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Abstract:In this paper asymptotic test in multivariate regression based on set-indexed partial sums of the vector of
recursive residuals is proposed. The limit process is derived for multivariate nonparametric regression with local-
ized vector of regression functions under an equally spaced experimental design on a closed rectangle. Under mil
condition it is shown that independent to the assumed model, the partial sums processes converges to a vector
trends plus the multivariate set-indexed Brownian sheet. The trend vanishes simultaneously when the hypothesi
is true living the multivariate set-indexed Brownian sheet as the only limit process. The finite sample size behavior
of the power functions of Kolmogorov-Smirnov (KS) and Cé&mvon Mises (CM) type tests are investigated by
simulation. It is shown that for testing multivariate polynomial model of low order the CM test seems to have
larger power than the KS test has. The application of the test method in the empirical model building of corn plants
data and its comparison with the classical test using Wilk's lambda statistic is also demonstrated.

Key—Words:multivariate linear regression, recursive residual, least squares residuals, partial sums process, multi-
variate Brownian sheet, Kolmogorov-Smirnov test, Ggatvon Mises test, Wilk’s lambda.

1 Introduction the result will be mathematically more complicated by

_ . . _ . the existence of the correlation among the components
Checking the validity of multivariate linear regression o the vector of observations. It is not like the clas-

using set-indexed partial sums of the vector of ordi-gj4 Jikelihood ratio test studied in e.g. [6], p. 9-20

nary least squares (OLS) residuals has been intensively, 4 [10], p. 395-398, for our test method we need nei-

studied in [16, 17, 18]. The limit processes have beefner normality nor any other distributional assumption
derived by applying various mathematical techniquesgiyen to the vector of observations, so that our proposed
The result in [16] has been obtained by the geomety athod is more practice.

ric approach of [4], whereas thOSG,In [17, 18] have  The application of the partial sums of the recursive
been established based on Prohorov's theorem (cf. [3l}esiquals of multivariate regression in some test prob-

However, the limit processes have been expressed @y has been investigated in [9] by extending the ap-
complicated functions of the multivariate set-mdexedproaches due to [5, 7, 8, 12, 15].  However the limit

Brownian sheets which functionally depend not only, ocess has been obtained only for vector of time se-
on the assumed regression functions but also on the difeg ghservations. For our result we need to investigate
mension of the model. Consequently, the application of, fnctional central limit theorem for the sequence of
the method in the practice is restricted. The quannlezﬁigh dimensional triangular arrays of vector of recur-

of the Kolmogorov-Smimov as well as the Cranvon  gjue residuals. To the best knowledge of the author,
Mises type test statistics have been approximated Dy ere are no documentations available for such kind of
conducting Monte Carlo simulation. Estimation to the ;mit theorem.

upper and lower bounds of the limiting power functions
of the tests by appying Li-Kuelb’s shift inequality have per |et us consider a standarevariate nonparametric
been studied in [19, 20], see also [13], pp. 53-54. regression defined by

In this paper we propose an asymptotic model va-

To see concretely the objective of the present pa-

lidity check based on the limit process of the partial ?(t) =g(t)+ E(t), t € D, (1)
sums of the vector of recursive residuals instead of the _

OLS residuals. Our object of study is actually an exwhereY = (Y1) ... Y®)T is the p-dimensional
tension of that considered in [21]. The derivation ofvector of observationsg = (¢M,...,¢®)7 is the
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true-unknaevn p-dimensional vector of regression func- andhy, (A) := [, fj(z,y)Po(dz, dy), for Ay, Az € A.

