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Abstract: In this work we are interested by cotangent sum related to Estermann zeta function in rational arguments.
In the first place we look at the maximum and the moment as they did H. Maier and M. Th. Rassias in short interval
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1 Introduction
Dedekind sums and its generalizations appear in vari-
ous areas of Mathematics such as quantum theory, an-
alytic and algebraic number theory, and topology. In
the literature; several authors ([4], [5], [6] [11], [12],
[14]) have already studied the cotangent sum
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πmr
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)
(1)

which is related to the values at s = α = 0 of Ester-
mann zeta function E
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)
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By the way these sums are connected to the study
of Riemann hypothesis through its relation with
Vasyunin sums; defined as follows:
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,

with {u} = u− ⌊u⌋ for u ∈ R set of real numbers.

Let 1 ≤ r ≤ b−1 the inverse modulo b of r which
satisfies the relation rr ≡ 1 (b) . So we have

c0
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)
= −V
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)
. (2)

V
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r
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appears in Vasyunin formula used by V. I.

Vasyunin [16] for computing the special inner prod-
uct:
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log 2π − γ
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where the function eb is defined by

eb(t) =

{
t

b

}
.

⟨, ⟩ operates on the standard Hilbert space H =
L2
(
[0,+∞[; t−2dt

)
(see [9]), and is defined for ev-

ery pair (f, g) ∈ H2 by

⟨f, g⟩ =
∫ +∞

0
f(t)g(t)t−2dt.

The symmetric sum V
(
r
b

)
+V

(
b
r

)
still curious, some

investigations are given in the works ([6], [8]). For
example we have the identity
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(
G (b, b) +G (r, r)− 2G (b, r) + (r − b) log

b
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)
(3)

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2020.19.6 Mouloud Goubi

E-ISSN: 2224-2880 57 Volume 19, 2020



where

G (b, r) =
∑
k≥1

br

k (k + 1)

{
k

b

}{
k

r

}
.

According to Beaz-Duarte criterion ([2],[9]); Rie-
mann hypothesis is true if and only if

lim
n→∞

dn = 0,

where χ is the indicator function of the interval
[1,+∞[ and dn = dist (χ, ⟨e1, e2, · · · en⟩) is the dis-
tance of χ to the subspace spanned by the vectors
e1, e2, · · · , en. One important result in Hilbert geo-
metric is that

dn =
Gr (χ, e1, · · · , en)
Gr (e1, · · · , en)

.

The detailed proof can be found in the work [9]. Only
in [2] Baez-Duarte and al. provide that
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where ψ is the digamma function defined in means of
the series

ψ (z) = −γ − 1

z
+
∑
k≥1

(
1

k
− 1

k + z

)
,

and B1 the first reduced Bernoulli polynomial given
by

B1 (x) =

{
{x} − 1 , if x ∈ R\Z,
0 , if x ∈ Z.

We remember that B1 satisfies the identities

B1 (1− x) = −B1 (x) (5)

and
b−1∑
r=0

B1

(
x+

r

b

)
= B1 (bx) , (6)

which are special cases of general formulae (see [3]);

Bn (1− x) = (−1)nBn (x)

and
b−1∑
r=0

Bn

(
x+

r

b

)
= b1−nBn (bx) , n ∈ N\ {0} ,

where Bn(x) are Bernoulli polynomials defined in
means of generating function

text

et − 1
=
∑
n≥0

Bn(x)

n
tn,

and B1(x) = B1({x}) by definition. According to
identity (2) we get new reformulation of c0

(
r
b

)
given

by

c0

(
r

b

)
=

2

π

b−1∑
m=1

B1

(
mr

b

)
ψ

(
m

b

)
. (7)

Notice that b− r = b− r, furthermore
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b

)
= −c0
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)
.

