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Abstract: - Cathodic protection is defined as a method for slowing down or complete elimination of corrosion 
processes on underground or underwater, insulated or uninsulated metal structures. Protection by cathodic 
protection system is achieved by polarizing protected object to more negative value, with respect to its 
equilibrium potential. Design of the cathodic protection system implies determination of the electric potential 
and current density on the electrode surfaces after installation of the cathodic protection system. Most efficient 
way for determination of the electric potential and current density in the cathodic protection system is by 
applying numerical techniques. When modeling cathodic protection systems by numerical techniques, 
electrochemical reactions that occur on electrode surfaces are taken into account by polarization characteristics. 
Because of nature of the electrochemical reactions, polarization characteristics are nonlinear and under certain 
conditions can be time – varying (dynamic nonlinear polarization characteristics). This paper deals with 
numerical modeling of the cathodic protection system with dynamic nonlinear polarization characteristics. 
Numerical model presented in this paper is divided in the two parts. First part, which is based on the direct 
boundary element method, is used for the calculation of the distribution of electric potential and current density 
on the electrode surfaces in the spatial domain. Second part of the model is based on the finite difference time 
domain method and is used for the calculation of the electric potential and current density change over time. 
The use of presented numerical model is demonstrated on two simple geometrically examples.  
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1 Introduction 
Cathodic protection is most widely used technique 
for protection of the underground and underwater 
metallic structures from corrosion [1]. This 
technique is based on the shifting the equilibrium 
potential of protected structure to more negative 
value.  This can be done by connecting the protected 
object with additional electrode(s) placed in same 

electrolyte (ground or water), which equilibrium 
potential is more negative than equilibrium potential 
of the protected object [2]. After installation of the 
cathodic protection system, electric potential value 
on the entire surface of protected structure must be 
lower than minimum protection potential value 
defined by standards [3]. Also, current density 
distribution on the surface of protected structure 
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should be uniform as possible [4]. Therefore, for 
evaluation of efficiency of the cathodic protection 
system, electric potential and protection current 
density distribution on the protected metallic 
structure surface need to be known [5]. These 
parameters can be determined by solving Laplace 
partial differential equation along with the adequate 
boundary conditions [1]. This type of the problems 
can be easily solved by using numerical techniques. 
For modeling of the cathodic protection systems, 
boundary element method is mostly used [6-8]. The 
main advantage of this method, in comparison to the 
other numerical methods, is that it requires 
discretization only of boundaries of considered 
domain and there is no need for discretization of 
infinite boundaries [9]. Additionally, iterative 
techniques for solution of nonlinear equations (such 
as Newton – Raphson technique) must be included 
because nonlinear boundary conditions (nonlinear 
polarization characteristics) are given on electrode 
surfaces of cathodic protection system. 

In some situations, these nonlinear boundary 
conditions can change over the time (dynamic 
nonlinear polarization characteristics) [10-12]. 
These time changes of boundary conditions affect 
the electric potential and current density distribution 
in the system. Therefore, for modeling of the 
cathodic protection system with dynamic nonlinear 
polarization characteristics, some modifications in 
mathematical model must be done. In this paper, 
this problem is solved by using combined boundary 
element method and finite difference time domain 
method. 
 
 

2 Mathematical Model 
As previously mentioned, the purpose of modeling 
of the cathodic protection system is to determine the 
distribution of protection current density and electric 
potential on the surface of the protected structure in 
order to verify the effectiveness of the system. 
Electric potential distribution of cathodic protection 
system can be determined by solving Laplace partial 
differential equation for static current field: 
 

         02     (1) 
 
where φ is electric potential and  is Nabla 
operator.   

