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Abstract. Human knowledge and mentality of experts may be changed with the time making the time a very
important factor to the decision-makers. Therefore, different decisions for exact problem can be made by
decision-makersin different times. We introduce here anew mathematical tool called complex generalized fuzzy
soft set (CGFSS), which isacombination of the concept of generalized fuzzy soft set (GFSS) and complex fuzzy
set (CFS). The importance of CGFSS may be appeared in the ability to convey the parametric nature in the
concept of GFSS that happening periodically without losing the full meaning of human knowledge. While the
uncertainty values lie in GFSS may be affected by different factors/phases/levels, CGFSS represents two values
for each parameter (i) the degree of membership “belongingness of uncertainty and periodicity for elementsin
universe of discourse” and (ii) the degree of uncertainty and periodicity for the possibility of such belongingness
which are represented by using complex membership form. Some CGFSS’s basic operations and its properties
are introduced with the definition of relation on thistool and its application to illustrate the novelty of CGFSSin
the decision-making problem. Finally, a comparison between severa uncertainty sets and CGFSSisillustrated.
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1. Introduction multi-membership functions to attain an extra range
Ramot et a. (2002) generalized the theory of of values for uncertainty information indexed by

complex fuzzy sets for dealing with uncertainties periodicity in nature.

Lo . . Maji et a [4-6] studied the theory of soft sets,
and periodicity information simultaneously. Many N : .
researchers have been used successfully Ramot’s initiated by Molodtsov [ 7] and applied this theory to

. o . . deal with some decison-making problems. The
idea [1,2,3,10-23], which |§ extendllng the mtervgl notion of the fuzzy soft set had been also presented
[0, 1] to of the membership function’s range, in

by Magji et a., which is amixture of afuzzy set and

several areas like; decision-making problems, soft set. In 2009, Kong et al. [8] have used the fuzzy
forecasting, medical, multiple periodic factor soft set to deal with problemsin the decision-making
prediction problems, and PSO-RL SE to solve some field. Furthermore, Maumdar and Samanta [9]
prediction, time series forecasting, adaptive image introduced a generalized fuzzy soft set. The fuzzy
noise-canceling, and function approximation soft set gets an additional degree. This degree is
problems. In the reference [24], Ramot and other committed to the parametrization and represents the
researchersintroduced the concept of complex fuzzy degree of possibility of belongingness of elements
relation (CFR), where the value of absence or of fuzzy sets. Also in [9] Relations and their

properties, similarity and an application in medical
diagnosis and decisson making problems on
generalized fuzzy soft sets are studied.

Here, we have extended the notion of
generalized fuzzy soft sets[9] to the complex realm

presence of association, interconnectedness, or
interaction  and  the phase of association,
interconnectedness or interaction, among two or
more sets can be conveyed by using the concept of

CFRs”. Recently, some researghers have been by adding the periodicity semanticsin both degrees
successfully generalized and applied the concept of of belongingness and degree of possibility of
CFR. To name but a few: Alkouri and Salleh [10] belongingness. We incorporate two concepts,
introduced complex Atanasov intuitionistic fuzzy complex fuzzy set, and generalized fuzzy soft set.
relation and applied it in multi attributes decision- We attached the degree of representing the
making (MADM) problems. In 2018, Al-Qudah and possibility of belongingness of elements of complex
Hassan [25] presented complex multi-fuzzy relation fuzzy sets. We depend on the expert’s opinion to
(CMFR) for Decision Making, where theinnovation solve a problem in decision making. Expert’s
of CMFR can be seen in the capability of complex opinion are changeable with an object affected by
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some factors (e.g. time). Each object and factor are
represented by GFSS (parametric in nature) depends
on the expert's opinion. The object in CGFS will be
represented by amplitude terms and the factor will
be represented by using the phase terms. Both object
and factor will convey belongingness and possibility
of belongingnessvaluesfor each element in universe
W of the expert’s opinion. To show how we
characterize this type of information, this research
presents the properties of the CGFSS. The phase
term conveys the values of factor may affecting the
amplitude term. Since this factor is represented by
GFSS, these values must have belongingness and
possihility of belongingnessvalues (See Application
4.1). Therefore, CGFSS is a more representative
and wider range. It includes periodicity and
uncertainty in the choice of a complex fuzzy set
matching to each value of the parameter. A decision
is given to select a proper machine by using the
CGFS tool by generalizing the presented model in
[9] to the realm of complex numbers.

We organize this manuscript as follows: In
Section 2, some results and definitions are recalled
which isrelated to the current results. In Section3, a
definition of acomplex generalized fuzzy soft set is
formalized and studied some of its properties. In
Section 4, an application of the complex generalized
fuzzy soft set is introduced by using a new proper
model in the decision-making problem. In section 5,
we are presenting a comparative study among
different uncertainty sets (fuzzy set, fuzzy soft set,
generalized fuzzy soft set, and complex fuzzy set)
with CGFSS. (See section 6 for the summary).