tions defined oD := I¢_,[a;,b;] C R?% and€ =  Thereby [* stands for the Riemann-Stilties integral.
(5(1)7 o 75(p))T is the p-dimensional vector of ran- By the dependency of the limit process on the regres-
dom errors withE(f) — 0 and cgv(g) — 3 — sion functions, the computation of the critical values
(UM)%:PI .- TherebyX is ap x p dimensional pos- of t_he_ KoImpgorov-Smlmov and Cranvon Mises
itive definite matrix. Letfy, ..., f, be known linearly ~Statistics defined respectively by

independent regression functionslin(P), whereF, KS(Z»n) =  su 75 (t. s

is the Lebesque measure Bh Model validity check (Zr,) p(i’s)eD | 2P°( Sl

in multivariate linear regression analysis concerns with ~ CvM(Zr,) :=  |p 1 Zp, (¢, s)[|* Po(dt, ds)

the problem of testing the following hypothesis become complicated as the order of the model gets

q higher. Unfortunately there are no documentations
Ho: YD) =36, fi(t) +@(t), te D, (2) available providing mathematical techniques for com-
j=1 puting such critical values for the case other than Brow-

nian sheet. A good survey for the case of multivariate

fori =1,...,p, wheref, ..., Bi; are unknown con-  gtandard Brownian motion and Brownian bridge on the
stants, cf [10], p. 323. Suppose Model 2 is observed,njt interval[0, 1] can be found in [11]. Thus, the main
independently over a triangular array of design points point of this work is to define a transformation so that
the limit process in (3) does not depend on the regres-
sion models. This will be handled recursively as in the
Let Ry, p, = (rjm)?ll::’”ijl, be the corresponding times_ series case_in\_/estigated in [9_] by extending the
sequence ofi; x ns arra)}s of thep-dimensional vec- functional central limit theorem studied in [21].

tor of the OLS residuals of Model 1, wherg, ;, = It is worth mentioning that for testing the hy-
(T(l) ) ). The p-dimensional partial sums pothesisH, against a specific alternative of the form

1720 1 414 . (2) —
process oRj,llﬁz indexed by the family of convex sub- f{é :{19 Ep;f un de[{ 1r;orm’ a{el(fy’/ﬁ]ﬁs %;ib'dt’ejémg}r?rr tzlrlms
setsA of D is defined by the likelihood ration test leads to the test based on the
)P well known Wilk’s lambda statistic (cf. [10], p.324).

Enixns = {tjijo 1 1 <j1 <np, 1 <jo <ma}.

However, there is no information available regarding
the optimality of the test.

To give more insight on the multivariate recursive
By combining the univariate invariance principle of residuals we present in Section 2 its formal definition
[1, 14] and the multivariate one of [11], Somayasa andand investigate the related properties. The limit of the
et al. [16, 17] showed under an equidistance desiggequence of-dimensional partial sums processes of

ny ng .
Vnmz(Rnlnz)(A) = (Z Z 1A(tj1j2)r§i)J'2

Jj1=1j2=1 i=1

(regular lattice), defined by recursive residuals is discussed in Section 3. Next in
. . Section 4 we give an investigation to the performance
ti, = (al + (b — al)]—l, az + (ba — @)‘72) , of the KS and CM test by simulation. The application
niy no

of the test method in real data is presented in Section 5.

that We close the paper with some conclusions and remarks
1 for future works, see Section 6. Proofs are presented in
\/ﬁz_mvnm(an) = Zp, (3) the appendix.

whereZp, is a p-dimensional centered Gaussian pro-2  Multivariate recursive residuals
cess indexed by, defined by

As in univariate case, we assume throughout the paper

. 1 (R () ? that the design is given by a regular lattice olzzand
o =2Zp— D, /D fi(t, 8)dZp; (¢, s)hy, the observations are collected row wise initialized at the
J=1 i=1 pointt;; and terminated at the poibf, ,,, .
T Let (j7,j5) be a fixed pair of integers such that
Thereby Zp, = (Z}(%), .. .,Z}%(?) is the p- Y:;: becomes the firsy-th observed vector of re-

dimensional set-indexed Brownian sheet, which is &ponses according to the preceding order. Keeping this
centeredp-dimensional Gaussian process with the codn mind, let us define the following notations:

variance function given by Toims i= {1, o) 1< j1 <nu, 1< jo < no}
Kz, (A1, Az) = diag(Po(A1NAy), ..., Py(A1NAz)) Trins—q = Tring—q+1 \ {1, 42)};
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where _ Bybsu%stitutinhgﬂ%”;), for (ji,j2) eﬁ Tins—g»
L ffa N [k ” " it can be shown that thieth component ofv;, ., coin-
Tnmrqﬂ.*_ {01, 72), U t Ljz)-ee (m, 32), cides with that of the univariatepcase, seejtj22l]. Hence,
(1,72 +1). -, (g2 +1),- -, (1, m2)}- the argument that has been applied for univariate model
Thus T, n,, Thiny—g @and Ty, 5, g1 CONSiSt respec- can be adopted to get the following result.
tively of nino, nine — ¢ andniny — g + 1 ordered
pairs. For every paitji,j2) € Thnyn,—q+1 and every Proposition 2 For every(ji, j2) € Tpyn,—q, there ex-
i =1,...,p, we define the following vector of obser- ists an(nins — q) x niny matrix A, defined by
vations and random errors

0 @) 100 W7 ajeijs
Y (Yn +Yo1 ""’injz) Lo
() (5 () @ \" '
&)1z (511 1Ea1s - ’%‘2) ' 2,3
Thenins — g+ 1 numbers op-variate regression mod- alTj;H
els underH, are defined by :
1) 1 ma) (neim2) A — . : c R{(nmz*fl)xmnz7
s o= Xy BAEE(4) A jz+1
where :
(nim2) (1) ~(©2) (p) T
lele Y= (lejz’lejz’ T ’lejz) ’ A1n;
: T :
X" = (60 Eltn). - () .
(n1m2) (1) o(2) (p) 2
Ej, = (Q’mv Efrjare 751'1;'2) :
Then the OLS oB based on (4) is given by such that
S(n1,n2) _ (e (n1m2) Tg(n1m2)) 1w (n1,n2) Ty (n1,02) ~ ~ ~ T
Bj1j2 = (lejQ X(j1j2) ) Xj1j2 Y(jle) (wjf+1j;7wn1j§a cee awn1n2) - AEn1n2a

for every (ji1,752) € Tnin,—g+1. It is noticed that

1 where forjs € {j5,75 + 1,...,n2}, andj; # 1,
(X("l’"g)TX(”lf"Q)) exists for large enough; and

J1j2 (J172)
ng, provided the regression functions are linearly inde- Ao Jd . =
pendent as functions ihy(Pp), cf. [22], p. 37. A )
Now we are ready to define the notionefariate (—£7(t;,5,) (Xg.”lﬁ?ﬁxﬁ.”lﬁ?))_ X§”1’{‘]?)T
1—172 1—172 1—172

recursive residuals of Model 2. -
L = (1) (2 o\ 1,0,...,0) ",

Definition 1 Let 5, == (Y0, ¥\, ;7))

be the vector of observations of Model 2 on the pointwith

tj 4o, TOr (41, J2) € Thino—g- Thening — ¢ numbers

of vectors of recursive residuals based on Model 4 arei; ;,, =1 + £ (tj1j2)(X("lm)TX(”lv"Z) )_lf(tj1j2)7

defined by (J1—1j2) T (Jj1—1j2)
_ M (@2 ® \' andforj; = landjs € {j5 +1,...,n2},
Wiij2 = (wj1j2’ Wiyjas -+ ’wj1j2> -
~ o~ , T
Y]ijz - Bg'?i?jé) f(tjljz) aljz1/ dljz =
) T b 71 ’ T b T ) _1 ’ T
\/ L T (t5) (X2 T ) 7 £ (1) (£ (br,) (X X)) x et
forj1 #1, jo € {43, j3 +1,...,n2}, 1,0,...,0)"
and .
1 (2 ®)" with
Wijz = (wle’wle’ o ’wl;??) = T (n1,n2) T~ (n1,n2) "1
Y, - B () g =141 (b170) (anj;—l ij;—l) £(t1),)-
1J2—