To obtain a unique solution it is necessary to add 
the appropriate boundary conditions on domain 
boundaries to a Laplace partial differential equation. 
Boundaries that are taken into account when 

modeling cathodic protection system are 
anode/electrolyte interface and cathode/electrolyte 
interface. Boundary conditions applied to these 
boundaries are called polarization characteristics 
and they are influenced by electrochemical reaction 
that takes place on electrode surfaces. Polarization 
characteristics represent the correlation between 
current density and electric potential on electrode 
surfaces and they are nonlinear. When polarization 
characteristics change over the time then they are 
dynamic polarization characteristics. These changes 
of polarization characteristics over the time can be 
caused by calcareous and magnesium deposition on 
the electrode surface. This phenomenon is 
characteristic for the cathode surface [11,13].  

Dynamic polarization characteristic on the 
cathodic surface is defined by the following 
mathematical relation: 
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where j*
O2

 is threshold current density of oxygen 

reduction, jH2
 is current density of the hydrogen 

separation, jFe is current density of the metal 
dissolution, φ*

H2
 and φ*

Fe are equilibrium potentials 

for corresponding electrochemical reactions, βH2
 and 

βFe are Tafel’s coefficients, φ is potential difference 
of interface metal/electrolyte and fO2

, fH2
 and fFe are 

time-dependent factors. For all three partial 
electrochemical reactions, the time-dependent 
factors have a following form: 
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where index R represents a corresponding 
electrochemical reaction.  

On the anode surface, polarizing characteristic is 
defined by the following mathematical relation: 
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where jO2

 is current density corresponding to the 

oxygen reduction, φa is equilibrium potential of 
galvanic anode and βa is Tafel slope of galvanic 
anode. 

Graphical representation of the polarization 
characteristics for anode and cathode surface is 
given on the Figure1. Polarization characteristics are 
constructed using relations (2) and (4) and data from 
literature [13]. 
 

 
Figure 1. Polarization characteristics of the 
electrode surfaces 
 
For calculation of the electric potential and current 
density distribution of the cathodic protection 
system with dynamic polarization characteristic, 
numerical procedure based on boundary element 
method and finite difference time domain method 
was used. This numerical procedure can be divided 
into two parts. First part is calculation of electric 
potential and current density distribution in spatial 
domain at t = 0 using boundary element method and 
second part for  calculation of electric potential and 
current density change over the time using finite 
difference time domain method. 
 
 
2.1 BEM formulation in spatial domain 
Boundary element method for calculation of the 
electric potential and current density distribution in 
spatial domain is based on solving the integral field 
equation. Integral field equation can be obtained by 
applying Green's symmetric identity on Laplace 
partial differential equation (1).  Then integral field 
equation have the following form:  
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where p is position of the source point, q is position 
of the field point, Γ is boundary of the domain, φ(p) 
is electric potential of source point p, φ(q) is electric 
potential of field point q, c(q)  is a constant, n


 is 

normal unit vector, ρ is resistivity of surrounding 
electrolyte,  j(p) is current density at source point p, 
φ∞ is constant potential at infinite boundary and 
G(p,q) is Green’s function whose form for 2D plan 
parallel problems is as follows: 
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For problems with infinite boundaries, Gauss 

boundary condition must be added [14]: 
 

        0


dpj    (7) 

 
In this way it is ensured that there is no flow of 

current on infinite boundary, and by using Gauss 
boundary condition there is no need for 
discretization of infinite boundary.  

In the process of calculation of electric potential 
and current density distribution using boundary 
element method, it is necessary to discretize domain 
boundary on appropriate number of boundary 
elements. After discretization of domain boundaries, 
field integral equation (5) is solved over every 
element. After application of the Collocation 
method at the point and numerical integration, 
solution of the electric potential and current density 
can be obtained for each node of all boundary 
elements by solving following matrix equation [15]: 

 

       jGH                        (8) 
 

where {φ} is vector of unknown electric potentials 
in colocation points, {j} is vector of current 
densities in colocation points, [H] and [G] are 
matrix of influence coefficients of system geometry.  

