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Abstract:In this paper asymptotic test in multivariate regression based on set-indexed partial sums of the vector of
recursive residuals is proposed. The limit process is derived for multivariate nonparametric regression with local-
ized vector of regression functions under an equally spaced experimental design on a closed rectangle. Under mild
condition it is shown that independent to the assumed model, the partial sums processes converges to a vector of
trends plus the multivariate set-indexed Brownian sheet. The trend vanishes simultaneously when the hypothesis
is true living the multivariate set-indexed Brownian sheet as the only limit process. The finite sample size behavior
of the power functions of Kolmogorov-Smirnov (KS) and Cramér-von Mises (CM) type tests are investigated by
simulation. It is shown that for testing multivariate polynomial model of low order the CM test seems to have
larger power than the KS test has. The application of the test method in the empirical model building of corn plants
data and its comparison with the classical test using Wilk’s lambda statistic is also demonstrated.

Key–Words:multivariate linear regression, recursive residual, least squares residuals, partial sums process, multi-
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1 Introduction

Checking the validity of multivariate linear regression
using set-indexed partial sums of the vector of ordi-
nary least squares (OLS) residuals has been intensively
studied in [16, 17, 18]. The limit processes have been
derived by applying various mathematical techniques.
The result in [16] has been obtained by the geomet-
ric approach of [4], whereas those in [17, 18] have
been established based on Prohorov’s theorem (cf. [3]).
However, the limit processes have been expressed as
complicated functions of the multivariate set-indexed
Brownian sheets which functionally depend not only
on the assumed regression functions but also on the di-
mension of the model. Consequently, the application of
the method in the practice is restricted. The quantiles
of the Kolmogorov-Smirnov as well as the Cramér-von
Mises type test statistics have been approximated by
conducting Monte Carlo simulation. Estimation to the
upper and lower bounds of the limiting power functions
of the tests by appying Li-Kuelb’s shift inequality have
been studied in [19, 20], see also [13], pp. 53–54.

In this paper we propose an asymptotic model va-
lidity check based on the limit process of the partial
sums of the vector of recursive residuals instead of the
OLS residuals. Our object of study is actually an ex-
tension of that considered in [21]. The derivation of

the result will be mathematically more complicated by
the existence of the correlation among the components
of the vector of observations. It is not like the clas-
sical likelihood ratio test studied in e.g. [6], p. 9–20
and [10], p. 395–398, for our test method we need nei-
ther normality nor any other distributional assumption
given to the vector of observations, so that our proposed
method is more practice.

The application of the partial sums of the recursive
residuals of multivariate regression in some test prob-
lem has been investigated in [9] by extending the ap-
proaches due to [5, 7, 8, 12, 15]. However the limit
process has been obtained only for vector of time se-
ries observations. For our result we need to investigate
a functional central limit theorem for the sequence of
high dimensional triangular arrays of vector of recur-
sive residuals. To the best knowledge of the author,
there are no documentations available for such kind of
limit theorem.

To see concretely the objective of the present pa-
per, let us consider a standardp-variate nonparametric
regression defined by

Ỹ(t) = g̃(t) + Ẽ(t), t ∈ D, (1)

where Ỹ = (Y (1), . . . , Y (p))> is the p-dimensional
vector of observations,̃g = (g(1), . . . , g(p))> is the
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true-unknown p-dimensional vector of regression func-
tions defined onD := Πd

j=1[aj , bj ] ⊂ Rd, and Ẽ =
(ε(1), . . . , ε(p))> is the p-dimensional vector of ran-
dom errors withE(Ẽ) = 0 and Cov(Ẽ) = Σ =
(σk`)

p,p
k=1,`=1. TherebyΣ is ap × p dimensional pos-

itive definite matrix. Letf1, . . . , fq be known linearly
independent regression functions inL2(P0), whereP0

is the Lebesque measure onD. Model validity check
in multivariate linear regression analysis concerns with
the problem of testing the following hypothesis

H0 : Y (i)(t) =
q∑

j=1

βijfj(t) + ε(i)(t), t ∈ D, (2)

for i = 1, . . . , p, whereβi1, . . . , βiq are unknown con-
stants, cf [10], p. 323. Suppose Model 2 is observed
independently over a triangular array of design points

Ξn1×n2 := {tj1j2 : 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2} .

Let Rn1n2 := (rj1j2)
n1,n2

j1=1,j2=1, be the corresponding
sequence ofn1 × n2 arrays of thep-dimensional vec-
tor of the OLS residuals of Model 1, whererj1j2 =
(r(1)

j1j2
, . . . , r

(p)
j1j2

)>. The p-dimensional partial sums
process ofRn1n2 indexed by the family of convex sub-
setsA of D is defined by

Vn1n2(Rn1n2)(A) =




n1∑

j1=1

n2∑

j2=1

1A(tj1j2)r
(i)
j1j2




p

i=1

.

By combining the univariate invariance principle of
[1, 14] and the multivariate one of [11], Somayasa and
et al. [16, 17] showed under an equidistance design
(regular lattice), defined by

tj1j2 =
(

a1 + (b1 − a1)
j1

n1
, a2 + (b2 − a2)

j2

n2

)
,

that

1√
n1n2

Σ−1/2Vn1n2(Rn1n2) ⇒ Z∗P0
, (3)

whereZ∗P0
is a p-dimensional centered Gaussian pro-

cess indexed byA, defined by

Z∗P0
= ZP0 −




q∑

j=1

∫ R

D
fj(t, s)dZ

(i)
P0

(t, s)hfj




p

i=1

.

Thereby ZP0 =
(
Z

(1)
P0

, . . . , Z
(p)
P0

)>
is the p-

dimensional set-indexed Brownian sheet, which is a
centeredp-dimensional Gaussian process with the co-
variance function given by

KZP0
(A1, A2) = diag(P0(A1∩A2), . . . , P0(A1∩A2))

andhfj
(A) :=

∫
A fj(x, y)P0(dx, dy), for A1, A2 ∈ A.

Thereby
∫ R stands for the Riemann-Stiltjes integral.