T -1 ’ e " T

\/ 1+ £T (b)) (X%fﬁi X%f%) F(ty,) Moreover, A satisfies the conditioAA " = I,,,,,,—q,
, . . wherel,, ,, 4 is the(nina — q) x (n1ng — ¢) identity

forji =1, and js € {j5 +1,...,n2}. matrix.
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By Proposition2 every component of the vector of and1 < j, < ny, if the p-dimensional error vectors

recursive residuals is expressible as a linear combinq'g?jm = (55,32’ . ,5(?). )T are assumed to be inde-
tion of the components of the vector of random erroryendent and identically distributed (iiehf, (0, =), then
ENny, for every(ji, jz) € Tpyn,—q, Where the coeffi- w;,, are iid A, (0, ) too. Hence, for normally dis-
cients depend only on the paifi, j2) € Tnin,—q: BUL  ripyted error model, the limit oE S, andeM P,
notoni € {1,...,p}. can be straightforwardly obtained by incorporating the
Let Win, = (W)i5)5, 0 j,—1» m1 > 1 and  techniques proposed in [16, 17, 18]. However for the
ny > 1 be the sequence af; x ny dimensional trian-  more general setting that methods can not be applied.
gular arrays of the-dimensional vectors of recursive |n this work the limit will be established by generaliz-
residuals, wherav;,;, := 0, for (j1,j2) € Tnin, \  ing the functional central limit theorem studied in [9]
Thin,—q- Let A be the collection of convex subsets of gnd [15].
D := [a1, b1] x [a2, bo], such thatd is totally bounded For computational reason, in this paper we restrict

and have convergence integral entropy in the sense @he index set4 to the family’R, defined by
[1, 14]. The set-indexed partial sums processes of the

p-dimensional recursive residuals with respectdtas R := {[a1, x| X [az,y] : a1 <z < by, az <y <o}

defined as
Hence, for everya,, x| x [a2,y] € R, we have

Sy(lp)n_ (Wnn)(A) = 1a(tj,5)Wijas -
1m2—q 1n2 (]%‘:2) 1927 WI132 Sy(g)nQ_q(anQ)([al,m] X [ag,y])

where the sum is defined component wise taken over - o ET: La1,2)x[az,9) (t5152) Wi
all (j1,52) € Tnyng—q- It is worth mentioning that (71,32)€Tnyny g

for A = 0, we deﬁnesa(ﬁ_)na—q(wmx_nz)((/))_ = 0 and it will be denoted a$?), . (W,.,)(z,y) for
and for anyA € A, for which no design points;,j,  brevity. Hence, the corresponding test statistics are
with the corresponding paifji, j2) € Tpin,—q are given respectively by
covered byA, we defineS"”), (W, xn,)(A) := 0.

ning—p —~
To be able to sum the recursive residuals over all pairs s — 2*1/257(1’;)712_Q(Wmn2)(x, )
(j1,72) € Tnyny, the value ofw;, ;, is set equal to zero, niny = (IS;;FE’D Jring —q
for (j1,72) € Tniny \ Thiny,—q. SO that we have ’ )
-1/2 ¢(p) W
(p) N ni n9 B CM(p) :/ 2 / Snm,q(an)(x,y) d(Edy
Sn1n2—q(Wn1n2)(A) = Z Z lA(tjljz)Wj1j2' e D vning —q
J1=1j2=1
_ i _ In particular, for the case of a unit square experimental
The Kolmogorov-Smirnov and Cranvon Mises  yeqinnzs .— [0,1] x [0,1], the partial sums process
type statistics reasonable for testiflg are defined re-  ,qeyed by such family of rectangles will take the form
spectively by
. ) . [n2y] [n12]
/CS(P) = su 2_1/2S£I;)7L2—q(wn1n2)(14) Snlim*q(wnlm)(x’y) = Z Z Wiijas (az,y) cu.
mnz R Vs —q et =t
) ~ 9 So, when the experimental design is given by the regu-
eMP), = 3 S 28 (Whiny ) (A) lar lattice=,,, xn, OVerid
ning _ ’
AeA e Enixny = {(/n1,k/n2) 1 1< €<y, 1<k <nal,

whereX!/2 is the matrix that satisfie®X = 21/2%1/2  the property of the partial sums operator implies
andx~1/2 = (x1/2)~1, Based on those statisticH,