Since nonlinear boundary conditions are 
specified, to solve the matrix equation (8) it is 
necessary to apply an iterative technique. In this 
paper, matrix equation (8) is solved by using 
Newton – Raphson iterative technique proposed in 
[11,12].The first step in solving a matrix equation 
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(8) by Newton - Raphson technique is expansion of 
the vector current density in the Taylor series, as 
follows: 
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where k is number of the current iteration, [∂j/∂φ] is 
Jacobian matrix, and {∆φ} is vector of electric 
potential increments between the two adjacent 
iteration, and can be written as: 
 

      1 kkk              (10) 
 

By including matrix equations (9) and (10) in the 
equation (8), following equation can be written 
[11,12]: 
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From previous matrix equation vector of electric 

potential increments in k – th iteration can be 
calculated. Further, this vector is used in matrix 
equations (9) and (10) for calculation of current 
densities and electric potentials in same iteration. 
Iterative cycle is repeated until a convergence is 
achieved. 

Since this calculation can be time consuming, 
some modifications are done in this paper in order 
to accelerate calculation procedure. In matrix 
equations (9) and (11) Jacobian matrix is used. This 
matrix is a rectangular matrix whose all elements 
outside the one diagonal are equal to zero. 
Therefore, instead of storing a rectangular matrix, 
non – zero elements of Jacobian matrix are stored in 
form of vector, as follows: 
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As the Jacobian matrix has taken a different 

form, it was necessary to define ways of operating 
with a given matrix in order to keep its functionality 
over calculation. 

 Also, GMRES iterative technique was used for 
calculation of matrix equation (11) in each iteration 
of Newton – Raphson method. 

 
 
2.2 FTDT formulation in time domain 
The previously given mathematical model 
represents a solution of the distribution of electrical 
potential and current density in the cathodic 
protection system for polarization characteristics of 
electrode surface at time moment t = 0. In order to 
calculate the change of the electric potential and 
current density over time, previously given 
mathematical model must be expanded.  

Since dynamic (time – varying) polarization 
characteristics are assumed on cathode surface, 
change of the current density on this surface can be 
expressed by expending the function of current 
density on cathode surface (2) into Taylor series. 
This can be written as follows: 
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where n is time step at which current density is 
calculating, [∂jc/∂t] is matrix of first derivatives of 
cathode surface current density function with 
respect to time, {∆t} is vector of time steps and 
{∆φc}n is vector of electric potentials increments in 
n - th time step and can be written as: 
 

                1 ncncnc       (14) 

 
From equation (4) it is noticeable that 

polarization characteristic of anode isn’t time 
dependent. Changes of the electric potential and 
current density on the anode surface are caused by 
change of total current intensity of the cathodic 
protection system caused by dynamic nonlinear 
polarization characteristic of the cathode surface. 
Therefore, change of the anode surface current 
density, caused by the change of the electric 
potential in the n-th time step can be expressed as 
follows: 
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where [∂ja/∂t] is matrix of first derivatives of anode 
surface current density function with respect to time, 
{∆φa}n is vector of electric potentials increments in 
n-th time step and can be written as: 
 

                1 nanana   16) 
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It is important to emphasize that Gauss condition 

must be satisfied at each time step. Taking into 
account all the above, the overall matrix equation 
can be written in the following form: 
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The matrix equation (17) defines the current 
density of the cathodic protection system in the n - 
th time step. Due to the equation dimensionality, 
additional vector is added to the vector of 
derivatives of current density in the time. The 
elements of the added vector are all equal to zero 
and the length of this vector is equal to the number 
of collocation points on the surface of the anode. 
Also, in matrix equation (17), to matrix of current 
density derivatives with respect to the time and 
vector of potential increments another element equal 
to zero is added. Objective of this is satisfaction of 
Gauss boundary conditions. 