By the dependency of the limit process on the regres-
sion functions, the computation of the critical values
of the Kolmogorov-Smirnov and Craḿer-von Mises
statistics defined respectively by

KS(ZP0) := sup(t,s)∈D ‖Z∗P0
(t, s)‖

CvM(ZP0) :=
∫
D ‖Z∗P0

(t, s)‖2P0(dt, ds)

become complicated as the order of the model gets
higher. Unfortunately there are no documentations
available providing mathematical techniques for com-
puting such critical values for the case other than Brow-
nian sheet. A good survey for the case of multivariate
standard Brownian motion and Brownian bridge on the
unit interval[0, 1] can be found in [11]. Thus, the main
point of this work is to define a transformation so that
the limit process in (3) does not depend on the regres-
sion models. This will be handled recursively as in the
times series case investigated in [9] by extending the
functional central limit theorem studied in [21].

It is worth mentioning that for testing the hy-
pothesisH0 against a specific alternative of the form
H1 : g(i) ∈ V := [f1, . . . , fq, fq+1, . . . , fm], for all
i ∈ {1, . . . , p}, under normally distributed error terms
the likelihood ration test leads to the test based on the
well known Wilk’s lambda statistic (cf. [10], p.324).
However, there is no information available regarding
the optimality of the test.

To give more insight on the multivariate recursive
residuals we present in Section 2 its formal definition
and investigate the related properties. The limit of the
sequence ofp-dimensional partial sums processes of
recursive residuals is discussed in Section 3. Next in
Section 4 we give an investigation to the performance
of the KS and CM test by simulation. The application
of the test method in real data is presented in Section 5.
We close the paper with some conclusions and remarks
for future works, see Section 6. Proofs are presented in
the appendix.

2 Multivariate recursive residuals
As in univariate case, we assume throughout the paper
that the design is given by a regular lattice overD and
the observations are collected row wise initialized at the
point t11 and terminated at the pointtn1n2 .

Let (j∗1 , j∗2) be a fixed pair of integers such that
Yj∗1 j∗2 becomes the firstq-th observed vector of re-
sponses according to the preceding order. Keeping this
in mind, let us define the following notations:

Tn1n2 := {(j1, j2) : 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2}
Tn1n2−q := Tn1n2−q+1 \ {(j∗1 , j∗2)},
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where

Tn1n2−q+1 = {(j∗1 , j∗2), (j∗1 + 1, j∗2), · · · , (n1, j
∗
2),

(1, j∗2 + 1), · · · , (n1, j
∗
2 + 1), · · · , (n1, n2)} .

ThusTn1n2 ,Tn1n2−q andTn1n2−q+1 consist respec-
tively of n1n2, n1n2 − q andn1n2 − q + 1 ordered
pairs. For every pair(j1, j2) ∈ Tn1n2−q+1 and every
i = 1, . . . , p, we define the following vector of obser-
vations and random errors

Y(i)
j1j2

=
(
Y

(i)
11 , Y

(i)
21 , . . . , Y

(i)
j1j2

)>

E(i)
j1j2

=
(
ε
(i)
11 , ε

(i)
21 , . . . , ε

(i)
j1j2

)>
.

Then1n2−q+1 numbers ofp-variate regression mod-
els underH0 are defined by

Y(n1,n2)
j1j2

:= X(n1,n2)
j1j2

B + E(n1,n2)
j1j2

, (4)

where

Y(n1,n2)
j1j2

:=
(
Y(1)

j1j2
,Y(2)

j1j2
, . . . ,Y(p)

j1j2

)
,

X(n1,n2)
j1j2

:= (f(t11), f(t21), . . . , f(tj1j2))
> ,

E(n1,n2)
j1j2

:=
(
E(1)

j1j2
, E(2)

j1j2
, . . . , E(p)

j1j2

)
.

Then the OLS ofB based on (4) is given by

B̂(n1,n2)
j1j2

=
(
X(n1,n2)>

j1j2
X(n1,n2)

(j1j2)

)−1
X(n1,n2)>

j1j2
Y(n1,n2)

(j1j2)

for every (j1, j2) ∈ Tn1n2−q+1. It is noticed that(
X(n1,n2)>

j1j2
X(n1,n2)

(j1j2)

)−1
exists for large enoughn1 and

n2, provided the regression functions are linearly inde-
pendent as functions inL2(P0), cf. [22], p. 37.

Now we are ready to define the notion ofp-variate
recursive residuals of Model 2.

Definition 1 Let Ỹj1j2 :=
(
Y

(1)
j1j2

, Y
(2)
j1j2

, . . . , Y
(p)
j1j2

)>

be the vector of observations of Model 2 on the point
tj1j2 , for (j1, j2) ∈ Tn1n2−q. Then1n2 − q numbers
of vectors of recursive residuals based on Model 4 are
defined by

w̃j1j2 =
(
w

(1)
j1j2

, w
(2)
j1j2

, . . . , w
(p)
j1j2

)>
:=

Ỹj1j2 − B̂(n1,n2)>
j1−1j2

f(tj1j2)√
1 + f>(tj1j2)

(
X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

)−1
f(tj1j2)

,

for j1 6= 1, j2 ∈ {j∗2 , j∗2 + 1, . . . , n2},
and

w̃1j2 =
(
w

(1)
1j2

, w
(2)
1j2

, . . . , w
(p)
1j2

)>
:=

Ỹ1j2 − B̂(n1,n2)>
n1j2−1 f>(t1j2)√

1 + f>(t1j2)
(
X(n1,n2)>

n1j2−1 X(n1,n2)
n1j2−1

)−1
f(t1j2)

,

for j1 = 1, and j2 ∈ {j∗2 + 1, . . . , n2}.

By substitutingB̂(n1,n2)
j1j2

, for (j1, j2) ∈ Tn1n2−q,
it can be shown that thei-th component of̃wj1j2 coin-
cides with that of the univariate case, see [21]. Hence,
the argument that has been applied for univariate model
can be adopted to get the following result.

