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Abstract: - Software defined networking (SDN) separates the control and the data planes. This separation 

brings flexibility to the network. But the decoupling has some drawbacks such as the controller placement 
problem (CPP). Controller placement is a crucial task which affects the overall networks’ performance. This 
paper proposes a novel controller placement model that is based on petri-nets to place the SDN’s controllers. The 
proposed model is called controller placement using petri-nets for SDNs (CPPNSDN). CPPNSDN  aims to reduce 
the average propagation latency among switches and their associated controllers. CPPNSDN  divides the network 
into sub-networks. Each sub-network is governed by a controller. Experiments were conducted on the 
Internet2/OS3E topology to evaluate the performance of CPPNSDN. Experiments show that CPPNSDN  reduces the 
average latency significantly compared to two reference models. The first reference model is the Modified 
Density Peaks Clustering (MDPC) and the Optimized Kmeans model. In terms of the overall average latency, the 
CPPNSDN has shown promising results as it outperformed the MDPC and optimized Kmeans reference models by 
7% and 17% respectively. Confidence Interval (CI) used was 90%.  This is an ongoing work and the results are 
promising for more future investigation. 
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1  Introduction 

 
Software-defined networking (SDN) design 

started by having one centralized controller that 
manages the entire network. Single controller based 
architectures are usually appropriate for small LAN 
networks. WANs cover larger areas with different 
propagation delays and hence single controller 
architectures are not adequate for WANs due to 
scalability constraints. For that reason multi-
controllers based architectures are suitable for 
WANs where the network is divided into sub-
networks. Each sub-network is assigned a single 
controller. 

Petri-net modeling is one of the most powerful 
modeling tools that facilitates modeling both 
mathematically and graphically for various network 
designs  [1]. This paper proposes a novel petri-net 
framework that is mathematically proven to be valid 
for SDN architectures. The proposed model is called 
controller placement using petri-nets for SDN 
networks (CPPNSDN). CPPNSDN adapts towards 
different types of controllers in a CPP. Typically, a 
controller could be a master controller or a slave 
controller. CPPNSDN uses a mathematical model that 
is based on petri-net frameworks to define different 
SDN network components. CPPNSDN is evaluated 
through computing the network’s overall average 

and worse-case propagation delays. These values 
are compared to two reference models namely 
modified density peaks clustering (MDPC) and 
optimized Kmeans. In this work, the controller 
propagation latency is defined as the time that an 
incoming request takes at the ingress switch until 
the new data plane rules are established in the 
appropriate switch. It is assumed that the switches 
are responsible for the data forwarding. Switches 
forward various data based on flow rules. Switches 
request flow rules from the associated controller. 
Since the switches and their associated controllers 
have different distances, various propagation delays 
are observed for different flow rules. Since the 
propagation delays drastically vary among different 
controllers based on their physical locations, there is 
a desperate need to carefully place the controllers. 
Controllers’ placement should aim to minimize the 
overall average propagation latencies.  

The paper is organized as follows: Section  2  has 
the related work. Section  3 has the basic idea to 
model SDNs using the petri-net concept. Section  4  
has the Modified density peaks clustering (MDPC) 
and optimized Kmeans reference models. Section  5  
has the controller placement using petri-nets for 
SDNs (CPPNSDN) proposed model. Section  6  has 
the experimental results. Section  7 has the 
conclusion and the future work. 
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2  Related Work 
 

This section has a short literature survey about 
different modelling techniques that are used for the 
controller placement problem (CPP). CPP was first 
discussed by Heller et al.  [2] where the CPP was 
modelled as a K-mean problem. Since the CPP has 
an influence on the propagation delays, authors 
defined a set of metrics that are considered as the 
base of the research in the CPP. Guo et al.  [3] 
studied both network latency and network reliability 
through a solution that is based on greedy algorithm. 