2. Preliminaries

The current part of this research present and
recollect some basic operations and relevant
definitions.

Definition 2.1 [26] A fuzzy set A in a universe of
discourse U is characterized by a membership
function , (x) that takes valuesin the interval [0,
1].

Definition 2.2 [7] Let U be an initial set and E be a
set of parameters. Let P(U) denote the power set of
U,andlet A < E.Apair (F,A) iscalled asoft set

over U, whereFisamappinggivenby F:A >P(U)

Definition 2.3 [4] Let U aninitial set and E be a set
of parameters. Let F(U) denote the fuzzy power set
of U,andletA < E . A pair (F, A) iscalledafuzzy

soft set over U, where F is a mapping given by
F:A>FU)-
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Definition 2.4 [24] A complex fuzzy set A, defined
on a universe of discourse U, is characterized by a
membership function x,(X), that assigns to any
element xe U a complex-valued grade of
membershipin A. By definition, thevalues of 1, (x)

, may receive al lying within the unit circle in the
complex plane, and are thus of the form

() =r,(x)e’ 949 wherei =1, eachof r,(X)
and 6,(x) are both rea-valued, and r,(x) <[O0, 1].
The CFS A may be represented as the set of ordered
pairs A={ (x, #,(x)) : xeU}.

Definition 2.5 [24] A complex fuzzy complement of
A may be represented as follows:

A={(x p5(x): xeU}= {(x, r(x)-e A%)y: XEU},

where and

() =1- 1,(%)
A (X) = @,(X), or=27—0,(X), or =7 +0,(X).
Definition 2.6. [24] Let A and B be two complex
fuzzy sets on X, u,(x)=r (x)e' 2¥  and

1z (X) =15 (x)e' ®™ their membership functions,

respectively. We say that A is greater than B,
denoted by Ao B or Bc A, if forany xe X,
ra(X) <rg(x), and 6,(X) < 65(X).

Definition 2.7 [24] Let A and B be two complex
fuzzy sets on X, with complex-valued membership
function u, (x) and pg (x). The complex fuzzy
union of A and B denoted AUB, is specified by a
function

u{alae Clal<1}*{blbe C,|p| <1} ->{d de
C,ldl <1}

u assigns a complex vaue, u(uy(x),ug(x)) =
Uaup(x) todl xin X

The complex fuzzy union function u must satisfy at
least the following axiomatic requirements, for any
a,b,c,de{x|x € C,|x| <1}

Axiom 1 (boundary conditions), u (a, 0)=a.
Axiom 2 (monotonicity): |b| < |d]|
|lu(a, b)| < |lu(a, d)|.

Axiom 3 (commutativity): u (a, b) = u(b, a).
Axiom 4 (associativity): u (a, u(b, d))=u(u(a, b), d).
Axiom 5 (continuity): u is a continuous function.
Axiom 6 (superidempotency):ju(a,a)|> |al.

Axiom 7 (strict monotonicity):|al < |c| and |b| <
|d| = |u(a, b)| < |u(c,d)|.

implies

Definition 2.8 [24] let A and B be two complex
fuzzy sets on X, with complex-valued membership
function u, (x) and pg (x). The complex fuzzy
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intersection of A and B denoted ANB, is specified by
afunction

i:{alae Cla|<i}*{blbe C,|b| <1} ->{ddeC
dl <1}

i assigns a complex value, u(uy(x),pug(x)) =
Uang(x) todl xin X.

The complex fuzzy intersection function i must
satisfy a  least the following axiomatic
requirements, for any a, b, ¢, de€ {x|x € C,|x| <

1}
Axiom 1 (boundary conditions): |b| =1, if
li(a, b)|=]al.

Axiom 2 (monotonicity): |b| <|d| implies
li(a,b)| < li(a,d)|.

Axiom 3 (commutativity): i(a, b) =i(b, a).

Axiom 4 (associativity): i(a, i(b, d))=i(i(a, b), d).
Axiom 5 (continuity): i is acontinuous function.
Axiom 6 (superidempotency):|i(a, a)|< |a].

Axiom 7 (strict monotonicity):|a|] < |c| and |b| <
|d| = |i(a, b)| < |i(c,d)].

Table 1 shows some examples of s-norms and t-
norms under CFS.

