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Abstract. Human knowledge and mentality of experts may be changed with the time making the time a very 
important factor to the decision-makers. Therefore, different decisions for exact problem can be made by 
decision-makers in different times. We introduce here a new mathematical tool called complex generalized fuzzy 
soft set (CGFSS), which is a combination of the concept of generalized fuzzy soft set (GFSS) and complex fuzzy 
set (CFS). The importance of CGFSS may be appeared in the ability to convey the parametric nature in the 
concept of GFSS that happening periodically without losing the full meaning of human knowledge. While the 
uncertainty values lie in GFSS may be affected by different factors/phases/levels, CGFSS represents two values 
for each parameter (i) the degree of membership “belongingness of uncertainty and periodicity for elements in 
universe of discourse” and (ii) the degree of uncertainty and periodicity for the possibility of such belongingness 
which are represented by using complex membership form. Some CGFSS’s basic operations and its properties 
are introduced with the definition of relation on this tool and its application to illustrate the novelty of CGFSS in 
the decision-making problem. Finally, a comparison between several uncertainty sets and CGFSS is illustrated. 
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1. Introduction 
 Ramot et al. (2002) generalized the theory of 
complex fuzzy sets for dealing with uncertainties 
and periodicity information simultaneously. Many 
researchers have been used successfully Ramot’s 

idea [1,2,3,10-23], which is extending the interval 
[0, 1] to  of the membership function’s range, in 

several areas like; decision-making problems, 
forecasting, medical, multiple periodic factor 
prediction problems, and PSO-RLSE to solve some 
prediction, time series forecasting, adaptive image 
noise-canceling, and function approximation 
problems. In the reference [24], Ramot and other 
researchers introduced the concept of complex fuzzy 
relation (CFR), where the value of absence or 
presence of association, interconnectedness, or 
interaction and the phase of association, 
interconnectedness or interaction, among two or 
more sets can be conveyed by using the concept of 
CFRs”. Recently, some researchers have been 

successfully generalized and applied the concept of 
CFR. To name but a few: Alkouri and Salleh [10] 
introduced complex Atanasov intuitionistic fuzzy 
relation and applied it in multi attributes decision-
making (MADM) problems. In 2018, Al-Qudah and 
Hassan [25] presented complex multi-fuzzy relation 
(CMFR) for Decision Making, where the innovation 
of CMFR can be seen in the capability of complex 

multi-membership functions to attain an extra range 
of values for uncertainty information indexed by 
periodicity in nature. 

Maji et al [4-6] studied the theory of soft sets, 
initiated by Molodtsov [7] and applied this theory to 
deal with some decision-making problems. The 
notion of the fuzzy soft set had been also presented 
by Maji et al., which is a mixture of a fuzzy set and 
soft set. In 2009, Kong et al. [8] have used the fuzzy 
soft set to deal with problems in the decision-making 
field. Furthermore, Majumdar and Samanta [9] 
introduced a generalized fuzzy soft set. The fuzzy 
soft set gets an additional degree. This degree is 
committed to the parametrization and represents the 
degree of possibility of belongingness of elements 
of fuzzy sets. Also in [9] Relations and their 
properties, similarity and an application in medical 
diagnosis and decision making problems on 
generalized fuzzy soft sets are studied. 

Here, we have extended the notion of 
generalized fuzzy soft sets [9] to the complex realm 
by adding the periodicity semantics in both degrees 
of belongingness and degree of possibility of 
belongingness. We incorporate two concepts, 
complex fuzzy set, and generalized fuzzy soft set. 
We attached the degree of representing the 
possibility of belongingness of elements of complex 
fuzzy sets. We depend on the expert’s opinion to 
solve a problem in decision making. Expert’s 

opinion are changeable with an object affected by 
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some factors (e.g. time). Each object and factor are 
represented by GFSS (parametric in nature) depends 
on the expert's opinion. The object in CGFS will be 
represented by amplitude terms and the factor will 
be represented by using the phase terms. Both object 
and factor will convey belongingness and possibility 
of belongingness values for each element in universe 
W of the expert’s opinion. To show how we 

characterize this type of information, this research 
presents the properties of the CGFSS. The phase 
term conveys the values of factor may affecting the 
amplitude term. Since this factor is represented by 
GFSS, these values must have belongingness and 
possibility of belongingness values (See Application 
4.1.). Therefore, CGFSS is a more representative 
and wider range. It includes periodicity and 
uncertainty in the choice of a complex fuzzy set 
matching to each value of the parameter.  A decision 
is given to select a proper machine by using the 
CGFS tool by generalizing the presented model in 
[9] to the realm of complex numbers. 

We organize this manuscript as follows: In 
Section 2, some results and definitions are recalled 
which is related to the current results. In Section3, a 
definition of a complex generalized fuzzy soft set is 
formalized and studied some of its properties. In 
Section 4, an application of the complex generalized 
fuzzy soft set is introduced by using a new proper 
model in the decision-making problem. In section 5, 
we are presenting a comparative study among 
different uncertainty sets (fuzzy set, fuzzy soft set, 
generalized fuzzy soft set, and complex fuzzy set) 
with CGFSS. (See section 6 for the summary). 
 

2. Preliminaries 

The current part of this research present and 
recollect some basic operations and relevant 
definitions. 
 Definition 2.1 [26] A fuzzy set A in a universe of 
discourse U is characterized by a membership 
function ( )A x  that takes values in the interval [0, 

1]. 
Definition 2.2 [7] Let U be an initial set and E be a 
set of parameters. Let P(U) denote the power set of 
U, and let A E . A pair ( , )F A  is called a soft set 
over U, where F is a mapping given by : ( )F A P U

. 
Definition 2.3 [4] Let U an initial set and E be a set 
of parameters. Let F(U) denote the fuzzy power set 
of U, and let A E . A pair ( , )F A  is called a fuzzy 

soft set over ,U  where F is a mapping given by 

: ( )F A F U . 