The proposed solution proved to outperform the 
reliability of similar approaches. Bari et al.  [4] 
modelled the CPP as a backpack problem using 
greedy-knapsack model. The cost function used was 
the reciprocal of the cost path among the controllers 
and their associated switches. Loops were used as 
cost functions to find the controllers’ coordinates. 
Zhang et al.  [5] proposed a used the minimum-cut 
algorithm to model the CPP. The minimum-cut 
algorithm breaks the network into a set of clusters. 
Each subcluster contains two or more nodes. The 
number of clusters used is the number of controllers. 
Each subcluster is considered as the controller 
collision domain. MacQueen et al.  [6] modelled the 
controller placement problem using integer 
programming models. Authors used the percentage 
of control path loss as the performance metric. Jalili 
et al.  [7] modelled the CPP problem as a multi-
objective programming problem. The model uses a 
compromising technique with different performance 
constraints where the network was sub-divided into 
clusters.  

Aly et al.  [8] worked on applying petri-net 
frameworks to improve the SDN fault tolerance. 
The approach used was successfully proven to be 
sound and gave promising result to increase the 
reliability of the controllers in SDNs when 
comparing the results to reference models. Using 
petri-nets to improve fault tolerance of controllers in 
SDN environment was promising and encouraging. 
Aly et al.  [9] [10]  proposed a feedback control 
theoretic techniques to implement fault tolerance for 
controllers. The work gave promising results, but 
the feedback control theoretic techniques have put 
extra burden on the controllers. The ECFT  [11] 
introduced load balancing at controller’s failure, the 
proposed ECFT model focuses on balancing the 
load among other neighboring controllers. The 
proposed ECFT uses only delay among switches 
and their associated controllers in order to compute 
the load for each neighbor controller and sort the 
slave controllers accordingly 

Qi et al.  [1] proposed a model called modified 
density peaks clustering (MDPC). MDPC uses the 
density of switches to partition a large network into 
several single controller sub-networks. Due to the 
spacing between the controllers and their associated 
switches, a large variety of propagation latencies are 
observed during the various requests of flow rules. 
Authors observed a correlation between the 
placement of the controller and the propagation 
delay between the controllers and their associated 
switches. Different values for the propagation 
delays have an important influence on the overall 
network performance. 

 
3  Modelling using Petri-Nets 
 

The section starts with a brief background about 
petri-nets and their different architectures to model 
the SDN networks. 

 
3.1 Background about Petri-nets 

 
In recent years, many network systems have been 

modeled using petri-nets. Petri-nets provide 
graphical representations for distributed systems 
 [12]. For that reason petri-nets are used to model 
systems in which synchronization, communication 
and resource sharing are significant. Petri-nets have 
computer tools that support various design, 
simulation, and performance analysis of petri-net 
models  [13]. Petri-nets are scalable and used to 
design and implement various systems without 
considering the size of these systems. Petri-nets 
have the ability to provide accurate demonstration 
of the behavior and the structure of modeling 
dynamic and transitional systems. They are 
particularly attractive for capturing features such as 
concurrency, asynchronous operation, 
synchronization, and flow of control. Once a petri-
net model of a system is created, it can be utilized in 
a variety of ways  [1].  

Petri-nets are directed graphs that are mainly 
composed of two elements. The first element is the 
transition element Transition elements are 
represented graphically by rectangles. The second 
element is the place element. Place elements are 
represented graphically by circles. A place element 
could be connected to one or more transition 
elements, and a transition element could also be 
connected to one or more place elements. Fig. 1 
shows the place element when it is connected to one 
transition element. As shown in Fig. 1, the solid 
circles are tokens. Tokens represent the activities 
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performed by the transition elements. Activities 
reside in places  [14]. 

An empty place element that is connected to a 
transition element could disable a transition element 
from being executed. A transition element is said to 
be enabled if and only if there is no empty place 
elements connected to it. A transition element could 
“fire” after being enabled. The result of the firing 
process could be through the removal of the tokens 
from each of the transitions’ input. This process 
could result in creating tokens in each of the output 
places. Arcs are labeled with the positive integers 
called weights. Each place element contains 
nonnegative tokens. The distribution of token 
elements over the places represents a configuration 
of the net called the marking  [15]. Petri-nets 
modelling was successfully used in the field of SDN 
fault tolerance  [8]. 