Table 1. Some Examples of s-norms and t-norm
For any two CFSs

A={(x1,(x)e"?):xe X} and

B={(xry(x)€”*"):xe X} in a universe of

discourse U,
v Basic s-norm; Basic t-norm:
AuB= ANB=

{(x,max(r,(x),15(x)), {(xmin(r, (), 15 (%),

max(6,(X). 05 (X)) X € X} min(@a(x),65(X)): x € X}

Y ager S-norm: Y ager T-norm:
s((ae”), (be”)) = t((ae™), (be”)) =
s(s', (a,b),s’, (a,b)), tt',(@b)t", (&,b)),

where where

s (a,b) = ', (ab)=

min(:l,(a”’ +b” )%’j 1—min(],((1—a)”+(1—b)”)%”),
and and

s, (a.p) = _(a,b) =
min(l,(a’“’+b’”)%“) min(l((a’)'” +(b')'”)%7)
with @ € (0,) . with @ € (0,0).

Definition 2.9 [9]. Let U ={x1,X2,....X,} be the
universal set of elementsand E ={e;; e; ... ; en} be
the universal set of parameters. The pair (U, E) will
becalled asoft universe.Let F: E — IY and u

E-ISSN: 2224-2880

Abd Ulzeez M. J. S. Alkouri

be a fuzzy subset of E, i.e . : E —>1 =[0,1],
where | ¥ isthecollection of all fuzzy subsets of U.
Let F, bethemapping F,: E — 1Y <1 bea
function defined as follows:

F,.(e) =(F(e),u(e) where F(e)el":
Then F, is called a generalized fuzzy soft set
(GFSS) over the soft universe (U, E). Here for each
paameter €, F, ()= (F(g),u(g))
indicates not only the degree of membership e
belongingness the elements of U in F (e, ) but also

the degree of possibility of such belongingness of
uncertainty which is represented by s(e,) .

Example 2.1. Let U ={xy,%2, X3} be a set of three
shirts. Let E ={ey; e2; es} beaset of qualitieswhere
er = bright; & = cheap; e; = colorful. Let
4 E — 1 be defined as follows: u(g)=0.2;
1(e,) =05, 1(e;) =08

We define a function F,:E — 1" x1 be

defined as follows:
F,,(el){ i,oﬁ,ﬁ},ozj,

0.2 05 01
x5 XK
F = P R 105 ] d
« (&) [{o 0.2'0.9 j an

Then the family {F#(ej): i 212,3_} of Vx| is
ageneralized fuzzy soft set.

Definition 2.10. [9]. Let F,(€)and G, (€) be
two GFSSover (U, E). Now F (€)issadtobea
generalized fuzzy soft subset of G; (€) if

(i) u isafuzzy subset of O .

(ii) F(e) isdsoafuzzy subset of G(e) , Vee E.
In this case we write F,(€) = G; (€).

Note. Let © and * betwo binary operations on
[0, 1] defined as s-norm and t-norm, respectively.

Definition 2.11. [9]. Union of two GFSS F, (€)

and G, (€) , denotedby F,, (&) UG, (e)

is a GFSS H,(e) , defined as
H, (e : E — 1" x| suchthat

H, (e =(H(e),v(e) where
H(e) =F(e)-G(e) and

v(e) = n(e)-5(e).
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Definition 2.12. [9]. The intersection of two GFSS
F.(e and G;(e), denoted Dby

F,(e)NG,(e) is a GFSS H,(e) ,
definedas H,(e) : E — 1Y x| suchthat
H, (e =(H(e).v(e)
H(e) = F(e) *G(e) and
v(e) = u(e)*s(e)-
In this paper, we use the Normalized
Euclidean distance between two complex fuzzy sets

where

[24].
For any two complex fuzzy  sets
Az{(x, r,(x)e%®): VXeU} and

Bz{(x,rB(x)é”B(x)):VXeU}, then the Normalized
Euclidean distanceis given by

QCF(AB)=\/21nZ[( (%) = ra(%))" + (9 (%) 9(&))}

i=1

3. Complex Generalized Fuzzy Soft
Sets

As aresult, the concept of CGFSSisintroduced and
its basic theoretical operations are defined and
studied in this section. Some numerical examples
and theorems areillustrated in the ream of CGFSS.
Definition 3.1. Let W={x1,Xa,...,X:} betheuniversal
set, and E={ ey, e, ... ; en} bethe set of parameters.
The pair (W, E) is called a soft universe. Let

CF,(&:E— 1Y and u be a complex
fuzzy subset of E. i.e
u:E—1 ={a:la<1,vaeC}=re’, where both
randé vauesin [0, 1], and 1Y is the collection
of all complex fuzzy subsets of W. Let the mapping
CF,(e): E — 1Y x| beafunction defined as
follows:

CF,(e) = (CF(e), u(e)) where CF(e)eI:
Then CF,(e) is named a complex generalized
fuzzy soft set (CGFSS) over the soft universe (W, E).