The related moment

1

ϕ(b)

∑
(r,b)=1

A0b<r<A1b

c0

(
r

b

)2k

, 0 < A0 < A1 < 1

is studied in the work [13], the authors proved that

1

ϕ(b)

∑
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A0b<r<A1b
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(
r
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)2k

= b2kHk (1 + o(1)) , b→ ∞,

where

Hk :=

∫ 1

0

(
g(x)

π

)2k

dx

and

g(x) =
∑
n≥1

1− 2 {nx}
n

.

While looking at the work of baez-Duarte and al.[2],
we deduce that the function g can be written in the
form

g(x) = −2
∑
n≥1

B1(nx)

n
,

for which the Fourier series is

g(x) =
2

π

∑
n≥1

d(n)

n
sin2πnx.

At rational arguments g coincide with Vasyunin cotan-
gent sum;

g

(
r

b

)
= −π

b
V

(
r

b

)
.

Furthermore we have already proved the identity of
Lemma (2.6) of the article [13]:

c0

(
r

b

)
= 2bπ−2

∑
n≥1

d(n)

n
sin

2πnr

b
.

Recently in the work [13], Helmut Maier
and Michael Th. Rassias investigate the maximum
of |c0

(
r
b

)
| for the value of r in short interval
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]A0b, (A0 +∆) b[ and proved for 0 < A0 < 1,
0 < C < 1

2 , ∆ = b−C and 0 < D < 1
2 − C that

max
A0b<r<(A0+∆)b

|c0
(
r

b

)
| ≤ D

π
b log b. (8)

In this work use new techniques to get general formu-
lae concerning cotangent sums c0 and study arithmetic
properties of their arguments.

2 Coaching of cotangent sum c0 and
associated moments

First we revisit the work [13] and consider r in the
overall interval [1, b− 1] to estimate the maximum of∣∣c0 ( rb )∣∣ and obtain

Theorem 1

max
1≤r≤b−1

∣∣∣∣c0 (rb
)∣∣∣∣ ≤

b− 2

π

(
γ

log b
− γ

b log b
+ 1

)
log b (9)

An improvement of result (8) is illustrated in the fol-
lowing corollary.

Corollary 2 For b ≥ 3 and every 1 ≤ r ≤ b − 1, we
have ∣∣∣∣c0 (rb

)∣∣∣∣ ≤ D′

π
b log b (10)

where 0 < D′ < 1 and exactly

D′ =
b− 2

b

(
γ

log b
− γ

b log b
+ 1

)
This corollaire is immediate, the proof is left as a
sample exercices.

Let the arithmetical function φb defined by

φb(m) =
∑

(r,b)=1

{
mr

b

}
,

φb is periodic with period b and vanish in the set bN .
If b a prime number; φb coincide with Euler function
in N\bN and we have φb(m) = 1

2φ (b) . According
to φb the following theorem holds.

Theorem 3 The partial sum of c0 satisfies the follow-
ing identity

∑
(r,b)=1

c0

(
r

b

)
=

2

π

b−1∑
m=1

φb(m)ψ

(
m

b

)

+
1

π
φ(b) (b log b+ γb− γ) .(11)

If b a prime number then

b−1∑
r=1

c0

(
r

b

)
= 0. (12)

The restricted moment studied by H. Maier and M.
Th. Rassias satisfies the following universal inequal-
ity independent of parameter r.

Proposition 4

∑
(r,b)=1

A0b<r<A1b

c0

(
r

b

)2k

≤ A1 −A0

π2k
b2k+1 (log b)2k .

(13)

2.1 Some properties of digamma function
Before proving the last results we recall some old and
new properties of digamma function. We begin by the
following integral representation (see [6]).

ψ (z1)− ψ (z2) =

∫ +∞

0

e−z2t − e−z1t

1− e−t
dt

which implies that

ψ (z1)− ψ (z2) =

∫ 1

0

tz2−1 − tz1−1

1− t
dt

and

ψ (z1) = −γ +

∫ 1

0

1− tz1−1

1− t
dt. (14)

Furthermoreψ (z1) is negative in the interval ]−∞, 1].
If z1 = n is a positive integer; ψ (n+ 1) = −γ +Hn

where Hn =
n∑

j=1

1

j
is the harmonic number of order

n, which can be written in the form

Hn =

∫ 1

0

1− tn

1− t
dt.