 
Place

Arc

Token

P2 P3 Pn

Transition
t1 t2 t3 tn

P1

 
Fig. 1: Petri-net concept 

A transition element is able to fire a token if each 
input place of the transition contains at least one 
token and the number of tokens is not less than the 
weight of the arc from the place to the transition. 
Firing occurs while the transition is enabled. It 
depends on whether the event actually takes place. 

 
3.2 Modelling SDN Architectures using 

Petri-Nets 
 
This section discusses the modeling of different 

SDN architectures using petri-nets. Three 
architectures are presented: (1) Single SDN 
controller, (2) multiple master SDN controller, and 
(3) hierarchical SDN controller architecture models. 
 
3.2.1 Single SDN Controller Architecture 

 
This section has the single controller architecture 

using petri-net components as shown in Fig. 2. The 
model has a single master controller where a set of 
switches are connected to it.  Computation of the 
forwarding path is performed at the master 
controller. The computation depends on the flow 
request. Moreover, the master controller updates the 
switches by sending entries to the flow tables. 
Subsequently, packets of the incoming flow are 
forwarded based on the values of computed 
forwarding decisions. 

 

Switch

Controller

P1

t5

t6

P2

P3

P4

t1

t2

t3

t4

 
Fig. 2: Single SDN Controller Model 

 
3.2.2 Multiple Master SDN controller Model 
 
Multiple master SDN model is an example of a 
distributed architecture. This architecture consists of 
a set of master-controllers that communicate 
through message passing technique as shown in Fig. 
3. In this model, switches are connected directly to 
their associated master-controllers. 
 

Master-controller
Switch

 
Fig. 3: Distributed SDN Controllers Model 

 

3.2.3 Hierarchical SDN Controller Model 
 

The hierarchical SDN controller architecture is a 
centralized model where there is more than one 
level of nodes. The model is composed of a master-
controller and a set of slave-controllers that are 
connected to the master-controller. Switches are 
connected to the slave controllers as shown in Fig. 
4. Network components whether they are switches 
or controllers are represented as circles. 
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Fig. 4: Hierarchical SDN Controller Model 
  

4  Reference Models 
 
This section has the reference models used in this 
paper. The first subsection discusses the optimized 
K-mean algorithm. 

 
4.1 Optimized K-median Algorithm 

 
The first reference model is described by Wang 

et al.  [17].  The model is called optimized K-median 
algorithm. The optimized K-median algorithm 
subdivides the network into group of clusters. 
Authors in  [17] have divided the longest path in 
each partition to reduce the propagation delays for 
each sub-network. The optimized K-median 
experimental results show that the worst-case 
latency is given better results when compared to 
classical K-median by MacQueen et al.  [6]. Wang et 
al.  [17] measured the distance between the two 
nodes using Euclidean method rather than the 
physical link distance used in the classical K-
median algorithm.  

 
4.2 Modified Density Peaks Clustering 

(MDPC) 
 

The second reference model used in this paper is 
called the modified density peaks clustering 
(MDPC) by Qi et al.  [1]. MDPC is built on top of 
the classical density peaks clustering technique.  
The classical density peaks clustering technique is 
discussed by Rodriguez et al.  [5]. It relies on two 
assumptions. The first assumption states that the 
SDN clusters’ centres have relatively high local 
densities compared to non-centers. The second 

assumption states that the cluster centers are located 
in large dense compared to other non-centric points.  