For each parameter
e, CF,(e)=(CF(g),u(e)) point to not only the
degree of membership e belongingness of |j
uncertainty and periodicity the elements of W in
CF(e,)but aso the degree of possibility of such
belongingness of uncertainty and periodicity which
isrepresented by ,(e,) -
Example 3.2. Let W ={xy, X2, X3} be a set of three

shirts. Let E ={ ey, &, e3} be a set of features, where
e1 = dazzling; e, = colorful; e; = expensive. Let
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uE—l ={a:la<1l,vaeC}be geting the
following values:

u(g) =026%%9; 4(e) =057,
g27(03

u(e;)=0.7
So, we may be giving a function
CF,(e):E— 1 xI_ asfollows:

CF (el) [ 0. 7e|27r(02) ’0 4¢ )I(Zzzz 0.1) O 3e)|(;;r 0.1) }’O'ZeiZ”(O-S)j

X, X i27(0.3)
CF (e2 [ 0 1e|27r(02) ’0 2el2/z(01) ’0 geIZH(Ol)} 05e ]

_ X % %3 i27(0.3)
CF/: (%) - ({O 86' 27(0.2) ! 0. 5el27r(0 1)’ 0.2¢ j27(0.1) }’0'76 j

Then CF,(e)=(CF(e),u(e))is a CGFSS
over (W, E).
Or we may represent it as amatrix form as follows:
CF, (&) =(CF(g), u(g)) =
0. 7ei27r(0.2) 0. 4ei27z(0.1) 03ei27r(0.l) 0. 2ei2;r(0.3)
— 016'2”(02) 02€|27z(01) Oge|2;r(01) 0.5¢ i27(0.3)
0.86|27z' 0.2) 0.58'2”(0'1) 0.2¢ i27(0.1) 0_7e|2;z(0.3)
where the j*" row vector representsCF, (e,) , the "
column vector represents X; the last column
represents the degree of  and it is called complex
membership matrix of CF,.
Definition 3.3. Let CF,(e)and CG,(€) be
two CGFSSover (W, E). Now CF,, (€) issupposed

to be a complex generalized of the complex fuzzy
soft subset of CG; (e) if

(i) 1 isacomplex fuzzy subset of O .

(i) CF(e) is aso a complex fuzzy subset of
CG(e), VeeE. denoted by
CF,(e) = CG; (e).

Example 3.4. As in Example 3.2, let CF, (e) be
the CGFSS over (W, E) given in Example 3.2. Let
CG; (€) be one more CGFSS over (W, E) has the
following values:

X % %3 27
CG; (e_L) :({o.zeibr(o.z) " 036270 1O.lei2”(0'1)} 0.2¢” (oe)j

Xl X2 X3 i27(0.
CG(5(E‘2) :[{O_Oeizn(o.z) ’0_1é27r(0.1) ’0_7ei27z(0-1) },0.462 (03)j
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%3
CG& (%) = ({ 0.7;(21”(0.2) ' O.Sel)'(Zzﬂ(O.l) '0.1d 270D

.where § e | be defined as above:
Then CG, (e) = CF, ().

Note 3.5 ([11]). Let ¢ be a complex fuzzy
complement and g be an increasing generator of c.
Let the binary operations < and = be defined as:
* [sat-normand © isan s-norm. Moreover (= ;
© ; c) develops a dud triple. Hereafter, we will
consider such a dual triple as the general case.

Definition 3.6. The complement of CF,(e) over

(W, E), denoted by CF °(e), is defined by
CF.,°(e) =CG; (e) , Where 5(e) = 1°(e) and
CG(e)=CF°(e), VecE.

Note 3.7. The equality (CF,¢)° = CF, holds.
Definition 3.8. Let CF,(e) and CG,(e) be two
CGFSSover (W, E), Then the union of CF, (e) and

CG;(e), denoted by CF,, (&) UCG, (), isa
CGFSS CH,, (e , defined as
CH,(e):E— 1Y xI, such that
CH,, (e) = (CH (e),v(e)) where

CH (e) = CF(e) - CG(e) and v(e) = u(e) - 5(e).
Definition 3.9. Let CF,(e) and CG;(e) betwo
CGFSS over (W, E). Then the intersection of two
CGFSS CF,(e) and CG;(e), denoted by

CF, N CG; isaCGFSS CH,(e) , defined as
CH,(e):E — 1Y x1_such that
CH,(e) =(CH (e),v(e)) where

CH (e) =CF (e) *CG(e) and

v(e) = u(e)*5(e) .

