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1 Introduction
Group theoretic method introduced by Sophus
Lie, is a useful technique to solve the differen-
tial equations in different branches of engineering,
economics, natural and applied sciences. This
method is based on group of transformations,
called the Lie point symmetry groups of transfor-
mations of differential equations [1, 2, 3, 4]. These
groups of transformations depend upon continu-
ous parameter(s) and are known as continuous
groups. Lie, developed an systematic way to de-
termine these symmetry groups associated with
differential equations [2, 4, 5]. The symmetry
group of a differential equation can be used to in-
vestigate the differential equation in various ways
such as to solve or decrease the order of the given
differential equation [1, 6], to generate new so-
lutions from old ones [3, 6], to linearize a differ-
ential equation (if possible), [7, 8, 9] and to find
conserved quantities [6] etc.
Apart from continuous transformations, there ex-
ist other type of symmetries which do not depend
upon the parameter(s). However, they have great
importance. Discrete symmetry transformations
are one of them [1, 10]. Following are some ap-
plications of these symmetries in the area of dif-
ferential equations

• to improve the convergence of the numerical
scheme of partial differential equations [11],

• to obtain the particular solutions of the non-
linear ordinary differential equations [12]

• to derive new exact solutions from the known
solutions [13] and

• to determine the type of bifurcations in dy-
namical systems [14].

The technique developed by Hydon [1] gives all
discrete point symmetries of the differential equa-
tions. It is based on the Lie algebra, `, of Lie point
symmetry generators of a differential equation.

1.1 Discrete Symmetries of Ordinary
Differential Equations

Ordinary differential equations (ODE) of the
form

u(n) = G(z, u, u̇, ..., u(n−1)), n ≥ 2, (1)

always have a finite dimensional Lie algebra ` of
point symmetry generators (if it exists) with basis

Ki = ξi(z, u)∂z + ηi(z, u)∂u, i = 1, 2...N,

where N=dim(`).
The method developed by Hydon categorizes con-
ceivable automorphisms of `, factoring out those
which are equivalent under the action of any sym-
metry in Lie group generated by `. The change
in basis vectors, Xi, is

Xi = bliXl.

As the structure constants do change under the
trasformation, they follow the transformation law
given below

cnlmb
l
ib
m
j = ckijb

n
k , i, j, k, l,m, n = 1, · · · , r . (2)
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These constraints provide a real-valued matrix
B = (bli) that corresponds to the automorphism.
Then it will be possible to attain the most general
realization of the inequivalent automorphism as
a point transformation. Lastly replacing these
transformations into symmetry condition

û(n) = G(ẑ, û, ..., û(n−1)), (3)

one can get a complete list of discrete symmetry
groups of the ODEs (2) [15]. Following example
elaborates the technique:

Example
Consider the following third order ODE [16]

...
u + uü− u̇2 = 0, (4)

which has the following two dimensional Lie al-
gebra

K1 = ∂z, K2 = z∂z + u∂u. (5)

This Lie algebra is non-abelian and its only
nonzero structure constant is

c112 = 1.

The elements of the matrix B satisfy the following
system of nonlinear constraints

cnlmb
l
ib
m
j = ckijb

n
k , 1 ≤ i < j ≤ N, 1 ≤ n ≤ N.

(6)
For n = 2, the above constraints become

ckijb
2
k = 0, 1 ≤ i < j ≤ 2.

From above, we get only one value by setting
(i, j) = (1, 2) which is

b21 = 0.

Similarly for n = 1 in (6), we have

b11 = b11b
2
2 − b21b12.

As b21 = 0, so above equation becomes

b22 = 1, b11 6= 0.

Now the non-singular matrix B becomes

B =

[
b11 0
b12 1

]
.

The matrices corresponding to the automor-
phisms generated by K1 and K2 given in (6) are

A(1, ε) =

[
1 0
−ε 1

]
, A(2, ε) =

[
eε 0
0 1

]
.