Proposition 2 For every(j1, j2) ∈ Tn1n2−q, there ex-
ists an(n1n2 − q)× n1n2 matrixA, defined by

A :=




a>j∗1+1j∗2
...

a>n1j∗2
a>1j∗2+1

...
a>n1j∗2+1

...
a>1n2

...
a>n1n2




∈ R(n1n2−q)×n1n2 ,

such that

(
w̃j∗1+1j∗2 , w̃n1j∗2 , . . . , w̃n1n2

)>
= AEn1n2 ,

where forj2 ∈ {j∗2 , j∗2 + 1, . . . , n2}, andj1 6= 1,

aj1j2

√
dj1j2 :=

(−f>(tj1j2)
(
X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

)−1
X(n1,n2)>

j1−1j2
,

1, 0, . . . , 0)>,

with

dj1j2 = 1 + f>(tj1j2)(X
(n1,n2)>
(j1−1j2) X

(n1,n2)
(j1−1j2))

−1f(tj1j2),

and forj1 = 1 andj2 ∈ {j∗2 + 1, . . . , n2},

a1j2

√
d1j2 :=

(−f>(t1j2)
(
X(n1,n2)>

n1j2−1 X(n1,n2)
n1j2−1

)−1
X(n1,n2)>

n1j2−1 ,

1, 0, . . . , 0)>

with

d1j2 := 1 + f>(t1j2)
(
X(n1,n2)>

n1j2−1 X(n1,n2)
n1j2−1

)−1
f(t1j2).

Moreover,A satisfies the conditionAA> = In1n2−q,
whereIn1n2−q is the(n1n2 − q)× (n1n2 − q) identity
matrix.
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By Proposition2 every component of the vector of
recursive residuals is expressible as a linear combina-
tion of the components of the vector of random errors
E(i)

n1n2 , for every(j1, j2) ∈ Tn1n2−q, where the coeffi-
cients depend only on the pair(j1, j2) ∈ Tn1n2−q, but
not oni ∈ {1, . . . , p}.

Let W̃n1n2 := (w̃j1j2)
n1,n2
j1=1,j2=1, n1 ≥ 1 and

n2 ≥ 1 be the sequence ofn1 × n2 dimensional trian-
gular arrays of thep-dimensional vectors of recursive
residuals, wherẽwj1j2 := 0, for (j1, j2) ∈ Tn1n2 \
Tn1n2−q. LetA be the collection of convex subsets of
D := [a1, b1]× [a2, b2], such thatA is totally bounded
and have convergence integral entropy in the sense of
[1, 14]. The set-indexed partial sums processes of the
p-dimensional recursive residuals with respect toA is
defined as

S
(p)
n1n2−q(W̃n1n2)(A) :=

∑

(j1,j2)

1A(tj1j2)w̃j1j2 ,

where the sum is defined component wise taken over
all (j1, j2) ∈ Tn1n2−q. It is worth mentioning that

for A = ∅, we defineS
(p)
n1n2−q(W̃n1×n2)(∅) := 0

and for anyA ∈ A, for which no design pointstj1j2
with the corresponding pair(j1, j2) ∈ Tn1n2−q are

covered byA, we defineS(p)
n1n2−p(Wn1×n2)(A) := 0.

To be able to sum the recursive residuals over all pairs
(j1, j2) ∈ Tn1n2 , the value of̃wj1j2 is set equal to zero,
for (j1, j2) ∈ Tn1n2 \Tn1n2−q. So that we have

S
(p)
n1n2−q(W̃n1n2)(A) :=

n1∑

j1=1

n2∑

j2=1

1A(tj1j2)w̃j1j2 .

The Kolmogorov-Smirnov and Craḿer-von Mises
type statistics reasonable for testingH0 are defined re-
spectively by

KS(p)
n1n2

:= sup
A∈A

∥∥∥∥∥∥
Σ−1/2S

(p)
n1n2−q(W̃n1n2)(A)√

n1n2 − q

∥∥∥∥∥∥

CM(p)
n1n2

:=
∑

A∈A

∥∥∥∥∥∥
Σ−1/2S

(p)
n1n2−q(W̃n1n2)(A)
n1n2 − q

∥∥∥∥∥∥

2

,

whereΣ1/2 is thematrix that satisfiesΣ = Σ1/2Σ1/2

andΣ−1/2 = (Σ1/2)−1. Based on those statistics,H0

will be rejected for large values ofKS(p)
n1n2 or CM(p)

n1n2 .
The limit distributions ofKS(p)

n1n2 andCM(p)
n1n2 will be

derived in the next section. Since Proposition A1 states
that the set{w̃j1j2 : (j1, j2) ∈ Tn1n2−q} consists of
mutually uncorrelatedp-dimensional random vectors
with zero mean vector and the covariance matrixΣ,
by applying a well known result for multivariate nor-
mal distribution, cf. [10], p. 137, for1 ≤ j1 ≤ n1

and1 ≤ j2 ≤ n2, if the p-dimensional error vectors
Ẽj1j2 = (ε(1)

j1j2
, . . . , ε

(p)
j1j2

)> are assumed to be inde-
pendent and identically distributed (iid)Np(0,Σ), then
w̃j1,j2 are iidNp(0,Σ) too. Hence, for normally dis-

tributed error model, the limit ofKS(p)
n1n2 andCM(p)

n1n2

can be straightforwardly obtained by incorporating the
techniques proposed in [16, 17, 18]. However for the
more general setting that methods can not be applied.
In this work the limit will be established by generaliz-
ing the functional central limit theorem studied in [9]
and [15].

For computational reason, in this paper we restrict
the index setA to the family<, defined by

< := {[a1, x]× [a2, y] : a1 ≤ x ≤ b1, a2 ≤ y ≤ b2} .