Definition 2.4 [24] A complex fuzzy set A, defined 
on a universe of discourse U, is characterized by a 
membership function ( )A x , that assigns to any 

element  x U  a complex-valued grade of 
membership in A. By definition, the values of ( )A x

, may receive all lying within the unit circle in the 
complex plane, and are thus of the form 

  ( )
 ( ) ( ) A

A A
i xx r x e   , where 1i   , each of ( )Ar x  

and ( )A x  are both real-valued, and ( ) [0,  1]Ar x  . 
The CFS A may be represented as the set of ordered 
pairs   ( , ( )) : AA x x x U  . 

Definition 2.5 [24] A complex fuzzy complement of 
A may be represented as follows: 
                         

   ( )
,( ,  ( )): ( ,  ( ) ): A

i x

A A
A x x x U x r x e x U


    

 
where ( ) 1  ( )AA

r x r x   and 

( ) ( ), or 2 ( ), or ( ).A A AA
x x x x            

Definition 2.6. [24] Let A and B be two complex 

fuzzy sets on X,   ( )
 ( ) ( ) A

A A
i xx r x e    and 

 ( ) ( ) ( ) B
B B

i xx r x e    their membership functions, 

respectively. We say that A is greater than B, 
denoted by A B  or B A , if for any ,x X  

( ) ( ),A Br x r x  and ( ) ( )A Bx x  . 

Definition 2.7 [24] Let A and B be two complex 
fuzzy sets on X, with complex-valued membership 
function 𝜇𝐴 (𝑥) and 𝜇𝐵 (𝑥). The complex fuzzy 
union of A and B denoted A∪B, is specified by a 
function  
u:{a| a ∈  ∁, |𝑎|≤ 1} * {b| b ∈  ∁ , |𝑏| ≤ 1} → {d| d ∈ 
∁ , |𝑑|  ≤ 1 }.  
u assigns a complex value, u(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) =
𝜇𝐴∪𝐵(𝑥) to all x in X. 
 The complex fuzzy union function u must satisfy at 
least the following axiomatic requirements, for any 
a, b, c, d ∈ {𝑥|𝑥 ∈  ∁ , |𝑥|  ≤ 1} 
Axiom 1 (boundary conditions), u (a, 0)=a. 
Axiom 2 (monotonicity): |𝑏| ≤ |𝑑| implies 
|𝑢(𝑎, 𝑏)| ≤ |𝑢(𝑎, 𝑑)|. 
Axiom 3 (commutativity): u (a, b) = u(b, a). 
Axiom 4 (associativity): u (a, u(b, d))=u(u(a, b), d). 
Axiom 5 (continuity): u is a continuous function. 
Axiom 6 (superidempotency):|u(a,a)|> |𝑎|. 
Axiom 7 (strict monotonicity):|𝑎| ≤ |𝑐| and |𝑏| ≤
|𝑑| ⇒ |𝑢(𝑎, 𝑏)| ≤ |𝑢(𝑐, 𝑑)|. 

 
Definition 2.8 [24] let A and B be two complex 
fuzzy sets on X, with complex-valued membership 
function 𝜇𝐴 (𝑥) and 𝜇𝐵 (𝑥). The complex fuzzy 
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intersection of A and B denoted A∩B, is specified by 
a function  
i:{a|a ∈  ∁, |𝑎|≤ 1}* {b|b ∈  ∁ , |𝑏| ≤ 1} → {d|d ∈ ∁ 
, |𝑑|  ≤ 1}.  
i assigns a complex value, u(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) =
𝜇𝐴∩𝐵(𝑥) to all x in X. 
 The complex fuzzy intersection function i must 
satisfy at least the following axiomatic 
requirements, for any a, b, c, d ∈ {𝑥|𝑥 ∈  ∁ , |𝑥|  ≤
1} 
Axiom 1 (boundary conditions): |𝑏| = 1, if  
|𝑖(𝑎, 𝑏)|=|𝑎|. 
Axiom 2 (monotonicity): |𝑏| ≤ |𝑑| implies 
|𝑖(𝑎, 𝑏)| ≤ |𝑖(𝑎, 𝑑)|. 
Axiom 3 (commutativity): i(a, b) = i(b, a). 
Axiom 4 (associativity): i(a, i(b, d))=i(i(a, b), d). 
Axiom 5 (continuity): i is a continuous function. 
Axiom 6 (superidempotency):|i(a, a)|< |𝑎|. 
Axiom 7 (strict monotonicity):|𝑎| ≤ |𝑐| and |𝑏| ≤
|𝑑| ⇒ |𝑖(𝑎, 𝑏)| ≤ |𝑖(𝑐, 𝑑)|. 

Table 1 shows some examples of s-norms and t-
norms under CFS. 
 

Table 1.  Some Examples of s-norms and t-norm 
For any two CFSs 

 ( )( , ( ) ) :Ai x
AA x r x e x X

  and

 ( )( , ( ) ) :Bi x
BB x r x e x X

   in a universe of 

discourse U, 
 Basic s-norm: 





,max( ( ), ( )) ,

max( ( ), ( )) :

A B

A B

A B

x r x r x

x x x X 

 



 

 Basic t-norm: 





,min( ( ), ( )),

min( ( ), ( )) : .