In matrix equation (17) two vectors are 
unknown. By including matrix equations (14), (16) 
and (17) in the matrix equation (8), the following 
matrix equation with one unknown vector can be 
obtained: 
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By solving matrix equation (18) vector of 
electric potential increments in n - th time step is 
obtained. Further, this vector is used in matrix 
equations (14), (16) and (17) for calculation of 
current densities and electric potentials in the same 
time step. 
 
 
2.2 Calculation of current intensity 

Since cathodic protection system is a conserved 
system (i.e. all current that leaves the anode enters 
into the cathode), current intensity can be calculated 
by using the following equation: 
  
            aacc jjI                     (19) 

 
where Γc is the surface of the cathode, Γa is the 
surface of the anode, jc is the current density of the 
cathode surface and ja is the current density of the 
anode surface. 
   Current density, in most practical cases, is not 
homogeneously distributed on both cathode and 
anode surface. Therefore, equation (19) is not 
suitable to use for the calculation of current intensity 
of cathodic protection system in this form. This 
problem can be overcome by using the calculated 
current densities of collocation points and their 
associated surfaces. Current intensity of the galvanic 
anode cathodic protection system, after 
discretization and after calculation of current density 
distribution in the cathodic protection system, can 
be calculated by the following equation [16]:  
 

         naanccn jAjAI            (20) 

 
where {Ac} and {Aa} are column matrix of 
coefficients that correspond to surfaces of 
colocation points. The elements of these matrices 
are contained in the last row of the matrix [G] in the 
equation (8). For the closed region, elements of 
these matrices must be calculated separately. 
 
 
2.3 Calculation of driving voltage 
For simple geometries, driving voltage of the 
cathodic protection system can easily be calculated, 
as well as its change over time (defined as the 
difference between values of potentials on the 
cathode and anode surface). Driving voltage can be 
calculated by using the following equation: 
 

              nancndU ,,         (23) 

 
where φc,n is the value of electric potential in one 
point of cathode in n - th time step, φa,n is the value 
of electric potential in one point of anode in n - th 
time step and Ud,n is voltage drop in n - th time step.  

The unique value of the voltage drop can be 
calculated only for cathodic protection system with 
homogeneous distribution of the electric potential 
(rare case in the practical situations).  
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3 Application of the proposed model 
Application of the previously presented 
mathematical model is demonstrated on two 
examples. For both cases radius of anodes is 1 m 
while radius of cathode is 5 m. Also, for all cases 
resistivity of the electrolyte is 25 Ωcm. 
 
 
3.1 Case Study 1 
Calculation results of distribution of the electric 
potential and current density for Case Study 1, are 
presented below. Geometry of the Cases Study 1 is 
shown on Figure 2. 

 
Figure 2. Geometry of analyzed galvanic anode 
catohdic protection system 
 
 Due to the symmetry of the analyzed system, 
the distribution of the electric potential and current 
density is uniform. Therefore, it is enough to present 
the results of a calculation in a single point on the 
surfaces of the anode and cathode. Distribution of 
the electric potential on the cathode surface is given 
on the Figure 3. 
 

 
Figure 3. Electric potential distribution on the 
cathode surface over time 
 

From results given on the Figure 3 it can be 
noted that electric potential on the cathode surface is 
changing over time. Electric potential of the cathode 
surface becomes more negative over time, which 
further contributes to the protection against 
corrosion. 

Change of the current density distribution on the 
cathode surface over the time is given on the Figure 
4. 

 
Figure 4. Current density distribution on the cathode 
surface over time 
 

From the results given on the Figure 4 it can be 
noted that requirement for the current density of the 
cathode surface is reduced over time.  

Distribution of the electric potential and current 
density on the anode surface over the time is given 
on the Figures 5 and 6, respectively. 
 

 
Figure 5. Electric potential distribution on the anode 
surface over time 
 

 
Figure 6. Current density distribution on the anode 
surface over time 
 

From results given on the Figures 5 and 6 it is 
noticeable that electric potential becomes more 
negative over time while the current density of 
anode surface decreases over time. Decrease of the 
current density on the anode surface causes a 
reduction of anode material consumption, which 
also contributes to the protection against corrosion. 