Hence, for every[a1, x]× [a2, y] ∈ <, we have

S
(p)
n1n2−q(W̃n1n2)([a1, x]× [a2, y])

=
∑

(j1,j2)∈Tn1n2−q

1[a1,x]×[a2,y](tj1j2)w̃j1j2 ,

and it will be denoted asS(p)
n1n2−q(W̃n1n2)(x, y) for

brevity. Hence, the corresponding test statistics are
given respectively by

KS(p)
n1n2

= sup
(x,y)∈D

∥∥∥∥∥∥
Σ−1/2S

(p)
n1n2−q(W̃n1n2)(x, y)√

n1n2 − q

∥∥∥∥∥∥

CM(p)
n1n2

=
∫

D

∥∥∥∥∥∥
Σ−1/2S

(p)
n1n2−q(W̃n1n2)(x, y)√

n1n2 − q

∥∥∥∥∥∥

2

dxdy.

In particular, for the case of a unit square experimental
regionU := [0, 1] × [0, 1], the partial sums process
indexed by such family of rectangles will take the form

S
(p)
n1n2−q(W̃n1n2)(x, y) =

[n2y]∑

j2=1

[n1x]∑

j1=1

w̃j1j2 , (x, y) ∈ U .

So, when the experimental design is given by the regu-
lar latticeΞn1×n2 overU
Ξn1×n2 = {(`/n1, k/n2) : 1 ≤ ` ≤ n1, 1 ≤ k ≤ n2} ,

the property of the partial sums operator implies

KS(p)
n1n2

= max
1≤k≤n2:1≤`≤n1

∥∥∥∥∥∥
Σ−1/2 ∑`,k

j1,j2=1 w̃j1j2√
n1n2 − q

∥∥∥∥∥∥

CM(p)
n1n2

=
n2,n1∑

k,`=1

∥∥∥∥∥∥
Σ−1/2 ∑`,k

j1,j2=1 w̃j1j2

n1n2 − q

∥∥∥∥∥∥

2

.

In thepractice, the computation of the test statistics will
be based on the partial sums indexed by the family<.

WSEAS TRANSACTIONS on MATHEMATICS Wayan Somayasa

E-ISSN: 2224-2880 329 Volume 18, 2019



3 The partial sums limit process
In this section we state the main result that gives the
limit process of the sequence of the set-indexedp-
dimensional partial sums processes of the recursive
residuals:

1√
n1n2 − q

Σ−1/2S
(p)
n1n2−q(W̃n1n2)(A), A ∈ A.

The proof is postponed to the appendix.

Theorem 3 Let
{
W̃n1×n2 = (w̃j1j2)

n1,n2
j1=1,j2=1

}
, n1 ≥

1 and n2 ≥ 1, be the sequence ofn1 × n2 arrays of
the p-dimensional recursive residuals of Model 2 ob-
served over a regular latticeΞn1×n2 . Suppose that the
regression functions are continuous and have bounded
variation onD. Then forn1, n2 →∞, it holds,

1√
n1n2 − q

Σ−1/2S
(p)
n1n2−q(W̃n1n2) ⇒ ZP0 ,

where ZP0 is thep-dimensional set-indexed Brownian
sheet.

Theorem 3 shows that the limit process of the par-
tial sums of the recursive residuals underH0 is given by
the p-dimensional set-indexed Brownian sheet, what-
ever the regression functions we have. This means that
the transformation defined by the recursive residuals re-
duces the dependency of the limit process on the as-
sumed model. Theoretically this will give advantage
particularly in the computation of the quantiles of the
test statistics.

The limit of the test statisticsKS(p)
n1n2 as well as

CM(p)
n1n2 can be readily obtained by applying the con-

tinuous mapping theorem (cf. Theorem 27 in [3]), as
stated in the following corollary.

Corollary 4 Under the conditions of Theorem 3, it
holds forn1 andn2 are simultaneously large, that

KS(p)
n1n2

⇒ sup
A∈A

‖ZP0(A)‖

and
CM(p)

n1n2
⇒

∫

D
‖ZP0(A)‖2dA

By Corollary 4, the implementation of the test in
the practice can be realized by approximating the fi-
nite samples quantiles ofKS(p)

n1n2 andCM(p)
n1n2 using

those ofsupA∈A‖ZP0(A)‖ and
∫
D ‖ZP0(A)‖2dA, re-

spectively. More precisely, forα ∈ (0, 1), let ks1−α

and cm1−α be positive real numbers that satisfy the
equations

P

{
sup
A∈A

‖ZP0(A)‖ ≥ ks1−α

}
= α

P
{∫

D
‖ZP0(A)‖2dA ≥ cm1−α

}
= α.

Then the rejection regions of asymptotic sizeα tests for
testingH0 are given respectively by

CKS := {Yn1n2 : KS(p)
n1n2

≥ ks1−α},

whenKS(p)
n1n2 is used and

CCvM := {Yn1n2 : CM(p)
n1n2

≥ cm1−α},

when the statisticCM(p)
n1n2 is used. Thus, the prob-

lem of testingH0 reduces to that of computingks1−α

andcm1−α for any pre-signedα ∈ (0, 1). Moreover,
without altering the test procedures, the unknown co-
variance functionΣ can be estimated by any consistent
estimator, such as by that given in [2].

To be able to investigate the limiting power of
the tests, we consider the general localized version of
Model 1, defined by:

Ỹ(t) =
1√

n1n2 − q
g̃(t) + Ẽ(t), t ∈ D, (5)

with E(Ẽ(t)) = 0 andCov(Ẽ(t)) = Σ. For(j1, j2) ∈
Tn1n2−q+1, let

G(n1,n2)
j1j2

:=
(
g(1)

j1j2
,g(2)

j1j2
, . . . ,g(p)

j1j2

)
.

Then, we have

Y(n1,n2)
j1j2

=
1√

n1n2 − q
G(n1,n2)

j1j2
+ E(n1,n2)

j1j2
. (6)

Conversely, whenH0 is true, the model clearly reduces
to (4). Hence, by applying Theorem 3, the asymptotic
test procedure is not altered when the localized model
is considered, in the sense the test leads to the same size
α rejection region as that of the non localized model.

The limiting distribution of the statisticsKS(p)
n1n2

andCM(p)
n1n2 for the localized model (5), whenH0 is

not true is presented in the following theorem.