- - (p) (p) IRVED DA
will be rejected for large values &Sy, OrCMpyn,. g max Ji,j2=1 7172
The limit distributions of¢S%),, andc M, will be M 1<k<ngil << Ving —q
derived in the next section. Since Proposition Al states nomn || soo1/2 bk o 2
that the se{W;,j, : (j1,72) € Tnyny,_q} CONSists of em®) Z 2 de=1 Wi
mutually uncorrelategh-dimensional random vectors nz ) ning — q

with zero mean vector and the covariance malix
by applying a well known result for multivariate nor- In thepractice, the computation of the test statistics will
mal distribution, cf. [10], p. 137, fot < j; < n;  be based on the partial sums indexed by the fafily
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3 The partial sums limit process Then the rejection regions of asymptotic sizeests for
In this section we state the main result that gives thetzes’tm}H0 are given respectively by
limit process of the sequence of the set-indexed Crs ={Ynn, : ;nglp)n > ksi_ql),
dimensional partial sums processes of the recursive H
residuals: whenkS®P),. is used and
1 “1/2¢0) (W

e —a qZ l/QSnlinz—q<Wn1n2)(A)a Ac A CouvM i= {Yn1n2 . C./\/l%l?l)n2 > leia}’

The proof is postponed to the appendix. when the statisticci’/\/lﬁfl’l)n2 is used. Thus, the prob-

E— ~ lem of testingH|, reduces to that of computirigs;
_ L ni,n2 o

Theorem 3 Let{w”1X”2 N (W””)J’l:lvh:l}’ ™ 2 and cmi—_q for any pre-signedv € (0,1). Moreover,

Landny > 1, be the sequence ofi x ny arrays of  \yithout altering the test procedures, the unknown co-

the p-dimensional recursive residuals of Model 2 0b-y3riance functior® can be estimated by any consistent
served over a regular latticy, x,,. Suppose thatthe agtimator, such as by that given in [2].
regression functions are continuous and have bounded 14 pe able to investigate the limiting power of

variation onD. Then forn;, ny — oo, it holds, the tests, we consider the general localized version of
1 Model 1, defined by:

s-1/26() {fvn . 7
\/TW_(] Sn1n27q( 1 2) = P07 _ 1 B _
wheee Zp, is the p-dimensional set-indexed Brownian Y(t) = Vning — qg(t) +E), teD, ©)

sheet.

Theorem 3 shows that the limit process of the par-WIth E(£(t)) = 0andCou(&(t)) = 2. For(j1, j2) €

tial sums of the recursive residuals undgyis given by
the p-dimensional set-indexed Brownian sheet, what- Gnun2) (g(l) g(?), g(p) )
ever the regression functions we have. This means that Jij2 J1j2> Sjrg2) " Sjija
the transformation defined by the recursive residuals refhen, we have

duces the dependency of the limit process on the as-

ninz—q+1, let

sumed model. Theoretically this will give advantage v (":m2) _ #G(nmz) + glmn2) (6)
particularly in the computation of the quantiles of the 7'’ Vmng —q 2 172

test statis_tic_s. - ) Corversely, wherH is true, the model clearly reduces
'(H;e limit of the test statistick.Sn.n, as well as 15 (4). Hence, by applying Theorem 3, the asymptotic

CMiiin, can be readily obtained by applying the con-test procedure is not altered when the localized model

tinuous mapping theorem (cf. Theorem 27 in [3]), asis considered, in the sense the test leads to the same size

stated in the following corollary. « rejection region as that of the non localized model.
Corollary 4 Under the conditions of Theorem 3, it The limiting distribution of the statisticES%pl)nQ
holds forn; andny are simultaneously large, that <';1nd(3/\/l7(1p1),12 for the localized model (5), wheH| is
not true is presented in the following theorem.
KSP),, = sup |Zp,(A)] P J
€A Theorem 5 Suppose that the vector of regression func-

