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１Introduction 
The Wigner-Ville distribution is a transform 

technique used in both the time and frequency domain 

for the signal processing theory. The main 

characteristics of this transform is that it is not limited 

by the uncertainty relation of time and frequency.  It 

was originally proposed by E.Wigner in the context of 

quantum mechanics in 1932 [1] and later J.Ville 

introduced it for signal analysis in 1948[2]. The 

Wigner-Ville distribution (abbreviated Wigner 

distribution hereafter) is defined by the combination of 

the Fourier transform and correlation calculation as 






  detxtxtW i

x )2/()2/(),( , 

where )(tx  is a conjugate of )(tx . 

This transformation has the advantage of high 

resolution of signals compared with the Fourier 

transform and it is often utilized as a tool to obtain 

instantaneous spectrum of signals. In this paper, the 

author tries to prove the Riemann hypothesis by using 

the Euler products for the Dirichlet series of the 

Mobius function obtained from the Wigner distribution 

analysis.  

 

2 Euler Product of The Dirichlet Series by The 
Wigner Distribution Analysis 
For the Dirichlet series given by 







1
/)()(

n

snnasz , we define the Wigner 

distribution function 

),( tWz 

 shown as 
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 detiz i ])2/[( , 

where s  is a complex number given by its  . 

As )(sz  can be rewritten as 
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  by real parameters   
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Put kln   and rearranging the equation, we have 
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where )(  is a Dirac delta function.  

We let 



kln

tlkilakatnb ])/log(exp[)()(),( , the 

Wigner distribution function of the Dirichlet series 
)(sz  becomes 
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To obtain the Euler product by the Wigner  

distribution analysis, we have to prove  

following Lemmas at first. 

 

Lemma.1:  Let 2/t  and  is  , we 

have 



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1
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 . 

Proof;  We utilize the property of the Wigner 

distribution shown as [3] 
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As the left side integral of this equation yields 
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then we have 
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From the definition of ),( tnb , we can see 

),(),( tnbtnb  , then Eq.(1) can be rewritten as 
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We let 2/t  and  is  , Lemma.1 can be 

obtained.                              □ 

 
Lemma.2:  Let )(na  be a multiplicative function, 

then ),( tnb  is a multiplicative function satisfying  

),(),(),( tnbtmbtmnb  .when 1),( nm . 

Proof;  From the definition of ),( tnb , we have 


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Put 21nnn  ， and 21ddd  , which satisfy 

1)( 21 nn , 1)( 21 dd , then we can write  
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Hence, it can be seen that ),( tnb  is a 

multiplicative function.                    □ 
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From which, we can obtain the Euler product of the 

Dirichlet series as follows. 

  
Theorem.1:  The Dirichlet series )(sz  consisted of 

a multiplicative function gives the following Euler 

product.  
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where  is  . 
Proof;  If we let )(ng  be a multiplicative  

function, we have  
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 From Lemma.2, ),( nb  is a multiplicative function, 

thus we have 
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Then we can obtain Eq.(2) from Lemma.1.    □ 

                             

3 Euler Product of The Dirichlet Series of The 
Mobius Function 

We try to obtain Euler products of the Dirichlet series 

of the Mobius function shown as follows: 

 

Theorem.2 Let its  and  is  , where 

2/t , the Dirichlet series of the Mobius function 

has the Euler product given by 
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                                         (3) 

for   satisfying  , where   is the 

lower limit that the Dirichlet series of the Mobius 

function is absolutely convergent ( 12/1  )[4] 
and )(s  is the Riemann zeta function. 

.Proof;  From Lemma.2, ),( nb  is a multi- 

plicative function because it can be given by  
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from Theorem.1. Hence we obtain Eq.(3). 
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converges, Theorem.2 can be obtained.                        

□ 
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4 Evaluation of an Infinite Product 
The problem of the Riemann hypothesis is whether 

the Euler product for the Riemann zeta function is 

convergent or not for 2/1  as pointed out by 

Kimura, Koyama and Kurokawa in their paper [5].  

As the Dirichlet series of the Mobius function can be 

given by  
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[6], then we consider the convergence of 

the infinite product in Eq.(3), shown as follows; 

 

Lemma.3,  If 0  and 0 , we have  
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From Lemma.3 and 4, the convergence area of an 

infinite product  


 

p

ss ppp ))logcos(21( 2 ,     (4) 

is bounded for 2/11  . 

According to the Bolzano–Weierstrass theorem, 

the infinite product (4) has an accumulation point, 

because its convergence area is bounded.. 

When we let s

mm

s

mm pppP
  2)logcos(21   

, we have 

22 )1(1    nmnm ppPP  

   nnm ppp 222 ,      (5)  

from Lemma 3, where mp  and np  are the m-th 

prime and n-th prime, respectively. 
As Eq.(5) converges zero when nm,  for 

2/1 , then this is a Cauchy sequence, the terms of 

which are getting closer together in a way that the 

sequence ought to have a limit.  

If 0 nm PP , then nm PP /  approaches unity, 

the absolute value of the infinite product, 


 

p

ss ppp ))logcos(21( 2 , converges to a 

certain value for 2/1 .             □ 

 

As the maximum absolute value of Eq.(3) is less 

than                                                              

 



 















p

p p

p

p

pp
p

)1(

1
)1)(1()1()( 2







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0)2/1(  it , by using the Dirichlet eta 

function )(s , which is given by  

)21/()()( 1    for 1 .  

Then, the plot of )2(/)4()( 1



 is shown 

as follows; 

 

 

Figure.1 Plot of )2(/)4()( 1



 

As shown in Fig.1, we have 0)( s  for 

12/1   and the Riemann zeta function has no 
zeros between 2/1  and 1 for 0]Im[ s . The 

Riemann zeta function has no zeros on the real axis 

)0(   for 10  [9], then )(s  does not 

become zero for 12/1  .     □  

 

5 Conclusion 
By the Wigner-Ville distribution analysis, which is a 

tool developed for analyzing instantaneous spectrum of 

a signal, it can be shown that the Riemann zeta 
function has no zero points for 1]Re[2/1  s , 

which shows that all nontrivial Riemann zeta 
function zeros lie on the critical line from the 

functional equation for the Riemann zeta 
function. 
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