Theorem 5 Suppose that the vector of regression func-
tionsg̃ = (g1, . . . , gp)> is continuous and has bounded
variation onD. LetW̃loc

n1×n2
:= (w̃loc

j1j2
), for (j1, j2) ∈

Tn1n2−q be the sequence of arrays ofp-dimensional
vector of recursive residuals associated with the lo-
calized model (5) observed over the regular lattice
Ξn1×n2 . Then, whenH0 is not true it holds

Σ−1/2 S
(p)
n1n2−q(W̃loc

n1×n2
)√

n1n2 − q
⇒ Σ−1/2hg̃ + ZP0 ,

where

hg̃(A) :=
∫

A
g̃(x, y)P0(dx, dy)

−
∫

A
f>(u, v)G−1(u, v)H(u, v)P0(du, dv),
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thereby

G(u, v) :=
∫

B(u,v)

f(x, y)f>(x, y)P0(dx, dy) ∈ Rq×q

H(u, v) :=
∫

B(u,v)

f(x, y)g̃>(x, y)P0(dx, dy) ∈ Rq×p.

The subsetB(u,v) is determined by the setA and the
variable(u, v) ∈ A.

As a direct application of the well-known contin-
uous mapping theorem, the asymptotic power function
of the test based on thep-dimensional statisticsKS

(p)
n1n2

andCM
(p)
n1n2 can be expressed as follows.

Corollary 6 Suppose that for testing the hypothesis
H0 defined in Section 1 the localized model (5) is ob-
served under the equidistance designΞn1×n2 . Asymp-
totic power function of the sizeα Kolmogorov-Smirnov
test is given by

lim
n1,n2→∞

ΥKS(p)
n1n2

(g̃)

= lim
n1,n2→∞

P
{
KS(p)

n1n2
≥ ks1−α | g̃

}

= P

{
sup
A∈A

∥∥∥Σ−1/2hg̃(A) + ZP0(A)
∥∥∥ ≥ k̃1−α

}
.

Similarly, the asymptotic power function of the
Cramér-von Mises test of sizeα is given by

lim
n1,n2→∞

ΥCM(p)
n1n2

(g̃)

= lim
n1,n2→∞

P
{
CM(p)

n1n2
≥ cm1−α | g̃

}

= P
{∫

D

∥∥∥Σ−1/2hg̃(A) + ZP0(A)
∥∥∥
2
dA ≥ cm1−α

}
.

In this paper the finite sample size behavior of the
tests will be investigated by simulation by comparing
the power functions of the tests based on theKS(p)

n1n2

and CM(p)
n1n2 statistics. It can be shown easily that

whenH0 is true, the termΣ−1/2hg̃ vanishes uniformly,
so that the power attains the pre signed size of the test.
That isΥKS(p)

n1n2

(g̃) = α = ΥCM(p)
n1n2

(g̃), for g̃ varies

underH0.

4 Simulation study
We now study the power of the KS and CM type
tests via Monte Carlo simulations by considering three
cases. In each case the graph of the empirical power
function ΥKS(p)

n1n2

and ΥCM(p)
n1n2

are developed and

compared each other. The samples are generated over

U with the experimental design given by50×50 regular
lattice

Ξ50×50 = {(`/50, k/50) : 1 ≤ ` ≤ 50, 1 ≤ k ≤ 50}.
The vectors of random errors are generated indepen-
dently from the centered multivariate normal distribu-
tion Np(0,Σ) for some nonsingular covariance matrix
Σ. However, in the simulation it is assumed thatΣ is
unknown, therefore it is estimated by a consistent esti-
matorΣ̂H1

nn/(n2) defined in [2]. The number of runs is
1500.

4.1 Bivariate constant model

In the first scenario we test the hypothesis that a bivari-
ate constant model holds true. The samples are gen-
erated based on the following localized bivariate first-
order model

Ỹ =

((
5
3

)
+ ρ

(
`
n + k

n
`
n + k

n

))
/
√

n2 − 1 + Ẽ .

The real constantρ varies in some interval so that the
mean functioñg varies in the space of vector of func-
tions of bounded variations onU . It is clear that the
observations are fromH0, whenρ = 0. The two di-
mensional random error̃E is generated independently
from the bivariate normal distributionN2(0,Σ), with
the covariance matrix

Σ =

(
1 1
1 2

)
.

Figure 1 exhibits the empirical power functions of
the tests, where the graphs ofΥKS(p)

n1n2

andΥCM(p)
n1n2

are indicated by a solid and dashed line, respectively.
The left panel is forα = 0.01, whereas the right one
corresponds toα = 0.05. The graphs show that the
power increases as the model moves away fromH0.
The power fluctuates aroundα asρ = 0 as it must be.
It can be seen that the test based on the Cramér-von
Mises type statistic is slightly more powerful than that
based on the Kolmogorov-Smirnov one.

4.2 Trivariate first-order model

In this subsection a more general hypothesis and model
are simulated in which the samples are generated based
on the following model

g̃
(

`

n
,
k

n

)
=




1 + 2`
n + k

n

−2 + 3`
n + 3k

n

3 + `
n − 2k

n


 + ρ




exp{ `
n

k
n}

exp{ `
n

k
n}

exp{ `
n

k
n}



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Figure 1: The graphs ofΥKS(p)
n1n2

(solid line) and

ΥCM(p)
n1n2

(dashed line) for testing bivariate constant

model.

for testing the hypothesis that a trivariate first-order
model is true. Under alternative we consider a trivari-
ate nonparametric model by adding the model specified
underH0 with an exponential terms. The error com-
ponent is generated independently from the trivariate
centered normal distributionN3(0,Σ), where

Σ =




0.65 0.31 1.18
0.31 0.58 0.81
1.18 0.81 2.50




The scatter plot of the empirical power functions
of sizeα = 0.01 andα = 0.05 are presented in Figure
2. It can be concluded that the CM type test (dashed
line) has larger power than the KS type test (solid line).
The sizes of the tests are achieved whenρ is set to zero.
That is as the observations are fromH0 both tests attain
the pre-signed values ofα.