MDPC model clusters the network components 
into multiple areas. Switches are assumed to be 
connected to their associated controllers. MDPC 
uses metrics such as the average degree parameter 
and closeness centrality parameter to ensure 
controllers’ centricity. In the MDPC model, the 
SDN is denoted by the undirected graph γ = (υ, ε) 
 [1], where υ represents the set of switches, and  ε 
represents the set of physical links. η= |υ| is the 
number of the switches, κ denotes the number of 
controllers. ρ (υi; εi) denotes cluster network. υi 
represents the set of switches in a sub-network i, 
while εi denotes the set of physical links in sub-
network i. MDPC uses the density peak clustering 
based density. The density peak clustering depends 
on giving two quantities for each point, (1) local 
density and (2) distance to high local density point. 
MDPC assumes that the cluster centres density is 
higher than non-centric locations. MDPC takes 
topology Φ = (υ, ε) as input topology. MDPC 
calculates the distance among all inputs to be able to 
compute the local density. MDPC then calculates 
the largest distance. According to the graph 
produced MDPC selects clusters’ centres; which 
have the largest density and distance. 

 
5  Controller Placement using Petri-

Nets for SDNs (CPPNSDN) 
 
This section has the proposed model which is 

referred to in this paper as controller placement 
using petri-nets for SDNs (CPPNSDN). The first 
subsection introduces important terms that are going 
to be used while describing the CPPNSDN. The 
following subsections discuss the theorem of 
soundness then a proof is provided to show the 
conditions under which the CPPNSDN framework is 
considered to be sound. 

 
5.1 Petri-net Terms & Definitions 
 

This subsection has the terms and definitions that 
are used throughout the CPPNSDN description in this 
paper. Each network component is assumed to have 
a set of capabilities. CPPNSDN validate the 
soundness of each network component and verify 
the model mathematically. 

CPPNSDN is described by the tuple 〈ℵ, Ψ, Θ,  Φ〉 
where ℵ is the set of nodes in the network, Ψ is the 
set of the network components’ capabilities. The 
capabilities are defined as Ψ={Ψ1, Ψ2, Ψ3, ... Ψω} 
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where ω is the number of capabilities, Θ is defined 
as the network task coverage. The task coverage is 
the capability of the system to comply with the 
requested requirements of a given task. The 
topology used is defined by the symbol Φ.  

Assume that there are three different types of 
capabilities for the network elements such as 
capacity, propagation delay, packet loss, etc. The 
task coverage is computed through the task 
coverage matrix. 

 
Ψ

ℵ �
1 1 0 
0 1 1
0 0 1

� 

 
The task coverage matrix shows the cross 

product of ℵ and Ψ. The cross product tests if the 
node covers the task specified parameter by setting 
the boolean value of the parameter with either 1 
(satisfied) or 0 (unsatisfied). 

For example for if the Internet2 OS3E topology 
 [19] is used. The Internet2 OS3E topology has 34 
nodes and 42 links as shown in Fig. 5. Each node is 
assumed to have a set of different capabilities. The 
matrix in this example has 30 rows. Assuming that 
the nodes have three capabilities (capacity, response 
time, packet loss). In that example, the matrix has 
three columns. The first of the matrix [1 1 0] 
indicates that the first node (switch) has high 
capacity and low propagation delay, but the packet 
loss is high. Similarly this strategy holds for the 
remaining 33 nodes of the topology Φ. 
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Fig. 5: Internet2 OS3E topology 

 
By utilizing the concepts of petri-nets discussed 

above to the SDN components, for CPPNSDN 
framework, the places are considered to be either 
controllers (master and/or slave), or switches. 
Transitions are assumed to be the process of 
transmitting data from one node to the other. Every 
transition has a delay that depends on the 
communication parameters and the latency between 
the input and the output nodes. 

5.2 Soundness Theorem 
 
According to the proposed model, CPPNSDN, an 

SDN is considered to be sound if and only if each 
network component has its task coverage satisfied. 
CPPNSDN defines the set of controllers 
mathematically as Χ ={χ1, χ2,... χk). The cross 
product of the set of controllers in the SDN is 
defined by Ω. Therefore, Ω = Χ × Χ.  Χ is 
considered to be sound if and only if ∃Ω = Χ × Χ, 
such that Ω≠ φ. Χ is distributed in an Internet2 
OS3E topology Φ. As seen in Fig. 5 there are not 
any unreachable controllers. CPPNSDN could 
mathematically represent that the controllers are not 
unreachable as ∀χi, χj, χi ∈Ω and χj∈Ω, ∃Ω such 
that χi ∈ [χj〉 and χj ∈[χi〉. This means that there is 
not any isolated nodes in the network and all nodes 
are interconnected. If ∃Ω such that χj∈ Ω and Ω ≠ 
φ, then ∃χi such that Ψ(χi) is equal to Ψ(χj) and 
Ψ(χi) belongs to Θ. 