Finally the reflection formula [1, §6.3.7] which relates
ψ to cotangent function is given by

ψ (1− z1)− ψ (z1) = π cot (πz1) .

Let the arithmetical function f(m) = ψ
(
m
b

)
,

then for 1 ≤ m ≤ b; f is a decreasing function with
f(b) = ψ(1) = −γ. From the identity (see [15, Theo-
rem 2.2]); ψ(x+ y)−ψ(x) ≥ ψ(y) we conclude that
f(1) = ψ(1b ) ≤ 0. Which means that f(m) is strictly
negative for m ∈ {1, 2, 3, · · · , b} . In a recent work
[10], we have proved that the partial sum of f satisfies
the identity

b∑
m=1

f (m) = −γb− b log b; (15)
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and then

lim
b→+∞

b∑
m=1

f(m) = −∞.

Here we propose another proof as follows;

b∑
m=1

ψ

(
m

b

)
= −γb+

∫ 1

0

b−
∑b

m=1 t
m
b
−1

1− t
dt

then

b∑
m=1

ψ

(
m

b

)
= −γb+

∫ 1

0

b− 1 + t−1 − bt−
1
b(

1− t−
1
b

)
(1− t)

dt

Taking a new variable x = t1/b, we obtain

b∑
m=1

ψ

(
m

b

)
= −γb+b

∫ 1

0

b
(
xb − xb−1

)
+ 1− xb

(x− 1) (1− xb)
dx.

Finally

b∑
m=1

ψ

(
m

b

)
= −γb+

∫ 1

0

(
bxb−1

1− xb
+

1

x− 1

)
dx

= −γb− b log b.

Evaluating the sum

b∑
m=1

mpψ

(
m

b

)
for any positive integer p still an open problem. In
what follows an attempt of calculations for p = 1 by
using the integral representation. Remark that

t

(
1− tb

1− t

)′

= t

(
b−1∑
m=0

tm
)′

=
b−1∑
m=1

mtm

and regarding the integral representation (14) we con-
clude that

b∑
m=1

mψ

(
m

b

)
= −1

2
γb (b− 1)

+ b

∫ 1

0

P (x)

(1− xb) (1− x)2
dx

where

P (x) =
1

2
b (b− 1) (1− x)2 xb−1+bxb−1 (1− x)+xb−1.

Furthermore

b∑
m=1

mψ

(
m

b

)
= −1

2
γb (b− 1) + bI(b)

with

I(b) =

∫ 1

0
h(t)dx

where

h(t) =
1
2b (b− 1)xb−1

1− xb
+

bxb−1

(1− xb) (1− x)
− 1

(1− x)2
.

Let the quantity

Iϵ =

∫ ϵ

0

bxb−1

(1− xb) (1− x)
dx

then

b−1∑
m=1

mψ

(
m

b

)
= −1

2
γb (b− 1) + b lim

ϵ→1
G(ϵ)

where

G(ϵ) = Iϵ −
1

2
(b− 1) log

(
1− ϵb

)
− 1

(1− ϵ)
+ 1.

By virtue of formula (7); c0
(
1
b

)
depends on this sum

and we have

c0

(
1

b

)
=

2

πb

b−1∑
m=1

mψ

(
m

b

)
+
1

π
(−γ + γb+ b log b) .

2.2 Proof of Theorem 1, Theorem 3 and
Proposition 4

First one remarks that the Bernoulli polynomial

B1(t) = {t} − 1

2
, t ̸= 0

satisfies for 1 ≤ r ≤ b − 1 and b ≥ 2 the double
inequality

2− b

2b
≤ B1

(
mr

b

)
≤ b− 2

2b
.

This result is to fact that

1

b
≤
{
mr

b

}
≤ b− 1

b
.