4.3 Trivariate second-order model

The last simulation concerns with the problem of test-
ing the hypothesis that a second-order model holds true.
The vector of observations are generated based on the
localized model

Ỹ =
g̃√

n2 − 6
+ Ẽ ,
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Figure 2: The graphs ofΥKS(p)
n1n2

(solid line), and

ΥCM(p)
n1n2

(dashed line) for testing three-variate first-

order model.

where

g̃
(

`

n
,
k

n

)
=




2 + `
n + k

n + 2k2

n2 + 3`2

n2 + `k
n2

−1 + 2`
n + 3k

n + k2

n2 − 2`2

n2 + 5`k
n2 }

3 + `
n − 2k

n + 6k2

n2 + 8`2

n2 + 5`k
n2




+ρ




sin( `k
n2 )

exp{ `k
n2 }

exp{ `k
n2 } sin( k`

n2 )


 .

The vector of random error̃E is generated indepen-
dently from the centered three-variate normal distribu-
tion N3(0,Σ) with the covariance matrix as in Sub-
section 4.2. As in the preceding scenarios, the simu-
lation result for testing second-order model shows that
the CM type test has larger power than the KS type test
has, see Figure 3. WhenH0 is true, the powers of the
tests attain their pre determined sizes. However, when
the model is far away fromH0, the power increases
gradually.

5 Application
In this section we demonstrate the application of the
asymptotic test procedures to a multivariate data which
is the corn plant data. The data consist of the mea-
surements of the maximum weight of the corn yield
(in gram), the maximum height of the corn plants (in
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Figure 3: The graphs ofΥKS(p)
n1n2

(solid line), and

ΥCM(p)
n1n2

(dashed line) for testing quadratic model.

cm) and the rate of growth (in cm/day) of 21 x 16 corn
plants planted over a rectangular farm region of size
[0,12 m]x[0,15.75 m] running from west to east and
from north to south. The experimental design is given
by a 0.75 m x 0.75 m dimensional regular lattice, see
[21]. The measurements have been conducted from
August 2018 to October 2018. The goal is to build
a model empirically describing how the values of the
three variables vary over the region as a function of the
coordinate of any point on the experimental region.

Descriptive investigation using matrix scatter plot
and Pearson correlation coefficient regarding the exis-
tence of the correlations among the logarithm of the
maximum weight (Ln Weight), the logarithm of the
maximum height (Ln Height) and the Rate of Growth
shows that the three variables are positively correlated
each other (Figure 4). In particular, the correlation be-
tween the Ln Weight and the Ln Height is relatively
strong compared to those between the Ln Weight and
the Rate of Growth and between the Ln Weight and the
Rate of Growth, see also Table 1. By this preliminary
diagnostic results, the empirical model building must
be conducted using multivariate analysis without ignor-
ing the inherent correlation among the variables. Fur-
thermore, based on the normal Kolmogorov-Smirnov
test presented in Table 2 there is no enough statisti-
cal evidence to say that the three variables follow a tri-
variate normal distribution.

ln.Weight.

3.2

3.7

4.2

4.7

5.2

2.5 3.5 4.5 5.5

3.2 3.7 4.2 4.7 5.2

ln.Height

2.5

3.5

4.5

5.5

Rate.of.Growth

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8

Figure4: The pairs plot of the Ln Weight, Ln Height
and the Rate of Growth of corn plants data.

Table 1: The Pearson correlation matrix for the Ln
Weight, the Ln Height and the Rate of Growth.

Ln Weight Ln Height Growth
Ln Weight 1.00000 0.69965 0.18816
Ln Height 0.69965 1.00000 0.34798
Growth 0.18816 0.34799 1.00000

Table2: The Kolmogorov-Smirnov goodness of fit test
using the command ”ks.gof” in R for the normality of
the Ln Weight, Ln Height and Rate of Growth.
Variables Critical Values p-Values
Ln Weight 0.10330 0.00000
Ln Height 0.08000 0.00000
Rate of Growth 0.04390 0.50000

Threedimensionalscatter plot of each variable pre-
sented respectively in Figure 5, Figure 6 and Figure 7
indicate that three dimensional polynomial of low order
are reasonable for describing the regression relation-
ship between the observed variables and the coordinate
of every position on the experimental region.

The main objective is to test the validity of the as-
sumed model based on the partial sums of the recur-
sive residuals. The test results are presented in Table
3. When underH0 a three dimensional constant model
is assumed, both the KS and CCM type tests reject the
hypothesis by the fact the correspondingp-values are
very small. This conclusion is also supported by the
Wilk’s lambda test when under the alternative a three
dimensional first-order model is assumed by the reason
the test also has a very smallp-value, see the figures in
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the secondrow of Table 3. Thus it can be concluded
that three dimensional constant model is not plausible
for the corn plant data.

Figure5: The three dimensional scatter plot of the Ln
Weight observed over a16× 21 regular lattice.

Figure6: The three dimensional scatter plot of the Ln
Height observed over a16× 21 regular lattice.

Now we test the hypothesis that three dimensional
first-order model is significant. The KS as well as the
CM type tests lead to the acceptance of the hypothesis.
Referring to the associatedp-values of the tests (see the
third rows of Table 3), the hypothesis will be rejected
for α ≥ 21.101% when the KS type test is used. Sim-
ilarly, by using the CM type test the hypothesis will

be rejected forα ≥ 32.093%. Since for these num-
bers the probabilities of the rejection of the hypothesis
when it is true is large, we decide to accept the hypoth-
esis. The same conclusion is also obtained when under
the alternative a three dimensional second-order model
is considered. By employing the Wilks lambda test,
the hypothesis is also not rejected since the p-value is
32.093%. We therefor conclude that first-order model
is a significant model.

Figure7: The three dimensional scatter plot of the Rate
of Growth observed over a16× 21 regular lattice.

Table 3: The critical values and the approximated
p-values of theKS(p)

21×16, CM(p)
21×16 and the Wilk’s

lambda tests for the corn plants data.

Model KS(p)
21;16 CM(p)

21;16 Λ21;16

Constant 24.49602 64.51159 25.21487
P-Value 0.00012 0.00035 0.00031
First Order 17.19393 16.85463 10.37576
P-Value 0.21101 0.11236 0.32093

Theleastsquares estimate of the parameter matrix
B is given by

B̂ =




0.24424 4.42890 4.49722
0.15932 0.40387 0.29157
0.07932 0.00587 0.11326


 .