Example 3.10. Consider CF,(e)and CG,(€)as
defined in Examples 3.4. Let the operation =*
defined on{a;|a| Sl,‘v’ae(C} asfollows: a= b =
(ab)€?"%%) and the operation < defined on
{a:]a)<1,vaeC}asfollows ac b=(a+b-ab)

g% %%)  Also, takecas (&€ = (1—a)€?" %)
) Then (= ; © ; c) formsadual triple. Then,

CF,(e)UCG,(e) =
O76e| 27(0.36) 058el 27(0.19) 037e| 27(0.19) 036e| 27(0.51)
0.1627036) () 28gl27(019) () g7¢27(019) () Gag27(05D
094e| 27(0.36) O65el 27(0.19) 028e| 27(0.19) 084€| 27(0.51)
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},o.6é2”<°-3>j CF, (6)1CG,(8) =

0.146270% () 12d27(00) 932709 () Yei2+(0%)
0.Oeiz”(0'04) O_OzeiZH(0.0l) 0.63eiZﬂ(0.01) OlleeiZIr(O.OQ)
0.566270% () 1527000 )pd27(00D) () 3 27(009)

CG,°(e) =
0.8d27(08 ( 7d27(09) () gg27(09)
1.0e27°® 0.9¢#7(*9 0.3?(*9
0.3d27(08 (. 7d27(09) () ggi27(09)

o 8e| 27(0.7)
o 6e| 27(0.7)
0 4ei27z(0.7)

Definition 3.11. A CGFSS is said to be a complex
generalized null fuzzy soft set, denoted by Cg, (€)
if Cg,(e):E —> 1) <1, such that
Cg,(e) = (CF(e),6(e)) , where

CF(e)=0€%" v ecE and 6(e)=0£°*” V ecE.

Definition 3.12. A CGFSS is said to be a complex
generalized absolute fuzzy soft set, denoted by

CA.(e), if CA.(e):E—>1W xI_ such that
C A.(e) = (CA(e),0(e)) , Where
CA(e) =1€?™ v ec E and

a(e)=1e¥"® vecE.
Theorem 3.13. Let CF, (€) be a CGFSS over

(W, E), then the following holds:

(i) CF, (e) = CF, (e) UCF, (e),

(ii) CF, (9)NCF, (e) = CF,(e),

(i) CF,()UC4, (e) = CF, (e)

(iv) CF,(e)NC4, (e) = C, (e)

(v) CF,(e)UC A (€) =C As(e)

(vi) CF,(e)UC A.(€) =CF,(e)

Proof. Omitted.

Note 3.14. As a specia case, we will have equality
relation in (i) and (ii) above, if we take standard
complex fuzzy operations (i.e. max, min, and

standard complement).
Theorem 3.15. The following equalities are hold

(@) CF, (e) UCF,°(e) = C A«(e) and

(b)CF, UCF,° = C4,.
Proof. Omitted.
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Theorem 3.17. Let CF,(€), CG,(e) and CH, (e)
be any three CGFSS over (W, E), then:

(i) CF,(©)UCG,(e) = CG, (e) UCF, (e)

(i) CF,(€)NCG;(e) = CG,(€)NCF,(e)

(iii)

CF,(e)U(CG, (e) UCH,, (€)) = (CF, (€) UCG; () UCH, (¢)
@)

CF,(9)N(CG; (&)NCH, (8)) = (CF, (€)NCG, () NCH, ().

.Proof. Omitted

Note 3.18. The distributive law does not hold on
CGFSSin genera, but as aspecial case for standard
complex fuzzy operations then distributive law
holds.

Theorem 3.19. Let CF,(e) and CG;(€e) are
two CGFSS over (W, E), then the following holds:

() (CF,(©NCG,(e)° = (CF,* () UCG,(e))

(i) (CF,(©)UCG;()° = (CF,*(e)NCG,(e))
Proof. Omitted.

4. Complex Generalised Fuzzy Soft
Relation

To define a suitable application in decision-making
problems to optimize the best solution we define
CGFSrelationsand utilizeit to find the best machine
to be purchased from a seller Z.

Definition 4.1. Let CF,(5) and CG, (s;)be two

CGFSS over (W, E) and Q< S°. then complex
generalized fuzzy soft reation is a function
CR,(s,s,):Q—1." xI, defined asfollows:
CR.(s,5))=CF,(s)"CG,(s;) for all (s,s;)Q,
such that

CR&(S 1Sj) = (CR(s 1Sj)!/1(s » S )
where

CR(s,s;)=CF(5) nCG(s)) =

{((3 /S;),Min(ree ) N rce(s,))ei(minBCHS)ﬂCG(S))}
A(s,s)=n(s)Ny(s) =

. i(MinG,sy.0,(sy) |
{((s,sj),mln(rﬂ(s) ﬁr,(sj))e (s Or(s) }

An application in the decision-making
problem and an illustration of the notion of complex
generalized fuzzy soft relation are presented in
application 4.1 bellow.