For further simplification of B, premultiply it by

A(1,
b12
b11

) to replace b12 by zero and premultiply B

by A(2,− ln
∣∣b11∣∣) to replace b11 by α, so now

B =

[
α 0
0 1

]
, α = ±1.

We have to solve the determining equations[
ẑz ûz

zẑz + uẑu zûz + uûu

]
= B

[
1 0
ẑ û

]
=

[
α 0
ẑ û

]
.

The general solution of the determining equations
is

ẑ = αz, û = cu, (7)

where c is the constant of integration.
From (7),

·
û =

c

α
u̇,

··
û =

c

α2
ü, α2 = 1,

···
û =

c

α

...
u .

Putting above results into the symmetry condi-
tion (3), we find that either

(ẑ, û) = (z, u),

or
(ẑ, û) = (−z,−u).

Thus the group of discrete symmetries of (4) is
generated by

υ1 : (z, u) 7→ (−z,−u),

which is isomorphic to Z2.

2 Third Order Invariant Equations
with Discrete Symmetry
Transformations

In this section, a complete list of the discrete sym-
metry transformations for third order ordinary
differential equations is provided. Considering
the Lie algebra and third order invariant differen-
tial equations, the discrete symmetry groups are
obtained. It is known that third order ODEs may
admit one, two, three, four, six and seven dimen-
sional algebras [17]. Here each class has been sep-
arately considered to get the discrete symmetries
and the results are given in the form of tables. In
these tables f is an arbitrary function and C is an
arbitrary constant.
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2.1 One Dimensional Algebra
The only possible one-dimensional Lie algebra
[17], corresponding invariant ODE and the
respective discrete symmetry group are given in
Table 1.

2.2 Two Dimensional Algebra
In Table 2, two dimensional algebras, invariant
equations [17, 18, 19] and the obtained discrete
symmetries are presented. where c is the con-
stant of integration.

2.3 Three dimensional Algebra
Table 3 displays the discrete symmetries of those
third order invariant equations which remain
invariant under three dimensional algebra.

2.4 Four Dimensional Algebra
Table 4 shows the discrete symmetries corre-
sponding to third order ODEs, admitting four
dimensional algebra.

2.5 Six Dimensional Algebra
There are two distinct six dimensional algebras
that third order differential equations may admit
[17]. Discrete symmetries corresponding in both
cases are given in Table 5.

2.6 Seven Dimensional Algebra
Following table shows the discrete symmetries
for the maximal dimensional Lie algebra that
a third order ordinary differential equation can
obtain.

3 Examples
1. Consider the following ODE

...
u =

ü2

u̇
+

ü

z
+

u̇

z
,

which is invariant under the following two di-
mensional Lie algebra ∂u, u∂u. From the Ta-
ble 2, without calculations one can find that
its discrete symmetry is (ẑ, û) = (z, −u ).

2. The third-order Riccati Hierarchy differential
equation [20]

...
u + 4uü + 3u̇2 + 6u̇u2 + u4 = 0,

is invariant under the following Lie point
symmetry generator

K1 = ∂z, K2 = z∂z − u∂u,

and its discrete symmetry can be found from
Table 2, which is

(ẑ, û) = (−z ,−u).

3. Consider another ODE, given in [21]

...
u = ü− (ü)2. (8)

which is invariant under the following three
dimensional Lie algebra

K1 = ∂z, K2 = ∂u, K3 = z∂u.

By using Table 3, we have found that discrete
symmetry of above ODE is

(ẑ, û) = (−z, 1

2
z2 − u). (9)

3.1 Solutions of some ODEs using discrete
symmetry groups

1. Consider the Blasius equation

...
u +

1

2
uü = 0, (10)

which is invariant under two dimensional Lie
algebra ∂z, z∂z − u∂u and its only discrete
symmetry is (−z, u). Then u = f(−z) or
u = −z is the solution of (10).