Hence, the first-order fitted model associated with the
corn plants data is as follows



Ŷ1

Ŷ2

Ŷ3


 =




0.2442 + 0.1593x + 0.0793y
4.49722 + 0.40387x + 0.00587y
4.49722 + 0.29157x + 0.11326y


 ,
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for (x, y) ∈ D. By this model the values of the Ln
Weight, Ln Height and Rate of Growth simultaneously
increase as the coordinate of the point moves away
from the origin which is put on the south-west corner
of the region. In fact, when the correlation among the
variables are ignored, the one dimensional partial sums
method proposed in [21] can be applied to each indi-
vidual variable. A routine computation gives the result
that first-order model is also fit well to the corn plant
data, see [21].

From the agricultural perspective, the three ob-
served variables (Ln Weight, Ln Height and Rate of
Growth) can be regarded as indicators of the fertility
level of a farm land. The larger the values of these
variables, the better the fertility level of the land is and
viceversa, the smaller the values of these variables, the
worst the fertility level of the land is. Hence, by ob-
serving the fitted model presented above, it can be con-
cluded that the fertility level of the region gets large as
the position moves away from the origin.

6 Conclusion
In this paper asymptotic procedure for testing model
validity in multivariate linear regression based on the
partial sums process of the recursive residuals has been
established. The method is derived for the case when
the probability distribution model of the vector of the
observations is unknown. The limit process underH0

is given by the multivariate set-indexed Brownian sheet
independent to whatever the assumed regression mod-
els is. This result gives an advantage in that, the compu-
tation of the quantiles of the test statistic theoretically
becomes easier. The application of the test method to
the corn plants data give the similar result as that of
the Wilk’s lambda test. Three dimensional first-order
polynomial model is fitted well to the corn plants data.

Appendix
Proposition A1. For the vector of recursive residuals

w̃j1j2 =
(
w

(1)
j1j2

, . . . , w
(p)
j1j2

)>
defined in Definition 1,

it holdsE(w̃j1j2) = 0 and

Cov
(
w̃j1j2 , w̃j′1j′2

)
=

{
O ; j1 6= j′1 or j2 6= j′2
Σ ; j1 = j′1 and j2 = j′2

,

for every(j1, j2), (j′1, j′2) ∈ Tn1n2−q.

Proof: Let (j1, j2), (j′1, j′2) ∈ Tn1n2−q be arbitrary.
By Proposition 2, we have

E (w̃j1j2) = E
(
a>j1j2E(1)

n1n2
, . . . ,a>j1j2E(p)

n1n2

)>
= 0,

and

Cov
(
w̃j1j2 , w̃j′1j′2

)
= E

(
E>n1n2

aj1j2

) (
a>j′1j′2

En1n2

)

= E




a>j1j2
E(1)

n1n2

...

a>j1j2
E(p)

n1n2




(
a>j′1j′2

E(1)
n1n2

, . . . ,a>j′1j′2
E(p)

n1n2

)

=




σ11a>j1j2
Iaj′1j′2 , · · · , σ1pa>j1j2

Iaj′1j′2
σ21a>j1j2

Iaj′1j′2 , · · · , σ2pa>j1j2
Iaj′1j′2

...
...

...
σp1a>j1j2

Iaj′1j′2 , · · · , σp2a>j1j2
Iaj′1j′2




.

Sincea>j1j2
aj′1j′2 = 1 for j1 = j′1 and j2 = j′2 and

a>j1j2
aj′1j′2 = 0, for j1 6= j′1 or j2 6= j′2, the result

follows, establishing the proof.

Proof of Theorem 3: By the multivariate version of
Donsker’s theorem (cf. [3]) we need to show that the
finite dimensional distribution of the sequence

1√
n1n2 − q

Σ−1/2S
(p)
n1n2−q(W̃n1n2)

converges to that ofZP0 and the sequence is tight. It
is noticed that the sum is defined component-wise. Let
γ1, . . . , γm andA1, . . . , Am be arbitrarym constants
and convex subsets ofD, respectively. Let

Un1n2−q :=
m∑

`=1

γ`

Σ−1/2S
(p)
n1n2−q(W̃n1n2)(A`)√

n1n2 − q
.

Then,by Proposition A1, we get

Cov (Un1n2−q) = E
(
Un1n2−qU>

n1n2−q

)

=
∑m

`=1

∑m
k=1

γ`γk
n1n2−q ×∑

(j1,j2),(j′1,j′2)∈Tn1n2−q
1A`

(tj1j2)1Ak
(tj′1j′2)

×Σ−1/2E
(
w̃j1j2w̃

>
j′1j′2

)
Σ−1/2

=
∑m

`=1

∑m
k=1

γ`γk
n1n2−q

×∑
(j1,j2)∈Tn1n2−q

1A`∩Ak
(tj1j2)Ip

=
∑m

`=1

∑m
k=1 γ`γk

n1n2
n1n2−q

×
(∫

A`∩Ak
Pn1×n2(dx, dy) + o(1)

)
Ip,

whereIp is thep × p dimensional identity matrix and
Pn1×n2 is the discrete probability measure onB(D),
such that for everyA ∈ B(D),

Pn1×n2(A) :=
1

n1n2

∑

(j1,j2)∈Tn1n2

1A(tj1j2).
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Sincefor n1 andn2 simultaneouslylarge,Pn1×n2 con-
verges weakly to the Lebesque measureP0 and the ratio

n1n2
n1n2−q converges to1, then we have

lim
n1,n2→∞

Cov (Un1n2−q)

=
m∑

`=1

m∑

k=1

γ`γk

∫

A`∩Ak

P0(dx, dy)Ip

=
m∑

`=1

m∑

k=1

γ`γkP0(A` ∩Ak)Ip.

The right-hand side is the covariance of the linear com-
bination

∑m
`=1 γ`ZP0(A`). Next, we show that

lim
n1,n2→∞

∑

(j1,j2)∈Tn1n2−q

‖bj1j2‖2 = 0.