A B

A B

A B

x r x r x

x x x X 

 



 
 Yager S-norm: 

(( ), ( ))

( ( , ), ( , )),

a b

r

s ae be

s s a b s a b

 

 


 

where  

 
1

( , )

min 1,

rs a b

a b



  



 
 

 

 

and 

 
1

,( )

min 1,

a b

a b

s

  

 

 



 
 

 

with (0, )   . 

 Yager T-norm: 
(( ), ( ))

( ( , ), ( , )),

a b

r

t ae be

t t a b t a b

 

 


 

where 

 
1

( , )

1 min 1, (1 ) (1 ) ,

r
t a b

a b



  



   
 
 
 

and 

 
1

( , )

min 1, ( ) ( )

t a b

a b




  

  

 
 
 
 

 

with (0, )   . 

 
Definition 2.9 [9]. Let U ={x1,x2,...,xn} be the 
universal set of elements and E ={e1; e 2; ... ; em} be 
the universal set of parameters. The pair (U, E) will 
be called a soft universe. Let : UF E I  and   

be a fuzzy subset of E, i.e : [0,1]E I   , 

where UI is the collection of all fuzzy subsets of U.  
Let F  be the mapping : UF E I I   be a 

function defined as follows: 
( ) ( ( ), ( ))F e F e e   where ( ) UF e I : 

Then F
 is called a generalized fuzzy soft set 

(GFSS) over the soft universe (U, E). Here for each 
parameter ,je  ( ) ( ( ), ( ))j j jF e F e e   
indicates not only the degree of membership e 
belongingness the elements of U in ( )jF e but also 

the degree of possibility of such belongingness of 
uncertainty which is represented by ( )je . 

Example 2.1. Let U ={x1,x2, x3} be a set of three 
shirts. Let E ={e1; e 2; e3} be a set of qualities where 
e1 = bright; e2 = cheap; e3 = colorful. Let 

: E I  be defined as follows: 1( )e =0.2; 

2( )e =0.5;
3( )e =0.8. 

We define a function : UF E I I   be 

defined as follows: 

31 2
1( ) , , ,0.2 ,

0.2 0.5 0.1

xx x
F e

  
   

  

2
31 2( ) , , ,0.5 , and

0 0.2 0.9

xx x
F e

  
   

  

 

31 2
3( ) , , ,0.8

0.9 0.6 0.2

xx x
F e

  
   

  
. 

Then the family  ( ) : 1,2,3.jF e j   of UI I  is 

a generalized fuzzy soft set. 

Definition 2.10. [9]. Let ( )F e and ( )G e  be 

two GFSS over (U, E). Now ( )F e is said to be a 

generalized fuzzy soft subset of ( )G e if 

(i)   is a fuzzy subset of   . 

(ii) ( )F e  is also a fuzzy subset of ( ) , .G e e E 

In this case we write ( ) ( ).F e G e   

Note. Let  and   be two binary operations on 
[0, 1] defined as s-norm and t-norm, respectively. 
Definition 2.11. [9]. Union of two GFSS ( )F e  

and ( )G e  , denoted by ( ) ( )F e G e 
 

 is a GFSS ( )vH e  , defined as 

( ) : U
vH e E I I  such that 

( ) ( ( ), ( ))vH e H e v e  where 

( ) ( ) ( )H e F e G e   and 

( ) ( ) ( )v e e e  . 
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Definition 2.12. [9]. The intersection of two GFSS 
( )F e

 and ( )G e , denoted by 

( ) ( )F e G e 
 is a GFSS ( )vH e  , 

defined as ( ) : U
vH e E I I  such that 

( ) ( ( ), ( ))vH e H e v e  where 

( ) ( ) ( )H e F e G e   and  

( ) ( ) ( )v e e e   . 
In this paper, we use the Normalized 

Euclidean distance between two complex fuzzy sets 
[24]. 
For any two complex fuzzy sets 

 ( )( , ( ) ) :Ai x
AA x r x e x U    and 

 ( )( , ( ) ) :Bi x
BB x r x e x U   , then the Normalized 

Euclidean distance is given by 

   
2 2

2
1

1 1
( , ) ( ) ( ) ( ) ( )

2 2

n

CF A i B i A i B i
i

q A B r x r x x x
n

 


 
    

 


 

3. Complex Generalized Fuzzy Soft 
Sets 
As a result, the concept of CGFSS is introduced and 
its basic theoretical operations are defined and 
studied in this section. Some numerical examples 
and theorems are illustrated in the realm of CGFSS. 
Definition 3.1. Let W ={x1,x2,…,xn} be the universal 
set, and E ={e1, e2, ... ; em} be the set of parameters. 
The pair (W, E) is called a soft universe. Let 

( ) : W
cCF e E I   and   be a complex 

fuzzy subset of E. i.e
 : : 1, i

cE I a a a re        , where both 

andr   values in [0, 1], and W
cI is the collection 

of all complex fuzzy subsets of W. Let the mapping 
( ) : W

c cCF e E I I   be a function defined as 

follows: 
( ) ( ( ), ( ))CF e CF e e 

 
where ( ) W

cCF e I : 

Then ( )CF e  is named a complex generalized 

fuzzy soft set (CGFSS) over the soft universe (W, E). 
 

For each parameter 
, ( ) ( ( ), ( ))j j j je CF e CF e e   point to not only the 

degree of membership e belongingness of j 
uncertainty and periodicity the elements of W in 

( )jCF e but also the degree of possibility of such 

belongingness of uncertainty and periodicity which 
is represented by ( )je . 