2. Consider the following ODE

...
u =

3

2

ü2

u̇
, (11)

then from Table 5, it has found that ( 1
z , u)

and ( −z , u) are discrete symmetries of above
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Table 1:

Algebra Invariant Equation Discrete Transformations
L1 ∂z

...
u = f( u, u̇, ü) υ1 : (z, u) 7→ (b11z, u), b11 6= 0

Table 2:

Algebra
Invariant
Equation

Discrete Transformations

LI2,1 ∂z, ∂u
...
u = f(u̇, ü) υ1 : (z, u) 7→ (b11z +b12u, b

2
1z +b22u), b11b

2
2 − b21b12 6= 0.

LII2,1 ∂u, z∂u
...
u = f(z, ü) υ1 : (z, u) 7→ ( b

1
2−b11z
b21z −b22

, b
2
1b

1
2−b11b22

b21 z −b22
u), b11b

2
2 − b21b12 6= 0.

LI2,2 ∂u, z∂z + u∂u
...
u = ü2 f(u̇, zü) υ1 : ( z, u) 7→ (cz , αu + zF (u)), α = ±1, F (0) = 0.

LII2,2 ∂u, u∂u
...
u = u̇ f(z, ü/u̇) υ1 : (z, u) 7→ (z,−u).

∂z, z∂z − u∂u
...
u = f(u, u̇, ü) υ1 : (z, u) 7→ (αz, cu), α = ±1.

ODE. The solutions of ODE (11) that are
invariant under these transformations will be
of the form

u = f1(
1

z
) and u = f2(−z ).

By simply taking f1(
1
z ) = 1

z and f2(−z )

= −z, then u = 1
z and u = −z are the so-

lutions of (11), which have been obtained by
using its discrete symmetry transformations.

3. The discrete symmetry group of the ODE (8)
is given in (9). Thus the solution of (8) in-
variant under this discrete transformation is
of the form

1

2
z2 − u =f(−z ).

Thus it can be easily verify that

u =
1

2
z2 + z ,

is the solution of ODE (8).

These examples illustrate that discrete symme-
try transformations can be helpful to generate
some new solutions of the ordinary differential
equations.

4 Conclusion
In this article, we have obtained discrete symme-
try transformations of third order ordinary dif-
ferential equations by using their Lie algebras.
During the computations, it was observed that
discrete symmetries of ordinary differential equa-
tions can also be calculated more easily with the

help of its subalgebras rather than by considering
the whole algebra. For example, an ODE invari-
ant under the six dimensional algebra given in
Table 5(a), comprises all those five discrete sym-
metries which have been found by its different
subalgebras (given in previous Tables) like one
dimensional, two dimensional, three dimensional
and four dimensional subalgebras. At the end of
the article, some particular cases are discussed to
generate new solutions that are invariant under
discrete symmetry transformations.
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Table 3:

Algebra
Invariant
Equation

Discrete Transformations

L3,1 ∂u, z∂u, h(z)∂u
...
u =

...
h (z)

ḧ(z)
ü + f(z)

υ1 : (z, u) 7→ (z, b11u
b11 = b22 = b33 6= 0.

L3,2 ∂u, ∂z, z∂u
...
u = f(ü)

υ1 : (z, u) 7→ (b11z,
1
2b

1
1b

2
1z

2 + b11b
2
2u),

b11b
2
2 6= 0.

LI3,3
∂u, ∂z,

z∂z + (z + u)∂u

...
u = ü2f(ü exp(u̇))

υ1 : (z, u) 7→ (b22z, b
1
2z + b11u),

b11b
2
2 6= 0.

LII3,3 ∂u, z∂u, ∂z + u∂u
...
u = ü f(exp( z

ü))
υ1 : (z, u) 7→ (z, b11u + exp(z)F (u)),

b11 = b22 6= 0, F (0) = 0.

LI3,4 ∂z, ∂u, z∂z
...
u = ü

3

2 f(ü u̇−2)
υ1 : (z, u) 7→ (αz, b22u),
b22 6= 0, α = ±1.

