e-2 5.8414e−2 1.8746E-04 5.8591e-2 5.8591e-2 0.0000E+00
32 3.0087e-2 3.0087e−2 1.9372E-04 3.0274e-2 3.0274e-2 0.0000E+00
64 1.5169e-3 1.5169e−3 1.9687E-04 1.5389e-2 1.5389e-2 0.0000E+00
128 7.5535e-3 7.5535e−3 1.9842E-04 7.7512e-3 7.7512e-3 0.0000E+00
256 3.6920e-3 3.6920e−3 1.9920E-04 3.8923e-3 3.8923e-3 0.0000E+00
512 1.7547e-3 1.7547e−3 1.9956E-04 1.9497e-3 1.9497e-3 0.0000E+00

Table 2: Comparison of computational results(MAE) with existing results [with fitting factor(w.f.f.) and without fitting
factor(w.o.f.f.)] for various values of ε and N for example problem-1.

ε = 10−3 ε = 10−5

SOUJANYA
et.al. [18]

Our Result SOUJANYA
et.al. [18]

Our Result

N ↓ with f.f w.o. f.f with f.f w.o. f.f with f.f w.o. f.f with f.f without f.f
8 1.07e-001 15.41 1.75E-03 7.92E-03 1.09e-001 1.56(+3) 1.75E-05 8.00E-05
16 5.67e-002 4.043 1.88E-03 1.57E-02 5.85e-002 390.49 1.88E-05 1.60E-04
32 2.83e-002 1.8208 1.94E-03 3.10E-02 3.02e-002 97.60 1.94E-05 3.20E-04
64 1.34e-002 1.5446 1.97E-03 6.00E-02 1.53e-002 24.434 1.97E-05 6.39E-04
128 6.17e-003 1.1839 1.98E-03 1.13E-01 7.73e-003 6.2991 1.99E-05 1.28E-03

Table 3: Computational results in terms of Maximum absolute errors for different values of N and ε for example problem- 1
ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512
10−4 1.750E-04 1.875E-04 1.937E-04 1.969E-04 1.984E-04 1.992E-04 1.996E-04
10−6 1.788E-06 1.907E-06 1.967E-06 1.967E-06 2.027E-06 2.027E-06 2.027E-06
10−8 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
10−10 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
10−15 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
10−25 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
10−30 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

Table 4: Comparison of computational results(MAE) with existing results for various values of ε andN for example problem-
2.

ε = 10−4 ε = 10−8

N ↓ Reddy and Mohapatra and Our Result Reddy and Mohapatra and Our Result
Mohapatra[29] Reddy[17] Mohapatra[29] Reddy[17]

16 1.962e-2 1.9628e-2 2.7067E-04 1.962e-2 1.9623e-2 2.7067E-04
32 1.031e-2 1.0315e-2 7.4089E-05 1.031e-2 1.0311e-2 7.4089E-05
64 5.284e-3 5.2847e-3 1.9491E-05 5.284e-3 5.2842e-3 1.9491E-05
128 2.675e-3 2.6759e-3 5.0664E-06 2.675e-3 2.6755e-3 5.0664E-06
256 1.344e-3 1.3444e-3 1.6689E-06 1.344e-3 1.3440e-3 1.6689E-06
512 6.754e-4 6.7549e-4 2.3842E-07 6.754e-4 6.7547e-4 2.3842E-07
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Table 5: Computational results in terms of Maximum absolute errors for different values of N and ε for example problem- 2
ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512
10−4 9.033E-04 2.707E-04 7.409E-05 1.949E-05 5.066E-06 1.669E-06 2.384E-07
10−6 9.033E-04 2.707E-04 7.409E-05 1.949E-05 5.066E-06 1.669E-06 2.384E-07
10−8 9.033E-04 2.707E-04 7.409E-05 1.949E-05 5.066E-06 1.669E-06 2.384E-07
10−10 9.033E-04 2.707E-04 7.409E-05 1.949E-05 5.066E-06 1.669E-06 2.384E-07
10−15 9.033E-04 2.707E-04 7.409E-05 1.949E-05 5.066E-06 1.669E-06 2.384E-07
10−25 9.033E-04 2.707E-04 7.409E-05 1.949E-05 5.066E-06 1.669E-06 2.384E-07
10−30 9.033E-04 2.707E-04 7.409E-05 1.949E-05 5.066E-06 1.669E-06 2.384E-07

Table 6: Comparison of computational results (MAE) with existing results for various values of ε andN for example problem-
3.