Example 3.2. Let W ={x1, x2, x3} be a set of three 
shirts. Let E ={e1, e2, e3} be a set of features, where 
e1 = dazzling; e2 = colorful; e3 = expensive. Let 

 : : 1,cE I a a a      be getting the 

following values:  

1( )e =0.2 2 (0.3)ie  ; 2( )e =0.5 2 (0.3)ie  ; 3( )e =0.7
2 (0.3)ie  . So, we may be giving a function 

( ) : W
c cCF e E I I    as follows: 

2 (0.3)31 2
1 2 (0.2) 2 (0.1) 2 (0.1)

( ) , , ,0.2
0.7 0.4 0.3

i
i i i

xx x
CF e e

e e e


   

  
   

  
 

, 

2 (0.3)31 2
2 2 (0.2) 2 (0.1) 2 (0.1)

( ) , , ,0.5
0.1 0.2 0.9

i
i i i

xx x
CF e e

e e e


   

  
   

  

,

2 (0.3)31 2
3 2 (0.2) 2 (0.1) 2 (0.1)

( ) , , ,0.7
0.8 0.5 0.2

i
i i i

xx x
CF e e

e e e


   

  
   

  

. 
Then ( ) ( ( ), ( ))j j jCF e CF e e  is a CGFSS 

over (W, E). 
Or we may represent it as a matrix form as follows: 

2 (0.2) 2 (0.1) 2 (0.1) 2 (0.3)

2 (0.2) 2 (0.1) 2 (0.1) 2 (0.3)

2 (0.2) 2 (0.1) 2 (0.1) 2 (0.3)

( ) ( ( ), ( ))

0.7 0.4 0.3 0.2

0.1 0.2 0.9 0.5

0.8 0.5 0.2 0.7

j j j

i i i i

i i i i

i i i i

CF e CF e e

e e e e

e e e e

e e e e



   

   

   

 

 
 

  
 
 

,  

where the jth row vector represents ( )jCF e  , the jth 

column vector represents 
jx , the last column 

represents the degree of  and it is called complex 
membership matrix of CF

. 

Definition 3.3. Let ( )CF e and ( )CG e  be 

two CGFSS over (W, E). Now ( )CF e  
is supposed 

to be a complex generalized of the complex fuzzy 
soft subset of ( )CG e if 

(i)   is a complex fuzzy subset of   . 

(ii) ( )CF e  is also a complex fuzzy subset of 

( ) , .CG e e E   denoted by 

( ) ( ).CF e CG e   

Example 3.4. As in Example 3.2, let ( )CF e
be 

the CGFSS over (W, E) given in Example 3.2. Let 
( )CG e  be one more CGFSS over (W, E) has the 

following values: 

2 (0.3)31 2
1 2 (0.2) 2 (0.1) 2 (0.1)

( ) , , ,0.2
0.2 0.3 0.1

i
i i i

xx x
CG e e

e e e


   

  
   

  

, 

2 (0.3)31 2
2 2 (0.2) 2 (0.1) 2 (0.1)

( ) , , ,0.4
0.0 0.1 0.7

i
i i i

xx x
CG e e

e e e


   

  
   

  

,
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2 (0.3)31 2
3 2 (0.2) 2 (0.1) 2 (0.1)

( ) , , ,0.6
0.7 0.3 0.1

i
i i i

xx x
CG e e

e e e


   

  
   

  

. where W
cI   be defined as above: 

Then ( ) ( ).CG e CF e   

Note 3.5 ([11]). Let c be a complex fuzzy 
complement and g be an increasing generator of c. 
Let the binary operations  and   be defined as: 
  is a t-norm and is an s-norm.  Moreover ( ;

; c) develops a dual triple. Hereafter, we will 
consider such a dual triple as the general case. 
Definition 3.6. The complement of ( )CF e

 over 

(W, E), denoted by ( ),cCF e
 is defined by 

( ) ( )cCF e CG e  , where ( ) ( )ce e   and 

( ) ( ) ,cCG e CF e e E   . 

Note 3.7. The equality ( )c cCF CF  holds. 

Definition 3.8. Let ( )CF e
and ( )CG e  be two 

CGFSS over (W, E), Then the union of ( )CF e
and 

( )CG e
, denoted by ( ) ( ),CF e CG e 

 is a 

CGFSS ( )CHv e  , defined as 

( ) : W
v c cCH e E I I   such that 

( ) ( ( ), ( ))vCH e CH e v e  where 

 ( ) ( ) ( )CH e CF e CG e  and ( ) ( ) ( )v e e e  . 

Definition 3.9. Let ( )CF e
and ( )CG e  be two 

CGFSS over (W, E). Then the intersection of two 
CGFSS ( )CF e  and ( ),CG e  denoted by 

CF CG 
 is a CGFSS ( )vCH e  , defined as 

( ) : W
v c cCH e E I I  such that

( ) ( ( ), ( ))vCH e CH e v e  where  
( ) ( ) ( )CH e CF e CG e   and  

( ) ( ) ( )v e e e   . 