Application 4.1. Assume a firm Y would like to
purchase a machine from a seller Z. The sdller Z
offers firm Ythree models of a machine with

and

E-ISSN: 2224-2880

328

Abd Ulzeez M. J. S. Alkouri

different production dates of each model.
Consequently, a firm Y has three models (M1, My,
and M) to select with its production date (D1, D-,
and D3) smultaneoudly. Let the company’s team of
analysts gives a possible value for three parameters
that should be considered with the possibility for
sel ecting the perfect time to buy machines (Purchase
date). Parameters (§ are. s = durability, s =
purchasing cost, ss = maximum speed. These
parameters will be influenced by some factors such
as the purchase date (as an example: the price of the
machine will cost a high price if it is manufactured
in the present year (low price for machines
manufactured in the past year). In other words, the
team’s opinion/decision depends on their experience
and knowledge that may change depending on
season or phase of purchasing a machine. As
demonstrated above, CGFSS is the best way to
represent thisinformation (i.e., represent the dataon
people’s choice that occurs periodicaly regarding
possibility values of parameters that also may be
changed periodically).

For moreillustration, supposethat thefirm’s team
has prepared an ideal machine with some possible
parameters before getting the offer from seller Z
The goal of the team is to choose a proper machine
recorded by seller Z which is similar to the ided
machine. Let everyonein the selection team arrange
in this stage for each machine’s parameters a mark 1
or O to state whether the machine is proper for the
parameter or not for each model and production date
of the machine, and give 1 or 0 to state the possible
value of parameters is proper or not for each
parameter and purchase date of machines. For
instance, suppose the 80 % of the team of analysts
trust that the ideal model machine is proper at the
first parameter, and 60% of the team of analysts
believe that is proper for the possible value of the
first parameter, in which this manner is applied to
compute the amplitude terms for membership
functions in (CF,(s)), in CGFS. The phase terms

that present production date can be given for thefirst
attribute of an ideal machine and the possibility of a
purchasing date of the machine 60% and 50%,
respectively. The team trusts that the idea
production date of the machine is proper at the first
attribute and possibility of purchasing date of the
machine. So the ideal machine’s first parameter can
be presented as 0.8€**(*® and the possibility for the

first parameter as 0.6 ***%. All information in this
manner may be attained in the form of CGFSS asin
the following tables, where both membership
functions of CCFSS represents information of
complex fuzzy set.
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Table 2. Ideal car model and production date with
ideal possibility of parameters and possibility of

purchase date.
ldeal CF,(s) S1 2 3
M, 0.8627(°9  (.4g2703 (pd?27 (0
M2 07eI 27(0.8) 059' 27(0.7) O.7ei 27(0.7)
MX3 04e| 27(0.6) O8e| 27(0.6) 06e| 27(0.4)
Possibility
of # for 06d%0©9 062709 (4?2702
parameter
and
possibility
perfect time
to purchase.
So,
CF, (s)=

M1 Mz Ms i27(05) | '
({Ogel 27(05) ! 07el 27(0.8) ! O4el 27(0.6) '088'

CF.(s)=

M, M, M, i22(04) |’
[{0.4@27[(0.3) "0.582707 ) gg27(0%) ,0.6e

CF.(s;) =
MZ M3

M . i27(0.2)
({O-Gé 27047 0, 762707’ 0 627 (0 }’0'46

Then CF, (s) isaCGFSSover (W, E). and hasthe 1

following matrix form,

CF, (X, u)=

0842709 0.7d%0Y  04d29 08679
04203 (g0 (0 gg27(08) () gai27(04) (l)
0.662709  0.76270N 0,627 (046272

Table 3. CF# C) for My

Ml:CFﬂ (s S1 2 3
D 0.7€/2707) 0.4d%708  .6d?7(09)
D2 0.6€/27(04 0.5€27(°8) (o 5g27(08)
Ds 0.9¢%7® 0.862709 0 5g (09
Possibility

of # for

parameter 0. 5¢27(08)  (.7g27(06) ( ga27 (0D
and

possiiibity 2224-2880
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And has the following matrix form,

2

M, :CF, (X u) =
07e| 27(0.7) OGeI 27(0.4) OlgeiZH(l) 05e| 27(0.6)
04el 27(0.6) o5el 27(0.8) 08€| 27(0.6) o7el 27(0.6)
OGeI 27(0.5) 05e| 27(0.8) O5e| 27(0.6) 06e| 27(0.7)