 
5.3 Proof of the Soundness Theorem 

 
To proof the “if and only if” soundness theorem, 

the proof is divided into two halves. The first half is 
to proof the theorem forward and the second half is 
to proof the theorem backwards. The first half of the 
proof states that if Ω is sound, then the three 
necessary conditions should apply. The conditions 
are: 

 
Item 1: ∃Ω = Χ × Χ such that Ω≠ φ.  
 
Item 2: ∀χi, χj, χi ∈Ω, χj∈Ω, ∃Ω such that χi ∈ [χj〉 
and χj ∈[χi〉, That implies that there are no isolated 
controllers and hence all controllers are connected. 
 
Item 3: If ∃Ω such that χj∈ Ω and Ω ≠ φ, then ∃χi 
such that Ψ(χi) is equal to Ψ(χj) and Ψ(χi) ∈Θ. 

 
Given that Ω is sound, therefore, any network 

component can send any other network component 
directly or indirectly. 

 
∴ χi ∈ [χj 〉 and χj ∈[χi〉  
∵χi ∈ [χj〉 and χj ∈[χi〉 
 
∃Ω such that Ω = Χ × Χ and Ω≠ φ. For the SDN 

to be sound then if χi=φ, then ∃Θ such that Ψ(χi)= 
Ψ(χj). If ∃Ω such that cj∈S and S=φ, then ∃χi such 
that Ψ(χi)= Ψ(χj) and Ψ(χi) ∈Θ is satisfied. ∴if Ω 
is sound, then the three conditions hold.  
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The second half of the proof seeks to proof the 
backward condition. That is if the three conditions 
are valid and satisfied then SDN is sound. Since 
∃Ω=Χ × Χ  such that Ω≠ φ, therefore χi ∈ [χj〉 , 
since χi ∈ [χj〉 and χj ∈[χi〉 and since if ∃Ω such that 
χj∈Ω and Ω = φ, then ∃χi such that Ψ(χi)= Ψ(χj) 
and Ψ(χi) ∈Θ. Therefore, SDN is always 
functioning and hence the SDN is considered to be 
sound. 

At this point, the proof has been completed since 
the two halves of the proof were proven 
successfully. The mathematical prove discussed 
above is one of the important strengths of using 
petri-net in modelling various systems. CPPNSDN 
has the ability to validate conditions mathematically 
and prove it to be correct in both directions. 

 
5.4 CPPNSDN Algorithm 

 
This section discusses the CPPNSDN algorithm. 

CPPNSDN algorithm is explained in Algorithm  5.1 
CPPNSDN uses the overall GPV to deploy the 
controller’s placement. The CPPNSDN algorithm 
uses capacity, propagation delay, and packet loss to 
compute the GlobalPerformanceValue (GPV). 
Switches are assumed to be assigned to the 
controller that has the highest GPV. 

 
 
Algorithm  5.1: Controller Placement using Petri-

Nets for SDNs (CPPNSDN) 

1:  Input topology Φ = (υ, ε). 
2:  Compute capability matrix for all 

controllers based on their 
capacity, average propagation delay 
to their associated switches, and 
percentage of packet loss. 

3:  Select switch nodes with high 
average capability using petri-net 
mathematical model to form a new 

sub topology Φ’ = (υ’, ε’). 
4:  Calculate local density for each 

switch node i in Φ’. 
5:  Plot decision graph of Φ’ to select 

sub-cluster centers where the 

center sets Vcenter = {υ1; υ2; υk}. 
6:  Assign all switches to the nearest 

cluster center to the associated 
controller. 