Example 3.10. Consider ( )CF e
and ( )CG e

as 

defined in Examples 3.4. Let the operation 
defined on : 1,a a a    as follows: a b = 

(ab) ( )2 a bie    and the operation defined on 

 : 1,a a a   as follows: a b = (a +b – ab)

(2 – )aa b bie       . Also, take c as (ac = (1 – a) 2 1( )aie  

) Then ( ; ; c) forms a dual triple. Then, 

2 (0.36) 2 (0.19) 2 (0.19) 2 (0.51)

2 (0.36) 2 (0.19) 2 (0.19) 2 (0.51)

2 (0.36) 2 (0.19) 2 (0.19) 2 (0.51)

( ) ( )

0.76 0.58 0.37 0.36

0.1 0.28 0.97 0.64

0.94 0.65 0.28 0.84

i i i i

i i i i

i i i i

CF e CG e

e e e e

e e e e

e e e e

 

   

   

   



 
 
 
 
 

 

2 (0.04) 2 (0.01) 2 (0.01) 2 (0.09)

2 (0.04) 2 (0.01) 2 (0.01) 2 (0.09)

2 (0.04) 2 (0.01) 2 (0.01) 2 (0.09)

( ) ( )

0.14 0.12 0.03 0.04

0.0 0.02 0.63 0.16

0.56 0.15 0.02 0.36

i i i i

i i i i

i i i i

CF e CG e

e e e e

e e e e

e e e e

 

   

   

   



 
 
 
 
 

 

2 (0.8) 2 (0.9) 2 (0.9) 2 (0.7)

2 (0.8) 2 (0.9) 2 (0.9) 2 (0.7)

2 (0.8) 2 (0.9) 2 (0.9) 2 (0.7)

( )

0.8 0.7 0.9 0.8

1.0 0.9 0.3 0.6 .

0.3 0.7 0.9 0.4

c

i i i i

i i i i

i i i i

CG e

e e e e

e e e e

e e e e



   

   

   



 
 
 
 
 

 
Definition 3.11. A CGFSS is said to be a complex 
generalized null fuzzy soft set, denoted by ( )C e  

if ( ) : W
c ce E I IC     such that

( ) ( ( ), ( ))C e CF e e  , where  
0(2 )( ) 0. iCF e e e E    and 0(2 )( ) 0. ie e e E    . 

Definition 3.12. A CGFSS is said to be a complex 
generalized absolute fuzzy soft set, denoted by 

( )C A e , if ( ) : W
c ce EC I IA    such that

( ) ( ( ), ( ))C A e CA e e  , where 

 2 (1)( ) 1. iCA e e e E    and 
2 (1)( ) 1. ie e e E    . 

Theorem 3.13. Let ( )CF e
 be a CGFSS over 

(W, E), then the following holds: 

(i) ( ) ,( ) ( )CF e eCF CF e    

(ii) ( ) ( ) ( ),e e CF eCF CF    

(iii) ( ) ( ) ( )e e eCF C CF      

(iv) ( ) ( ) ( )e e eCF C C      

(v) ( ) ( ) ( )CF C A C Ae e e    

 (vi) ( ) ( ) ( )CF C A CFe e e   

Proof. Omitted. 
Note 3.14. As a special case, we will have equality 
relation in (i) and (ii) above, if we take standard 
complex fuzzy operations (i.e. max, min, and 
standard complement). 
Theorem 3.15. The following equalities are hold 

 (a) ( ) ( ) ( )ce eCF CF C A e    and   

(b) cCF CF C   . 

Proof. Omitted. 
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Theorem 3.17. Let ( )CF e
, ( )CG e

 and ( )CH e
 

be any three CGFSS over (W, E), then: 

(i) ( ) ( ) ( ) ( )e eCF CG CG CFe e     

(ii) ( ) ( ) ( ) ( )e eCF CG CG CFe e   
  

(iii) 

( ) ( ) ( )( ) )( ) ( )( ( )CF CG CH CFe e e e CG CHe e     

\
(iv) 

( ) (( ) ( ) ( ) ( ) ( )) ( ).CF CG CH Ce e e e eF G eC CH     

.Proof. Omitted 
Note 3.18. The distributive law does not hold on 
CGFSS in general, but as a special case for standard 
complex fuzzy operations then distributive law 
holds. 
Theorem 3.19. Let ( )CF e

 and ( )CG e  are 

two CGFSS over (W, E), then the following holds: 

(i)  ( ) (( ) ( ) ( ) ( ))c c cCF CG CF CGe e e e       

(ii) ( ) (( ) ( ) ( ) ( ))c c cCF CG CF CGe e e e     

Proof. Omitted.  
 

4. Complex Generalised Fuzzy Soft 
Relation 
To define a suitable application in decision-making 
problems to optimize the best solution we define 
CGFS relations and utilize it to find the best machine 
to be purchased from a seller Z. 
Definition 4.1. Let ( )iCF s

 and ( )jCG s
be two 

CGFSS over (W, E) and 2.Q S  then complex 
generalized fuzzy soft relation is a function 

( , ) : W
i j c cCR s s Q I I   , defined as follows: 

( , ) ( ) ( ) ( , ) ,i j i j i jCR s s CF s CG s for all s s Q      

such that 
( ( ), (( , ) , , ))i j i j i jCR s s sC s sR s  , 

where  

 ( ) ( )(min , )

( ) ( )

( ) ( ) ( )

(( ),min( )

,

, CF Cs

i

G si i

j

i j i j

i j

i

Cs sCF G

CR CF CG

r

s s s s

s s r e
 

  


  and 

 
 ( ) ( )(min , )

( ) ( ),

( , ) ( ) ( )

(( ),min( ) s si i

i j

i j i j

i j s s

i

s s s s

rs s r e   

 

    


. 