Similarly we compute the following matrix form
of M,:CF,(x,4) and M, :CF, (X 1),

3

M, :CF, (X, 1) =
0_6€i 27(0.5) O_7ei 27(0.6) O_8€i 27(0.8) 0_7ei 27(0.6)
0.7€%©4  0gd? (0% 07279 (5204
0.4ei 27(0.7) O.4ei 27(0.8) 0.0e‘ 27(0.0) 0.8€i 27(0.6)

And

M, :CF, (X 1) =
0.7€27©®  09d?7°d (0 8g27(®d (8277
08e| 27(0.3) 05e| 27(0.5) O4e' 27(0.3) 04e| 27(0.7) (4)
o.4ei 27(0.5) 0.9ei 27(0.6) O.8€i 27(0.2) O.6ei 27(0.5)

To keep going in our application, we use a
suitable model to choose a proper machine that is
most similar to the ideal machine (see [9]). And
generalized it to deal with complex fuzzy
information as follows.

Mode: In this model, we are using the Normalized
Euclidean distance between two complex fuzzy sets
[14]

n

qCF (A, B) = \/2_1;12[("/«(&)_ rB()ﬁ))z +2_7]Z-_2(0A()§)_98()§))2:|

i=1

Evaluate the distance between M;in Eq. 1 and Eq. 2,
Mzin Eq. 1 and Eq. 3, and Msin Eg. 1 and Eq. 4, to
find the most similar production date to the ideal
machine (We seek to get the machine with
production date that has a minimum value of
distance compared to the ideal machine).

[(08-07)"+(04-04)" + (06-086) |+

3

G (M, D)= [

| = 2712[4712(0.6—0.7)2+47r2(0.3—0.6)2+47r2(0.4—0.5)zﬂ
T

- %g[[omh 2[0.11]] =0.195789002

Similarly, we  evduate
e (M, D,) = 0.3559026084,
0 (M, D,) = 0.2886751345,
A (M, D,) = 0.2449489743,
A (M, D,) = 0.5066228051,
A (M, D,) = 0.2614064524

Ocr (Ml' Dz) =04,

and

Volume 19, 2020



2)

WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2020.19.32

O (M, D,) =0.343996124 ,
0 (M5, D;) = 0.3265986324 .

and

Evaluate the distance between possibility
parameters s, i = 1, 2, and 3, in table 1 and
possibility parametersin each tablej,j =1, 2,and 3
separately. To find the most similar possibility
parameter and its purchase date to theideal machine.
(We seek to get the possibility parameters with
purchase date that has a minimum value of distance
compared to the ideal possibility parameters and its
purchase date).

1

Oce (S.,M1 151) = \/

i=1 T

= %i [0.01+2[0.01] | = 0.1224744871
i=1

Similarly, we evaluate
Ocr (Su, »S) = 01224744871,

Oer (S, S) = 0.2449489743,,

Ocr (S, ;) = 02121320344,

Ocr (S, »S,) = 0.0707106781,
Oer Sy, - S,) = 0.331662479

Oer (Sy,»'S;) = 0.5744562647 ,

Ocr (i, +S;) = 0.4898979486 , and
Ocr (S, +S;) = 0.331662479.

3) After identifying the desirable production date for
each machine and the most possibility parametersto
the similar idea machine and its possibility
parameters respectively in steps one and two. We
generalize a new CGFSS containing the three
machines and parameters identified in steps one and
two.

Thus, the minimum value between the idedl
machine and best production date is 0.195789002
which implies the best production date for the first
machine is Di1. Also, the minimum value between
the idea possibility machine parameters and its
purchase date comparing with parameters s, s, and
s, for each machine, are “0.1224744871”, *
0.0707106781”, and “0.331662479”, which implies
the best possible parameters for s, &, and s,
respectively. Similarly for the second and third
machines. The result of calculated CGFSS
CG, (s) 7 is presented in Table 4.
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Table 4. Calculated CG,,(9)

Calculated

CGu (s) S1 2 S3

M 1 07e| 27(0.7) 04e| 27(0.6) 0 6 i27(0.5)
M2 0 7 i27(0.6) O 8e|27z'(0 .5) O4el 27(0.8)
M3 O 7 i27(0.8) O 8e|27z'(0 .3) O4el 27(0.5)
Possibility

of # for

pal’ametet‘ 05€I 27(0.6) 05€I 27(0.4) 0 6 i27(0.5)
and

possihility

4) Define the relation between two CGCFSS:
Ideal CF,(s) and Calculated CG,(9).