7:  Each cluster center along with the 

switch nodes form a sub-network Φi. 

8:  The sub-network sets Φsub = {Φ1; 
Φ2; …; Φk} 

9:  For each sub-network Φi, find the 
largest closeness centrality point 

as the new center. Update υcenter. 

10:  Reassign all switch nodes in Φ to 
the nearest cluster center, and 

update υsub. 
11:  Repeat steps 9 and 10 until each 

sub-network is no change. 
12:  Output result. 

 
 

 

6  Experimental Results 
 
This section has the experimental results of the 

work conducted using the CPPNSDN. CPPNSDN is 
compared to the reference models. Internet2 OS3E 
topology is used during the evaluation process. The 
topology consists of 34 nodes and 42 links as shown 
in Fig. 6. The propagation delay among two 
switches is computed by dividing the geographical 
distance by 66.66% of the speed of light  [20]. To 
verify the strength of the CPPNSDN, CPPNSDN is 
compared to two reference models. The optimized 
Kmeans and the MDPC reference models. Fig. 6, Fig. 
7, and Fig. 8  show the Internet2 OS3E network 
which is partitioned with k=2, 3, and 4 respectively 
by the CPPNSDN. The arrows in the figures indicate 
the locations of the controllers. Fig. 9 and Fig. 10 
have the average latency in the network on selected 
controllers for the CPPNSDN when compared to the 
optimized Kmeans.  
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Fig. 6: Network Partition (k=2) 
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Fig. 7: Network Partition (k=3) 

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2020.19.65 Wael Hosny Fouad Aly

E-ISSN: 2224-2880 603 Volume 19, 2020



1

2

3

7

4

5

8

9

10

6
14

13

12
11

20

19

18

15
16

17

31

22

21

23

25

24

26

27

30

29

28

34

33

32

 
Fig. 8: Network Partition (k=4) 

 
Fig. 9: Average Latency 

 
Fig. 10: Worst-case Latency 

Results are very promising since CPPNSDN has 
shown significant improvement over two reference 
models.  CPPNSDN has improved by 17% over the 
optimized Kmeans reference model and improved by 
17% over the MDPC reference model. In the 
CPPNSDN, the points with the maximum GPV are 
selected as the initialization to split the subnetwork 
into partitions. Because the CPPNSDN splits the 
maximum distance each time to subnet, the 
algorithm has good performance in terms of worst-
case latency. The experiments were replicated three 
times with 90% confidence interval (CI). Standard 
deviation was computed as well. 

 
 

 
7  Conclusion and Future Work 
 

Controller placement problem (CPP) is an 
important problem when it comes to SDNs. CPP 
affects directly the overall networks’ latency and 
performance. In this paper, we propose a new 
controller placement model that is based on the 
concept of petri-nets. Petri-nets strengths are in its 
generic modeling techniques. The proposed model 
is called Controller Placement using Petri-Nets for 
SDNs (CPPNSDN). CPPNSDN models the controller 
placement problem to minimize the average 
propagation latency among switches and their 
associated controllers. CPPNSDN divides the network 
into sub-networks. Each sub-networks is governed 
through a controller. Experiments were conducted 
on the Internet2 OS3E topology to evaluate the 
performance of CPPNSDN. Experimental results 
show that CPPNSDN reduces the average latency 
significantly. The average latency can be reduced 
when compared to reference models. Reference 
models used in this paper are Modified Density 
Peaks Clustering (MDPC) and Optimized Kmeans. In 
terms of the average overall latency, the CPPNSDN 
has shown very promising results as it outperformed 
the optimized mean by 7% and also CPPNSDN 
outperformed the MDPC reference model by 17%. 

Experiments were repeated three times with 
confidence interval of 90%. Standard deviation was 
computed. This is an ongoing research, and different 
metrics could be used to measure the goodput of the 
proposed model such as the controller cost and the 
calculation cost. On the other hand, another 
direction of the future work is by adding other use 
cases such as failover scenarios, and comparing the 
results with the reference models. 
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