An application in the decision-making 
problem and an illustration of the notion of complex 
generalized fuzzy soft relation are presented in 
application 4.1 bellow.  
Application 4.1. Assume a firm Y would like to 
purchase a machine from a seller Z. The seller Z 
offers firm Y three models of a machine with 

different production dates of each model. 
Consequently, a firm Y has three models (M1, M2, 
and M3) to select with its production date (D1, D2, 
and D3) simultaneously. Let the company’s team of 

analysts gives a possible value for three parameters 
that should be considered with the possibility for 
selecting the perfect time to buy machines (Purchase 
date). Parameters (S) are: s1 = durability, s2 = 
purchasing cost, s3 = maximum speed. These 
parameters will be influenced by some factors such 
as the purchase date (as an example: the price of the 
machine will cost a high price if it is manufactured 
in the present year (low price for machines 
manufactured in the past year). In other words, the 
team’s opinion/decision depends on their experience 
and knowledge that may change depending on 
season or phase of purchasing a machine. As 
demonstrated above, CGFSS is the best way to 
represent this information (i.e., represent the data on 
people’s choice that occurs periodically regarding 
possibility values of parameters that also may be 
changed periodically). 
    For more illustration, suppose that the firm’s team 

has prepared an ideal machine with some possible 
parameters before getting the offer from seller Z. 
The goal of the team is to choose a proper machine 
recorded by seller Z which is similar to the ideal 
machine. Let everyone in the selection team arrange 
in this stage for each machine’s parameters a mark 1 
or 0 to state whether the machine is proper for the 
parameter or not for each model and production date 
of the machine, and give 1 or 0 to state the possible 
value of parameters is proper or not for each 
parameter and purchase date of machines. For 
instance, suppose the 80 % of the team of analysts 
trust that the ideal model machine is proper at the 
first parameter, and 60% of the team of analysts 
believe that is proper for the possible value of the 
first parameter, in which this manner is applied to 
compute the amplitude terms for membership 
functions in ( ( )CF s

), in CGFS. The phase terms 

that present production date can be given for the first 
attribute of an ideal machine and the possibility of a 
purchasing date of the machine 60% and 50%, 
respectively. The team trusts that the ideal 
production date of the machine is proper at the first 
attribute and possibility of purchasing date of the 
machine. So the ideal machine’s first parameter can 

be presented as 2 (0.6)0.8 ie   and the possibility for the 
first parameter as 2 (0.5)0.6 .ie   All information in this 
manner may be attained in the form of CGFSS as in 
the following tables, where both membership 
functions of CCFSS represents information of 
complex fuzzy set.  
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Table 2. Ideal car model and production date with 
ideal possibility of parameters and possibility of 

purchase date. 
( )sIdeal CF

 

S1  S2 S3 

M1 
2 (0.6)0.8 ie 

 

2 (0.3)0.4 ie 

 

2 (0.4)0.6 ie 

 
M2 

2 (0.8)0.7 ie 

 

2 (0.7)0.5 ie 

 

2 (0.7)0.7 ie 

 
Mx3 

2 (0.6)0.4 ie 

 

2 (0.6)0.8 ie 

 

2 (0.4)0.6 ie 

 
Possibility 
of   for 
parameter 
and 
possibility 
perfect time 
to purchase. 

 
2 (0.5)0.6 ie 

 

 
2 (0.4)0.6 ie 

 

 
2 (0.2)0.4 ie 

 

 
So, 

 
1

2 (0.5)31 2
2 (0.5) 2 (0.8) 2 (0.6)

( )

, , ,0.8
0.8 0.7 0.4

i
i i i

CF s

MM M
e

e e e





  



  
  
  

 ,  

2

2 (0.4)31 2
2 (0.3) 2 (0.7) 2 (0.6)

( )

, , ,0.6
0.4 0.5 0.8

i
i i i

CF s

MM M
e

e e e





  



  
  
  

, 

3

2 (0.2)31 2
2 (0.4) 2 (0.7) 2 (0.4)

( )

, , ,0.4
0.6 0.7 0.6

i
i i i

CF s

MM M
e

e e e





  



  
  
  

. 
Then ( )CF s is a CGFSS over (W, E). and has the 

following matrix form,  

2 (0.5) 2 (0.8) 2 (0.6) 2 (0.5)

2 (0.3) 2 (0.7) 2 (0.6) 2 (0.4)

2 (0.4) 2 (0.7) 2 (0.4) 2 (0.2)

0.8 0.7 0.4 0.8

0.4 0.5 0.8 0.6

0.6 0.7 0.6 0.

( , )

(1

4

)

i i i i

i i i i

i i i i

e e e e

e e e e

e e

CF x

e e

   

   

   

  

 
 
 
 
 

Table 3. 
( )CF s  for M1 

 
And has the following matrix form, 

2 (0.7) 2 (0.4) 2 (1) 2 (0.6)

2 (0.6) 2 (0.8) 2 (0.6) 2 (0.6)

2 (0.5) 2 (0.8) 2 (0.6) 2 (0.7)

1

0.7 0.6 0.9 0.5

0.4 0.5 0.8 0.7

0

: ( , )

(

.6 0.5 0

2)

.5 0.6

i i i i

i i i i

i i i i

e e e e

e e e e

e e e e

M CF x





  

   

   

 

 
 
 
 
 

 
    Similarly we compute the following matrix form 
of 2 : ( , )M CF x   and 3 : ( , )M CF x  , 

2 (0.5) 2 (0.6) 2 (0.8) 2 (0.6)

2 (0.4) 2 (0.5) 2 (0.8) 2 (0.4)

2 (0.7) 2 (0.8) 2 (0.0) 2 (

2

0.6)

0.6 0.7 0.8 0.7

0.7 0.8 0.7 0.5

0.4 0.4 0.0 0

: )

(3

.8

( ,

)

i i i i

i i i i

i i i i

e e

M CF x

e e

e e e e

e e e e

   

   





  

 

 
 
 
 
 

And  

2 (0.8) 2 (0.3) 2 (0.5) 2 (0.7)

2 (0.3) 2 (0.5) 2 (0.3) 2 (0.7)

2 (0.5) 2 (0.6) 2 (0.2) 2 (

3

0.5)

0.7 0.9 0.8 0.8

0.8 0.5 0.4 0.4

0.4 0.9 0.8 0

: )