LII3,4 ∂u, z∂u, z∂z + u∂u
...
u = ü2 f(zü)

υ1 : (z, u) 7→ ( αb22
z, αu + (αb

2
3

b22
)z ln z+

zF (u)), b22 6= 0, α = ±1,
F (0) = 0.

LI3,5 ∂z, ∂u, z∂z + u∂u
...
u = ü2 f(u̇)

υ1 : (z, u) 7→ (b11z + b12u, b
2
1z + b22u),

b11b
2
2 6= 0.

LII3,5 ∂u, z∂u, u∂u
...
u = ü f(z)

υ1 : (z, u) 7→ (z, b11u),
b11 = b22 6= 0.

LI3,6

∂z, ∂u,
z∂z + au∂u,
a 6= 0, 1, 2

...
u = ü

a−3

a−2 f(ü(1−a)u̇(a−2))
υ1 : (z, u) 7→ (b11z, b

2
2u),

b11b
2
2 6= 0.

LI3,6
∂z, ∂u,

z∂z + 2u∂u, a = 2
...
u = u̇−1f(ü)

υ1 : (z, u) 7→ (b11z, b
2
2u),

b11b
2
2 6= 0.

LII3,6

∂u, z∂u,
(1− a)z∂z + u∂u,

a 6= 0, 1, 12

...
u = ü

2−3a

1−2a f(z(1−2a)ü(1−a))
υ1 : (z, u) 7→ ( b

1
1

b22
z, b11u+

z
1

1−aF (u)), b11b
2
2 6= 0,

F (0) = 0.

LII3,6
∂u, z∂u,

1
2z∂z + u∂u, a = 1

2

...
u = z−1f(ü)

υ1 : (z, u) 7→ ( b
1
1

b22
z, b11u+

z2F (u)), b11b
2
2 6= 0,

F (0) = 0.

LI3,7
∂z, ∂u, (bz + u)∂z

+(bu− z)∂u

...
u = ü2

1+u̇2 (3u̇+

f(ü(1 + u̇2)
−3

2 exp(−b arctan u̇)))

υ1 : (z, u) 7→ (−z,−u)
υ2 : (z, u) 7→ ( b11z, b

2
2u),

b11b
2
2 6= 0,

LII3,7
∂u, z∂u, (1 + z2)∂z

+(z + b)u∂u

...
u = ü

1+z2 (3z+

f(ü(1 + z2)
3

2 exp(−b arctan z)))

υ1 : (z, u) 7→ (z, b22u),
b11b

2
2 6= 0, b11 = b22.

LI3,8
∂u, z∂z + u∂u,
2zu∂z + u2∂u

...
u = 3 ü2

u̇ +
u̇4

z2 f(2zü+u̇
u̇3 )

υ1 : (z, u) 7→ (cz, b11u),
b11 6= 0.

υ2 : (z, u) 7→ (−z,−u)

LII3,8
∂u, z∂z + u∂u,

2zu∂z + (u2 − z2)∂u

...
u = 3u̇ü2

1+u̇2 +
(1+u̇2)2

z2 f( zü−u̇−u̇
3

(1+u̇2)
3
2

)
υ1 : (z, u) 7→ (z, αu),

α = ±1.

LIII3,8
∂u, z∂z + u∂u,

2zu∂z + (u2 + z2)∂u

...
u = 3u̇ü2

u̇2−1+
(u̇2−1)2

z2 f( zü−u̇+u̇3

(1−u̇2)
3
2

)

υ1 : (z, u) 7→ (z,−u),
υ2 : (z, u) 7→ (−z, u),
υ3 : (z, u) 7→ (−z,−u).

LIV3,8 ∂u, u∂u, u
2∂u

...
u = 3

2
ü2

u̇ + u̇f(z)
υ1 : (z, u) 7→ (z,−u),
υ2 : (z, u) 7→ (z,− 1

u),
υ2 : (z, u) 7→ (z, 1

u).