Since, for(j1, j2) ∈ Tn1n2−q, the vectorbj1j2 has the
form

(−f>(tj1j2)
(
X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

)−1
X(n1,n2)>

j1−1j2
,

1, 0, . . . , 0, 0, 0, . . . , 0)> ∈ Rn1n2 ,

it holds

‖bj1j2‖2

=
∥∥∥∥f>(tj1j2)

(
X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

)−1
X(n1,n2)>

j1−1j2
, 1

∥∥∥∥
2

≤
∥∥∥∥∥∥

f>(tj1j2
)√

n1n2

(
X

(n1,n2)>
j1−1j2

X
(n1,n2)
j1−1j2

n1n2

)−1
X

(n1,n2)>
j1−1j2√

n1n2

∥∥∥∥∥∥

2

+o(1).

The result follows by the continuity of the norm
operator and the regression functions. So, following
and extending the technique in [15], the first assertion
follows.

Proof of Theorem 5: For the localized model, sup-
pose thatH0 does not hold true. Then for(j1, j2) ∈
Tn1n2−q, we get the correspondingp-dimensional vec-
tor of recursive residuals as

w̃loc
j1j2 =

Ỹj1j2 − f>(tj1j2)B̂
(n1,n2)
j1−1j2√

dj1j2

interpreting w̃1
j1j2

and Ỹj1j2 as the row vectors.

By substituting the vector of observatioñYj1j2 and

B̂(n1,n2)
j1−1j2

, we further get

w̃loc
j1j2 =

g̃(tj1j2
)√

n1n2−q
+ Ẽj1j2√

dj1j2

− f>(tj1j2)×

(
X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

)−1
X(n1,n2)>

j1−1j2
Y(n1,n2)

j1−1j2√
dj1j2

=
g̃(tj1j2)√

dj1j2(n1n2 − q)
+

Ẽj1j2√
dj1j2

− f>(tj1j2)×

(
X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

)−1
X(n1,n2)>

j1−1j2
G(n1,n2)

j1−1j2√
dj1j2(n1n2 − q)

−f>(tj1j2)×(
X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

)−1
X(n1,n2)>

j1−1j2
E(n1,n2)

j1−1j2√
dj1j2

SinceProposition2 ensures that

Ẽj1j2√
dj1j2

+

(
X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

)−1
X(n1,n2)>

j1−1j2
E(n1,n2)

j1−1j2√
dj1j2

= w̃j1j2 ,

whichis the vector of recursive residual underH0, then
the last expression can be simplified as

w̃loc
j1j2 =

g̃(tj1j2)√
dj1j2(n1n2 − q)

− f>(tj1j2)×

(
X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

)−1
X(n1,n2)>

j1−1j2
G(n1,n2)

j1−1j2√
dj1j2(n1n2 − q)

+ w̃j1j2 .

Let W̃loc
n1×n2

:=
(
w̃loc

)n1,n2

j1=1,j2=1
be then1 × n2 array

of the p-dimensional vector of the recursive residuals
associated with the localized model. By considering
the linearity of the partial sums operator we get for ev-
eryA ∈ A,

1√
n1n2 − q

S
(p)
n1n2−q(W̃

loc
n1×n2

)(A)

=
∑

(j1,j2)∈Tn1n2−q

1A(tj1j2)
g̃(tj1j2)

(n1n2 − q)
√

dj1j2

−
∑

(j1,j2)∈Tn1n2−q

1A(tj1j2)f
>(tj1j2)

×
(
X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

)−1
X(n1,n2)>

j1−1j2
G(n1,n2)

j1−1j2

(n1n2 − q)
√

dj1j2

+
1√

n1n2 − q
S

(p)
n1n2−q(W̃n1×n2)(A).

Thefirst term on the right-hand side of the last equation
can be re-written as

n1n2

(n1n2 − q)
√

dj1j2

∑

(j1,j2)

1A(tj1j2)g̃(tj1j2)
n1n2
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=
n1n2

(n1n2 − q)
√

dj1j2

∫

A
g̃(x, y)Pn1n2(dx, dy)

where the sum is overTn1n2−q. Since the components
of g̃ has bounded variation onD and Pn1n2 ⇒ P0,
then by the definition of integral component-wise and
the fact thatq ¿ n1n2, we get by applying the similar
argument as in the univariate case (cf. [21]), that

lim
n1,n2→∞

∫

A

n1n2g̃(x, y)
(n1n2 − q)

√
dj1j2

Pn1n2(dx, dy)

=
∫

A
g̃(x, y)P0(dx, dy).

For the second term we have
∑

(j1,j2)∈Tn1n2−q

1A(tj1j2)f
>(tj1j2)

×
(
X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

)−1
X(n1,n2)>

j1−1j2
G(n1,n2)

j1−1j2

(n1n2 − q)
√

dj1j2

=
1

n1n2

∑

(j1,j2)∈Tn1n2−q

(n1n2)1A(tj1j2)f
>(tj1j2)

(n1n2 − q)
√

dj1j2

×

X(n1,n2)>

j1−1j2
X(n1,n2)

j1−1j2

n1n2



−1

X(n1,n2)>
j1−1j2

G(n1,n2)
j1−1j2

n1n2

=
n1n2

(n1n2 − q)

∫

A

f>(u, v)√
dj1j2

×
(∫

Bu,v

(fk(x, y)f`(x, y))q,q
k=1,`=1 Pn1n2(dx, dy)

)−1

×
(∫

Bu,v

fk(x, y)g`(x, y)Pn1n2(dx, dy)

)q,p

k=1,`=1

Pn1n2(du, dv).

Hence, by applying the similar argument as in the case
of the univariate model (cf. [21]), the last term con-
verges to

∫

A
f>(u, v)G−1(u, v)H(u, v)P0(du, dv).

Thus, overall we have

1√
n1n2 − q

Σ−1/2S
(p)
n1n2−q(W̃

loc
n1×n2

)(A)

converges in distribution to

Σ−1/2hg̃(A) + ZP0 ,

finishing the proof.
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