(4

.6

( ,

)

i i i i

i i i i

i i i i

e e

M CF x

e e

e e e e

e e e e

   

   





  

 

 
 
 
 
 

     

      To keep going in our application, we use a 
suitable model to choose a proper machine that is 
most similar to the ideal machine (see [9]). And 
generalized it to deal with complex fuzzy 
information as follows. 
Model: In this model, we are using the Normalized 
Euclidean distance between two complex fuzzy sets 
[14]  

   
2 2

2
1

1 1
( , ) ( ) ( ) ( ) ( )

2 2

n

CF A i B i A i B i
i

q A B r x r x x x
n

 


 
    

 


. 
1) Evaluate the distance between M1 in Eq. 1 and Eq. 2, 

M2 in Eq. 1 and Eq. 3, and M3 in Eq. 1 and Eq. 4, to 
find the most similar production date to the ideal 
machine (We seek to get the machine with 
production date that has a minimum value of 
distance compared to the ideal machine). 

     

     

   

2 2 2

3

1 1 2 2 22 2 21
2

3

1

0.8 0.7 0.4 0.4 0.6 0.6
1

( , ) 16 4 0.6 0.7 4 0.3 0.6 4 0.4 0.5
2

1
0.01 2 0.11 0.195789002

6

CF
i

i

q M D
  






      
 

           

   





 
Similarly, we evaluate 1 2( , ) 0.4CFq M D  , 

1 3( , ) 0.3559026084CFq M D  , 

2 1( , ) 0.2886751345CFq M D  , 

2 2( , ) 0.2449489743CFq M D  , 

2 3( , ) 0.5066228051CFq M D  , and 

3 1( , ) 0.2614064524CFq M D  , 

1 (: )CFM s

 
S1  S2 S3 

D1 
2 (0.7)0.7 ie   2 (0.6)0.4 ie 

 

2 (0.5)0.6 ie 

 
D2 

2 (0.4)0.6 ie   2 (0.8)0.5 ie 

 

2 (0.8)0.5 ie 

 
D3 

2 (1)0.9 ie   2 (0.6)0.8 ie 

 

2 (0.6)0.5 ie 

 
Possibility 
of   for 
parameter 
and 
possibility 

 
 

2 (0.6)0.5 ie 

 

 
 

2 (0.6)0.7 ie 

 

 
 

2 (0.7)0.6 ie 

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2020.19.32 Abd Ulzeez M. J. S. Alkouri

E-ISSN: 2224-2880 329 Volume 19, 2020



 
 

3 2( , ) 0.343996124CFq M D  , and 

3 3( , ) 0.3265986324CFq M D  . 
 

2) Evaluate the distance between possibility 
parameters si, i = 1, 2, and 3, in table 1 and 
possibility parameters in each table j, j = 1, 2, and 3 
separately. To find the most similar possibility 
parameter and its purchase date to the ideal machine. 
(We seek to get the possibility parameters with 
purchase date that has a minimum value of distance 
compared to the ideal possibility parameters and its 
purchase date). 

   

 

1

1
2 22

1, 1 2
1

1

1

1 1
( , ) 0.5 0.6 4 0.6 0.5

2 2

1
0.01 2 0.01 0.1224744871

2

CF M
i

i

q s s 




            

    





   

    Similarly, we evaluate 

21, 1( , ) 0.1224744871CF Mq s s  , 

31, 1( , ) 0.2449489743CF Mq s s  , 

12, 2( , ) 0.2121320344CF Mq s s  , 

22, 2( , ) 0.0707106781CF Mq s s  , 

32, 2( , ) 0.331662479CF Mq s s  , 

13, 3( , ) 0.5744562647CF Mq s s  ,   

      
23, 3( , ) 0.4898979486CF Mq s s  , and 

33, 3( , ) 0.331662479CF Mq s s  . 

3) After identifying the desirable production date for 
each machine and the most possibility parameters to 
the similar ideal machine and its possibility 
parameters respectively in steps one and two. We 
generalize a new CGFSS containing the three 
machines and parameters identified in steps one and 
two.  
    Thus, the minimum value between the ideal 
machine and best production date is 0.195789002 
which implies the best production date for the first 
machine is D1. Also, the minimum value between 
the ideal possibility machine parameters and its 
purchase date comparing with parameters s1, s2, and 
s3, for each machine, are “ 0.1224744871”, “

0.0707106781”, and “ 0.331662479 ”, which implies 

the best possible parameters for s1, s2, and s3, 
respectively. Similarly for the second and third 
machines. The result of calculated CGFSS “

( )CG s ” is presented in Table 4. 

 
 
 
 
 

Table 4. ( )Calculated CG s  

 
4) Define the relation between two CGCFSS: 

( )Ideal CF s  and ( ).Calculated CG s  

2 (0.6) 2 (0.6) 2 (0.6) 2 (

1 2 3

1 1

1 2

1 3

2

0.5)

2 (0.6) 2 (0.6) 2 (0.6) 2 (0.4)

2 (0.5) 2 (0.8) 2 (0.5) 2 (0.5)

2 (0.3 (
1

) 2

( , ) 0.7 0.7 0.4 0.5

( , ) 0.4 0.7 0.4 0.5

( , ) 0.6 0.4 0.4 0.6

( , ) 0.4 0.5

i i i i

i i i i

i i i i

i i

R M M M

s s

s s

e e e e

e e e e

e e e e

e e

s s

s s

   

   

   

 



0.6) 2 (0.6) 2 (0.4)

2 (0.3) 2 (0.5) 2 (0.3) 2 (0.4)