Since ψ
(
m
b

)
is a negative number for 1 ≤ m ≤ b− 1,

and according to formula (4) of cotangent sum V
(
r
b

)
we conclude that

−2− b

πb

b−1∑
m=1

ψ

(
m

b

)
≤ V

(
r

b

)
≤ −b− 2

πb

b−1∑
m=1

ψ

(
m

b

)
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but we have

b−1∑
m=1

ψ

(
m

b

)
= γ − γb− b log b.

Then∣∣∣∣V (rb
)∣∣∣∣ ≤ 1

π

(
1− 2

b

)(
γ

log b
− γ

b log b
+ 1

)
b log b.

The last inequality is independent of r, then we
can replace r by r and get the desired result (9)
Theorem 1. This result is valid for every value of b
not forcedly large. As example for b = 2 we deduce
the well-known result c0

(
1
2

)
= 0.

The function h(t) = 1
π

(
1− 2

t

) (
γ

log t −
γ

t log t + 1
)

is well defined in the interval [2,+∞[ and satisfies
the inequality 0 ≤ h(t) ≤ 1.

In means of identity (2) the obvious symmetric
identity relating c0 to V is∑
(r,b)=1

c0

(
r

b

)
= −

∑
(r,b)=1

V

(
r

b

)
= −

∑
(r,b)=1

V

(
r

b

)
.

thus

∑
(r,b)=1

c0

(
r

b

)
=

2

π

b−1∑
m=1

 ∑
(r,b)=1

B1

(
mr

b

)ψ (m
b

)
.

But we known that∑
(r,b)=1

B1

(
mr

b

)
= φb (m)− 1

2
φ (b)

Furthermore

∑
(r,b)=1

c0

(
r

b

)
=

2

π

b−1∑
m=1

φb (m)ψ

(
m

b

)

− 1

π
φ (b)

b−1∑
m=1

ψ

(
m

b

)
,

and the result (11) Theorem (3) follows.

If b prime then (m, b) = 1 for 1 ≤ m ≤ b−1 and

φb(m) =
∑

(r,b)=1

{
rm

b

}
=

b−1∑
r=1

r

b
,

but it is well known that

b−1∑
r=1

r =
b(b− 1)

2

, then φb(m) = b−1
2 . Since the Euler function φ

satisfies the identity φ (b) = b − 1 for b prime; the
result (12) is deduced.

Using identity (10) Corollary 2 we obtain

c2k0 (
r

b
) =

∣∣∣∣c0(rb )
∣∣∣∣2k ≤ D′2k

π2k
b2k(log b)2k.

Then∑
(r,b)=1

A0b<r<A1b

c0

(
r

b

)2k

≤ (A1 −A0) b

π2k
b2k(log b)2k

and the identity (13) Proposition 4 follows.

3 Special cases
The quadratic congruences of the form r2 ≡ 1(b) has
at least two solutions r = 1 and r = b − 1. If b is
prime these solutions are unique, and c0

(
b−1
b

)
is the

opposite of c0
(
1
b

)
.

Several works are done on the sum c0
(
1
b

)
. We

recall here the most recent. In [6] we have computed
the integral representation of c0

(
1
b

)
and found that

c0

(
1

b

)
=

1

π

∫ 1

0

(b− 2)xb − bxb−1 + bx− b+ 2

(1− x)2 (xb − 1)
dx

which can be rewritten in the form (see [10])

c0

(
1

b

)
=

1

π

∫ 1

0

∑b−1
m=1 (b−m− 1)mxm−1

1 + x+ · · ·+ xb−1
dx.

Only in [10] a series expansion is given by

c0

(
1

b

)
=

1

π
b (b− 1) (b− 2) (16)

×
∑
k≥0

bk
(k + 1) (k + 2) (k + b) (k + b+ 1)

.

The number sequence bk is generated by the function
1

(1−x)2(1−xp)
i.e

1

(1− x)2 (1− xp)
=
∑
k≥0

bkx
k; |x| < 1.