ε = 10−4 ε = 10−8

N ↓ Mohapatra and Mohapatra and Our Result Mohapatra and Mohapatra and Our Result
Mahalik[16] Reddy[17] Mahalik[16] Reddy[17]

16 1.1143e-2 1.1143e-2 1.5593E-04 1.1141e-2 1.1141e-2 1.1960E-04
32 5.6345e-3 5.6345e-2 6.6429E-05 5.6343e-3 5.6343e-2 2.9892E-05
64 2.8197e-3 2.8197e-3 4.5240E-05 2.8192e-3 2.8192e-3 7.5400E-06
128 1.3958e-3 1.3958e-3 3.8445E-05 1.3955e-3 1.3955e-3 1.6689E-06
256 6.8346e-4 6.8346e-4 3.9727E-05 6.8342e-4 6.8342e-4 5.3644E-07
512 3.2758e-4 3.2758e-4 4.4465E-05 3.2754e-4 3.2754e-4 3.2783E-07

Table 7: Comparison of computational results(MAE) with existing results [ with fitting factor(w.f.f.) and without fitting
factor(w.o.f.f.)] for various values of ε and N for example problem-3.

ε = 10−3 ε = 10−5

SOUJANYA
et.al.[18]

Our Result SOUJANYA
et.al.[18]

Our Result

N ↓ with f.f w.o. f.f with f.f w.o. f.f with f.f w.o. f.f with f.f without f.f
8 2.02e-02 1.23e+00 8.41E-04 6.97E-03 2.06e-02 1.39e+00 4.79E-04 4.62E-04
16 1.06e-02 1.04e+00 4.87E-04 1.51E-02 1.10e-02 1.42e+00 1.23E-04 1.19E-04
32 5.27e-03 8.67e-01 3.97E-04 3.05E-02 5.63e-03 1.42e+00 3.35E-05 2.85E-04
64 2.48e-03 7.61e-01 3.74E-04 5.97E-02 2.84e-03 1.36e+00 1.17E-05 6.27E-04
128 1.06e-03 5.89e-01 3.68E-04 1.13E-01 1.42e-03 1.20e+00 4.71E-06 1.27E-03

Table 8: Computational results in terms of Maximum absolute errors for different values of N and ε for example problem- 3
ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512
10−4 5.122E-04 1.559E-04 6.643E-05 4.524E-05 3.845E-05 3.973E-05 4.447E-05
10−6 4.763E-04 1.200E-04 2.989E-05 7.540E-06 1.669E-06 5.364E-07 3.278E-07
10−8 4.758E-04 1.196E-04 2.989E-05 7.540E-06 1.669E-06 5.364E-07 3.278E-07
10−10 4.758E-04 1.196E-04 2.989E-05 7.540E-06 1.669E-06 5.364E-07 3.278E-07
10−15 4.758E-04 1.196E-04 2.989E-05 7.540E-06 1.669E-06 5.364E-07 3.278E-07
10−25 4.758E-04 1.196E-04 2.989E-05 7.540E-06 1.669E-06 5.364E-07 3.278E-07
10−30 4.758E-04 1.196E-04 2.989E-05 7.540E-06 1.669E-06 5.364E-07 3.278E-07
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results. Comparisons show that the proposed scheme is bet-
ter than the schemes presented in the articles[16,17,29,18].
One can easily observed from these Tables:2,3,6 and 9 that
the presented fitted scheme is capable of producing highly
accurate uniformly convergent solution for any fixed value
of step size N = 1/h > ε, when perturbation parameter
ε → 0. The main feature of the proposed fitted scheme is
that it does not depends on the very fine mess size.
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