2 (0.3) 2 (0.7) 2 (0

2 2

2 3
.5) 2 (0.4)

2 (0.4) 2 (0.4) 2 (0.4) 2 (0.2)
3 1

3 2

0.7 0.5

( , ) 0.4 0.5 0.8 0.5

( , ) 0.4 0.4 0.4 0.6

( , ) 0.6 0.6 0.6 0.4

( , )

i i

i i i i

i i i i

i i i i

s s

s s

e e

e e e e

e e

s s

e e

e e

s

e e

s

 

   

   

   

2 (0.4) 2 (0.5) 2 (0.3) 2 (0.2)

2 (0.4) 2 (0.7) 2 (0.4)
3

( )
3

2 0.2

0.4 0.7 0.6 0.4

( , ) 0.6 0.4 0.4 0.4

i i i i

i i i is

e e e e

e e e es

   

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
5) In this step, we generalize the model in [9] to deal 
with complex fuzzy information. Let us get started 
to accomplish the best machine by adding the 
amplitude term and phase term values for each value 
in the relation table above. Then mark the maximum 
numerical grade (indicated in parenthesis) in each 
row excluding the last column which is the grade of 
such belongingness of a machine against each pair 
of parameters. Now the score of each of such 
machines is calculated by taking the sum of the 
products of these numerical grades with the 
corresponding values of λ. The machine with the 

maximum score is the wanted machine. We do not 
consider the numerical grades of the machines 
against the pairs (ei,ei), i =1,2,3, as both the 
parameters are the same. 

 

( )

Calculated

sCG

 

 
S1  

 
S2 

 
S3 

M1 
2 (0.7)0.7 ie 

 

2 (0.6)0.4 ie 

 

2 (0.5)0.6 ie 

 
M2 

2 (0.6)0.7 ie 

 

2 (0.5)0.8 ie 

 

2 (0.8)0.4 ie 

 
M3 

2 (0.8)0.7 ie 

 

2 (0.3)0.8 ie 

 

2 (0.5)0.4 ie 

 
Possibility 
of   for 
parameter 
and 
possibility  

 
 

2 (0.6)0.5 ie 

 

 
 

2 (0.4)0.5 ie 

 

 
 

2 (0.5)0.6 ie 
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Score (M1)= 1 0.6 0.6   , score (M2)= 
1.3 0.9 1.2 1.1 1.1 1 1 0.6 1.2 0.6 4.91         

, and score (M3)= 1.3 0.9 1 0.6 1.77     
      Then the firm’s team will choose the machine 
with maximum score. Therefore the team will buy 
machine M2. 

 
5. Different uncertainty sets with 
CGFSS 
We extend the range of belongingness and possibility of 
belongingness terms of GFSS as presented by Majumdar 
and Samanta [9] to convey CGFSS information. The new 
concept of CGFSS can be employed to simultaneously 
represent the uncertainty and periodicity problems of 
GFSS information in complex geometry. We used a polar 

form ( )ir e   to show the advantage of the nature of 

periodic that appears in the complex-valued membership 
functions. See Table 5. In next page. 
 

6. Conclusion 
We introduced complex generalized fuzzy soft set 
by employing GFSS to the phase term in the 

complex numbers. The advantage of the CGFSS 
may be concluded by its ability to represent 
problems. Not only the parametric features of the 
problems, but also the features are affected by a 
factor that also conveys GFSS information 
simultaneously. CGFSS can be useful to represent 
the information several problems in decision-
making by using two variables instead of one 
variable. A comparative study among different 
uncertainty sets with CGFSS has illustrated. The 
limitation of CGFS may appeared in indicating a 
membership and non-membership values for a 
collection of approximate descriptions of an object. 
This limitation can be enclosed in future researches 
by combining CGFSS and the innovative concept 
called intuitionistic fuzzy set [29]. CGFSS has no 
ability to characterize the truth, falsity, and 
intermediate information as in complex 
neutrosophic set, So the future concept may be 
introduced is complex neutrosophic generalized 
fuzzy soft set [30]. 
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Table 5. Comparative study among different uncertainty sets (FS, FSS, GFSS, CFS) with CGFSS 

 FS FSS GFSS CFS CGFS 
Domain Universe of 

discourse 
Universe of 
discourse 

Universe of 
discourse 

Universe of 
discourse 

Universe of 
discourse 

Co-domain Single-
valued in 

[0, 1]  

Single-
valued in 

[0, 1]  

Two values in 
[0, 1]  

One value in 
[0, 1][0, 1] ie  

Two Values in   
[0,1][0, 1] ie  

degree of belongingness  Yes Yes Yes Yes Yes 

degree of possibility of 
belongingness 

No No Yes No Yes 

Uncertainty measurement Yes Yes Yes Yes Yes 

Periodic measurement No No No Yes Yes 

Unit disk No No No Yes Yes 
Amplitude term (degree 

of belongingness) 
Single 

valued in 
[0, 1]  

Single 
valued in 

[0, 1]  

Single valued 
in [0, 1]  

Single 
valued in 

[0, 1]  

Single valued in 
[0, 1]  

Amplitude term (degree 
of possibility of 
belongingness) 

No No Single valued 
in [0, 1]  

No Single valued in 
[0, 1]  

phase term 
(degree of belongingness) 

No No No Single 
valued in 

[0, 1]  

Single valued in 
[0, 1]  

phase term 
(degree of possibility of 

elongingness)b 

No No No No Single valued in 
[0, 1]  

Ability to convey GFSS 
(Parametrization nature 

and its possibility) 

No No Yes, only for 
the amplitude 

term 

No Yes, for both 
amplitude and 
phase terms. 
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