In unpublished work (M. Goubi. Series representa-
tion of a cotangent sum related to the Estermann zeta
function; http://arxiv.org/abs/1903.00250), we have
showed that bk satisfies the recursion relation

bk =

{
k + 1 , if k < b,
bk−b + k + 1 , if k ≥ b.
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Explicitly we have

bk =

(
k + 1− b

2

⌊
k

b

⌋)(⌊
k

b

⌋
+ 1

)
.

and for k = ib+ r with i ≥ 0 and 0 ≤ r ≤ b − 1 we
deduce that

bib+r =
1

2

(
bi2 + (b+ 2r + 2) i+ 2r + 2

)
.

It’s interesting to remember the proof of the explicit
formula by using Cauchy product of series (see [7])
and associated arithmetical properties. Taking |x| <
1, it is well known that

1

1− x
=
∑
k≥0

xk

and
1

1− xb
=
∑
k≥0

xbk.

In the goal of customization we write

1

1− xb
=
∑
k≥0

cb(k)x
bk,

with cb(k) = 1 if b divides k and zero otherwise. Us-
ing Cauchy product of generating functions we get

1

(1− x)2
=
∑
k≥0

(k + 1)xk

and

1

(1− x)2 (1− xb)
=
∑
k≥0

 k∑
j=0

(k − j + 1) cb(j)

xk.
But ⌊

k

b

⌋
b ≤

(⌊
k

b

⌋
+ 1

)
b

then

k∑
j=0

(k − j + 1) cb(j) =

⌊ k
b ⌋∑

j=0

(k − jp+ 1) ,

and after calculus we get the desired result.

For the sake of finding a good expression for
c0
(
1
b

)
one continues to establish a variety of formu-

las which connect it to other sums and functions. Let
the sequence sk given by

sk = 2k2−[2 (bk − bk−1)− 2− b] k−bbk−(b− 2) bk−1.

According to this sequence; a connection between
c0
(
1
b

)
and harmonic number Hb is given in the fol-

lowing theorem.

Theorem 5

c0

(
1

b

)
=

1

π
(bHb − 3b+ 1)− 1

π

∑
k≥b

sk
k (k + 1)

(17)

The proof consist to use the telescopic identity

b (b− 1) (b− 2)

(k + 1) (k + 2) (k + b) (k + b+ 1)
=

b

k + b
− b− 2

k + b+ 1

+
b− 2

k + 1
− b

k + 2

and the expression (16) to conclude that

c0

(
1

b

)
=

1

π

∑
k≥0

(2k + 3b) bk
(k + b) (k + b+ 1)

− 1

π

∑
k≥0

(2k − b+ 4) bk
(k + 1) (k + 2)

and

c0

(
1

b

)
=

1

π

∑
k≥b

(2k + b) bk−b

k (k + 1)

− 1

π

∑
k≥1

(2k − b+ 2) bk−1

k (k + 1)
.

Furthermore

c0

(
1

b

)
=

1

π

∑
k≥b

(2k + b) bk−b − (2k − b+ 2) bk−1

k (k + 1)

− 1

π

b−1∑
k=1

(2k − b+ 2) bk−1

k (k + 1)

but

b−1∑
k=1

(2k − b+ 2) bk−1

k (k + 1)
=

b−1∑
k=1

(2k − b+ 2)

k + 1

= −b (Hb − 1) + 2 (b− 1)

= −bHb + 3b− 2.

Finally

c0

(
1

b

)
=

1

π
(bHb − 3b+ 1)− 1

π

∑
k≥b

sk
k (k + 1)

We recall that (see [8])

G (b, r) =
br∑
r=1

(
ψ

(
r + 1

br

)
− ψ

(
r

br

))
.

A new reformulation of c0
(
1
b

)
in means of the func-

tion G is shown in the following proposition.
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Proposition 6

c0

(
1

b

)
= − 1

π
(log b− log 2)

+
1

π

b∑
r=3

[G (r, r) +G (r − 1, r − 1)− 2G (r, r − 1) ]

Applying the reciprocity law (3) to couple (r − 1, r)
we obtain

V

(
r − 1

r

)
+ V

(
1

r − 1

)
=

1

π

(
g(r, r − 1)− log

r

r − 1

)
where

g(r, r−1) = G (r, r)+G (r − 1, r − 1)−2G (r, r − 1) ,

and then

c0

(
1

r

)
− c0

(
1

r − 1

)
=

1

π

(
g(r, r − 1)− log

r

r − 1

)
.