L3,9

(1 + z2)∂z + zu∂u,
zu∂z + (1 + u2)∂u,

u∂z − z∂u

...
u = −3zü

1+z2 + 3ü[u̇(1+z2)−zu]
1+z2

[ ü(1+z2)
1+u̇2+(u−zu̇)2 −

u
1+z2+u2 ]

+ [1+u̇2+(u−zu̇)2]2

(1+z2+u2)
5
2

f(ü(1+u̇2+(u−zu̇)2
1+z2+u2 )

−3

2 )

υ1 : (z, u) 7→ (b11z, b
2
2u),

b11b
2
2 6= 0.
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Table 4:

Algebra Invariant Equation Discrete Transformations

L4,1 ∂u, z∂u, h(z)∂u, u∂u
...
u = (

...
h (z)

ḧ(z)
)ü,

...
h 6= 0

υ1 : (z, u) 7→ (z, b11u
b11 = b22 = b33 6= 0.

L4,2 ∂z, z∂z, ∂u, u∂u
...
u = C( ü

2

u̇ ) υ1 : (z, u) 7→ (−z,−u)

L4,3
∂z, ∂u, z∂u,

z∂z + (1 + b)u∂u

...
u = C ü

b−2

b−1 , b 6= 1, 2
υ1 : (z, u) 7→ (b22z, b

1
2z + b11u),

b11b
2
2b

3
3 6= 0, b22b

3
3 = b11.

L4,4
∂z, ∂u, z∂z + u∂u,

u∂z − z∂u

...
u = 3ü2u̇

1+u̇2 + C ü2

1+u̇2 υ1 : (z, u) 7→ (−z,−u)

LI4,5 ∂z, ∂u, u∂u, u
2∂u

...
u = 3

2
ü2

u̇ + Cu̇
υ1 : (z, u) 7→ (z,−1

u),
υ2 : (z, u) 7→ (z, 1u),

υ3 : (z, u) 7→ (−z, b22u), b22 6= 0

LII4,5
∂u, z∂z + u∂u,

2zu∂z + u2∂u, z∂z

...
u = 3 ü2

u̇ + C (2zü+u̇)
3
2

z2
√
u̇

υ1 : (z, u) 7→ (−z,−u)
υ2 : (z, u) 7→ (c1z, c2u)

L4,6
∂u, z∂u, ∂z,

z∂z + (2u + 1
2z

2)∂u

...
u =Cexp(−ü)

υ1 : (z, u) 7→ (b33z, b
1
3z + b11u+1

2b
2
3b

3
3z

2),
b11b

2
2b

3
3 6= 0, b22b

3
3 = b11.

Table 5:

Algebra
Invariant
Equation

Discrete Transformations

(a) ∂z, z∂z , z
2∂z, ∂u, u∂u, u

2∂u
...
u = 3

2
ü2

u̇

υ1 : (z, u) 7→ (z,−u)
υ2 : (z, u) 7→ (−z, u)
υ3 : (z, u) 7→ (−z,−u)
υ4 : (z, u) 7→ (1z , u)
υ5 : (z, u) 7→ (z,−1

u)

(b)
∂z, ∂u, z∂z + u∂u, u∂z − z∂u,

(z2 − u2)∂z + 2zu∂u, 2zu∂ z + (u2 − z2)∂u

...
u = 3ü2u̇

1+u̇2

υ1 : (z, u) 7→ (z,−u),
υ2 : (z, u) 7→ (−z, u),
υ3 : (z, u) 7→ (−z,−u),

υ4 : (z, u) 7→ ( −z
z2+ u2 ,

u
z2+ u2 )

Table 6:

Algebra
Invariant
Equation

Discrete Transformations

∂u, z∂u, z
2∂u, u∂u, ∂z, 2z∂z + 2u∂u,− z2∂z − 2zu∂u

...
u = 0

υ1 : (z, u) 7→ (−1
z ,

u
z2 )

υ2 : (z, u) 7→ (−z , z + u)
υ3 : (z, u) 7→ (z , z2 − u)
υ4 : (z, u) 7→ (z,−u)
υ5 : (z, u) 7→ (−z, u)
υ6 : (z, u) 7→ (−z,−u)
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