On Figure 7, change of the current intensity of 
the cathodic protection system over time is given. 
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Figure 7. Change of the current intensity of CP 
system over time  
 

From the results given on the Figure 7 it can be 
noted that current intensity also decreases over time.  

Since electric potential distribution on both 
electrodes (anode and cathode) is uniform, unique 
value of the driving voltage can be calculated. 
Change of the driving voltage for the analyzed 
cathodic protection system is given on the Figure 8.  

 

 
Figure 8. Change of the driving voltage of CP 
system over time  
 

From results given on the Figure 8 it can be 
noted that driving voltage decreases over the time. 
Although, driving voltage represents difference of 
anode and cathode potential which both change over 
time on negative side, but rate of change are 
different. Therefore, driving voltage also change 
over time. 
 
 
2.2 Case Study 2 
In Case Study 2 anode is placed outside of the 
cathode. Both electrodes are placed in the infinite 
electrolyte. Distance between centers of the 
electrodes is d = 5 m. Geometry of the analyzed 
cathodic protection system is given on the Figure 9.  

Figure 9. Geometry of analyzed galvanic anode 
catohdic protection system 

 
Results of the calculation of electric potential 

and current density on the cathode and anode 
surface are presented below. Distribution of electric 
potential on the cathode surface is given on the 
Figure 10. 

 

 
Figure 10. Change of electric potential distribution 
on the cathode surface over time 
  

Results given on the Figure 10 indicate that areas 
that are closer to the anode (the nearest point is 
located at 180 °) have lower values of electric 
potential. This means that this area is more 
protected than the other areas of the cathode. Also, 
it can be noticed that the electric potential becomes 
more negative in all points of the cathode, which 
supports the cathodic protection of surfaces against 
corrosion. Change of the current density distribution 
on the cathode surface in the discrete time steps is 
given on the Figure 11. 

 

 
Figure 11. Current density distribution on the 
cathode surface over time 
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From results given on the Figure 4 it is 

noticeable that the current density is higher (in 
absolute sense) at areas that are closer to the anode. 
Also, increase of the current density over the time 
(also in absolute sense) is higher in areas that are 
closer to the anode. 

Electric potential and current density distribution 
on the anode surface over the time are given on the 
Figures 12 and 13, respectively. 

 
 

 
Figure 12. Electric potential distribution on the 
anode surface over time 
 

 
Figure 13. Current density distribution on the anode 
surface over time 
 

It can be noticed that the electrical potential on 
anode surface is more positive on areas where the 
anode surface is closer to the cathode (the nearest 
point is located at 0 °). Also, on this areas current 
density has the highest values.  

Change of the current intensity in analyzed 
cathodic protection system, caused by dynamic 
polarization characteristics is given on the Figure 
14.  
 

   
Figure 14. Change of the current intensity of CP 
system over time  
 

From results given on the Figure 14 it can be 
noted that current intensity decreases over the time. 
Also, highest change of the current intensity is at 
first day, while after two days current intensity is 
constant.  
 

4 Conclusion 
Application of very accurate and precise numerical 
methods is required for the design of modern 
cathodic protection system. The main reason for this 
is the fact that the boundary conditions on the 
electrode surface of the system are nonlinear and in 
some situations, such as deposition of calcareous 
and magnesium on the cathode surface, and may be 
time-varying (dynamic). In this paper, mathematical 
model for calculation of the electric potential and 
current density distribution in galvanic anode 
cathodic protection system with dynamic nonlinear 
polarization characteristics is presented. Presented 
mathematical model is based on combination of 
boundary element method and finite difference time 
domain method. Application of presented 
mathematical model was demonstrated on one 2D 
simple geometry problem.  
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