Since

b∑
r=3

(
c0

(
1

r

)
− c0

(
1

r − 1

))
= c0

(
1

b

)
then

πc0

(
1

b

)
=

b∑
r=3

(
g(r, r − 1)− log

r

r − 1

)
.

Since we have

b∑
r=3

log
r

r − 1
= log b− log 2

the desired result holds.

4 Associated congruence equation
To get an explicit formula of c0 at rational argument
r
b we must resolve the congruence equation rr = 1,
with 1 ≤ r ≤ b − 1. We know that rϕ(b) ≡ 1 (b) and
generally rϕ(b)−1 is greater then b,then we deduce that
r = b

{
rϕ(b)−1

b

}
. The inverse modulo b depends on

the fractional part function and we have’nt any explicit
formula. Some relevant studies can be found in [17]
and [18]. In [12] the authors introduced the sum

Q

(
r

b

)
=

b−1∑
m=1

cot

(
πmr

b

)⌊
mr

b

⌋
.

and proved that

c0

(
r

b

)
=

1

r
c0

(
1

b

)
− 1

r
Q

(
r

b

)
; (18)

For r = b− 1 we have

Q

(
r

b

)
= −

b−1∑
m=1

m cot

(
πm

b

)
.

but

c0

(
b− 1

b

)
=

1

b− 1
c0

(
1

b

)
− 1

b− 1
Q

(
b− 1

b

)
;

returning back to the definition 1 of c0
(
1
b

)
we have

c0

(
1

b

)
= −

b−1∑
m=1

m

n
cot

(
πm

b

)
.

Let us denoting

R

(
r

b

)
=

b−1∑
m=1

⌊
mr

b

⌋
ψ

(
m

b

)
.

In means of sums Q
(
r
b

)
and R

(
r
b

)
; a relationship be-

tween r and r is illustrated in the following proposi-
tion

Proposition 7

c0

(
1

b

)
=

(
c0

(
1

b

)
+

1

π
(γ − γb− b log b)

)
rr

− 1

π

(
2R

(
r

b

)
+ γ − γb− b log b

)
r +Q

(
r

b

)
. (19)

If r is easy to find we are in front of another ex-
pression of c0

(
1
b

)
:

(1− rr) c0

(
1

b

)
=

1

π
(γ − γb− b log b) (r − 1) r

−2r

π
R

(
r

b

)
+Q

(
r

b

)
. (20)

The identity (7) conducts to

c0

(
r

b

)
= rc0

(
1

b

)
−

2

π

b−1∑
m=1

(⌊
mr

b

⌋
− r − 1

2

)
ψ

(
m

b

)
.

and

c0

(
r

b

)
= rc0

(
1

b

)
−

2

π

b−1∑
m=1

⌊
mr

b

⌋
ψ

(
m

b

)
+
r − 1

π

b−1∑
m=1

ψ

(
m

b

)
.
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Then

c0

(
r

b

)
= rc0

(
1

b

)
− 2

π

b−1∑
m=1

⌊
mr

b

⌋
ψ

(
m

b

)
+
r − 1

π
(γ − γb− b log b) .

Combining this result with the identity (18) we obtain

1

r
Q

(
r

b

)
+

(
r − 1

r

)
c0

(
1

b

)
+
r − 1

π
(γ − γb− b log b)

=
2

π

b−1∑
m=1

⌊
mr

b

⌋
ψ

(
m

b

)
.

and the desired result holds.

5 Conclusion
The results explained in the previous sections show
that the cotangent sum c0

(
r
b

)
still curious. But im-

portant in Baez-Duarte approach for the Riemann hy-
pothesis and related areas. For future research, it is
interesting to found a good expression of c0(1b ) in or-
der to improve some new results on general case.
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