R M, M, M, P
(s,5) 076709 07208  (4g% (09  5d2 (9
(5,5,) 04679 0.76>9 049 05"
(s,s,) 0.6e 2709 0 4d27 08 046?709 g2 (09
(5,,5) 0467 0579 (7% (5g2 04
(5,,5,) 046203 05209 (gg? 03 5204
(s,,5,) 04€%0I 040N 4g? 09 604
(s,5) 0.66*09 06?0 06> (4>
(5,5,) 046709 7d%®)  0pe?®  4g% (2
(s,,s,) 0.6€CY 04700 04g9 047

5) Inthis step, we generalize the model in[9] to deal
with complex fuzzy information. Let us get started
to accomplish the best machine by adding the
amplitude term and phase term valuesfor each value
in the relation table above. Then mark the maximum
numerical grade (indicated in parenthesis) in each
row excluding the last column which is the grade of
such belongingness of a machine against each pair
of parameters. Now the score of each of such
machines is calculated by taking the sum of the
products of these numerical grades with the
corresponding values of A. The machine with the
maximum score is the wanted machine. We do not
consider the numerica grades of the machines
against the pairs (e,e), i =123, as both the
parameters are the same.
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R Ml MZ M3 2’
(ss) 13 13 1 1
(s,s) 1 (3 1 0.9
(s,s) 11 (1.2 09 11
(s,,8) 07 11 @3 09
(s,8) 07 1 @1 09
(s,,s) 0.7 (1)) 0.9 1
() @ @ @ 06
(s5s,) 08 (1.2 09 06
(s,8) 1 @1 08 06
Gradetable
CR (sus) (sus) (s18) (s:8) (s,8) (s:8) (s59) (s38)  (s:5)
M M, M, M, M, M, M, M, M, ,M, M, M, M,
Highest numerical
grade 13 13 12 1.3 11 11 1 1.2 11
A 0.9 11 0.9 1 0.6 0.6
complex numbers. The advantage of the CGFSS
Score (M= 1x0.6=06 , score (M= may be concluded by its ability to represent

13x0.9+1.2x1.1+1.1x1+1x0.6+1.2x0.6=4.91
, and score (M3)= 1.3x0.9+1x0.6=1.77

Then the firm’s team will choose the machine
with maximum score. Therefore the team will buy
machine Ma.

5. Different uncertainty sets with
CGFSS

We extend the range of belongingness and possibility of
belongingness terms of GFSS as presented by Majumdar
and Samanta [9] to convey CGFSS information. The new
concept of CGFSS can be employed to simultaneously
represent the uncertainty and periodicity problems of
GFSSinformation in complex geometry. We used a polar
form (r-€?) to show the advantage of the nature of

periodic that appears in the complex-valued membership
functions. See Table 5. In next page.

6. Conclusion

We introduced complex generalized fuzzy soft set
by employing GFSS to the phase term in the

E-ISSN: 2224-2880
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problems. Not only the parametric features of the
problems, but also the features are affected by a
factor that aso conveys GFSS information
simultaneously. CGFSS can be useful to represent
the information several problems in decision-
making by using two variables instead of one
variable. A comparative study among different
uncertainty sets with CGFSS has illustrated. The
limitation of CGFS may appeared in indicating a
membership and non-membership values for a
collection of approximate descriptions of an object.
This limitation can be enclosed in future researches
by combining CGFSS and the innovative concept
called intuitionistic fuzzy set [29]. CGFSS has no
ability to characterize the truth, falsity, and
intermediate  information as in  complex
neutrosophic set, So the future concept may be
introduced is complex neutrosophic generalized
fuzzy soft set [30].
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Table 5. Comparative study among different uncertainty sets (FS, FSS, GFSS, CFS) with CGFSS

FS FSS GFSS CFS CGFS
Domain Universeof  Universe of Universe of Universe of Universe of
discourse discourse discourse discourse discourse
Co-domain Single- Single- Twovauesin Onevaluein  Two Vauesin
valued in valued in [0, 1 [0, €01 [0, €0
[0, 1] (0,1
degree of belongingness Yes Yes Yes Yes Yes
degree of possibility of No No Yes No Yes
bel ongingness
Uncertainty measurement Yes Yes Yes Yes Yes
Periodic measurement No No No Yes Yes
Unit disk No No No Yes Yes
Amplitude term (degree Single Single Single valued Single Singlevalued in
of belongingness) valued in valued in in [0, 1] valuedin [0, 1
[0, 1] [0, 1] [0, 1]
Amplitude term (degree No No Single valued No Singlevalued in
of possibility of in [0, 1] (0.1
bel ongingness)
phase term No No No Single Singlevalued in
(degree of belongingness) valuedin [0, 1
[0, 1]
phase term No No No No Singlevalued in
(degree of possibility of (0,1
bel ongingness)
Ability to convey GFSS No No Yes, only for No Yes, for both
(Parametrization nature the amplitude amplitude and
and its possihility) term phase terms.
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