and tionsg = (g1,...,9,)" is continuous and has bounded

CMP) = / 1Zp, (A)|?dA variation onD. LetW!ee, .= (wloc ), for (ji, j2) €

D

) . ~ Ty, n,—q be the sequence of arrays pfdimensional
By Corollary 4, the implementation of the test in yector of recursive residuals associated with the lo-
the practice can be realized by approximating the fizalized model (5) observed over the regular lattice
nite samples quantiles deﬁfl)nQ ade/\/lﬁf’l)n2 using  E,,xn,- Then, wherf is not true it holds
those ofsupacal|Zr, (A)] and Jp, | Zr, (4)|2dA, re-

spectively. More precisely, far € (0,1), let ks;_o E_I/QSleiLQ_Q(WfﬁCW) S-12 1 7
and ecm;_, be positive real numbers that satisfy the Vg —q = g T4m,
equations
whele
P Zop (A > ksy_o b = _
{1201 2 koo f = ) = [ B R )
P {/ |Z (A)|2dA > cml_a} —a - / £T (u, )G (u, v)E (1, 0) Py, o),
D A
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thereby U with the experimental design given b x 50 regular
lattice

e T qxgq
G(u,v) == /B< Ez, )f (2, y) Polde, dy) € R Ssoxs0 = {(£/50,k/50) 1 1< £<50, 1<k<50}.

u,v)
H(u,v) = / f(x’y)gT(x,y)Po(dx’dy) c RI*P,  The vectors of random errors are generated indepen-
By, dently from the centered multivariate normal distribu-
_ _ tion N, (0, 3) for some nonsingular covariance matrix
The subseB,, . is determined by the set and the s Hgwever, in the simulation it is assumed tPais
variable (u,v) € A. unknown, therefore it is estimated by a consistent esti-

As a direct application of the well-known contin- mator /7% /(n”) defined in [2]. The number of runs is

uous mapping theorem, the asymptotic power functiort00-

of the test based on thedimensional statistickK Sr(ﬁ)m

andC‘M,ﬁ’l’z12 can be expressed as follows. 4.1 Bivariate constant model

Corollary 6 Suppose that for testing the hypothesismthe first scenario we test the hypothesis that a bivari-
. . ; ; . ate constant model holds true. The samples are gen-
Hy defined in Section 1 the localized model (5) is ob y P g

- ‘erated based on the following localized bivariate first-
served under the equidistance des®f) x,,. Asymp- g

. ; . : order model
totic power function of the size Kolmogorov-Smirnov
test is given by ~ 5 Lk -
Y:<<3 +p 7+’;3 /Vn?—1+E.
: - »ta
im Y .» (8) noon
ni,na2—0o0 ’Csnan . . .
) ) B Thereal constanp varies in some interval so that the
= him P {ICSn1n2 > ksiq | g} mean functiorg varies in the space of vector of func-
tions of bounded variations ai. It is clear that the
=P {sup Hz‘lﬂhE(A) + Zp, (A)H > 7;‘1a} ) observations are froni/y, whenp = 0. The two di-
AcA mensional random errd& is generated independently

. . ) from the bivariate normal distributioiV, (0, ), with
Similarly, the asymptotic power function of the o covariance matrix

Cramér-von Mises test of sizeis given by

‘ N s_ (11
m}gngCM;%(g) 1 2 )

=, im P {CM%)M > cmi—q | E} Figure 1 exhibits the empirical power functions of
e Hz—1/2h~(A) "z (A)H2 e the t'es'Fs, where the g.raphs B;CS%’;’W énd TCM;%Q.
b g Po = Mi-ar-  gre indicated by a solid and dashed line, respectively.
The left panel is forr = 0.01, whereas the right one
In this paper the finite sample size behavior of thecorresponds tax = 0.05. The graphs show that the
tests will be investigated by simulation by comparingpower increases as the model moves away fildm
the power functions of the tests based on K8\,  The power fluctuates aroundasy = 0 as it must be.
and CM%’?M statistics. It can be shown easily that :\t/llcan be seen_th_at_the;_terz]slt based on thfe I@Lamnh
whenHj is true, the ternE~1/2h~ vanishes uniformly, |se(sj typehst?;usitlc IS Slig éy more powerful than that
so that the power attains the pre signed size of the test@sed on the Kolmogorov-Smirnov one.
That |st]€$£5,1>%2 (g) =a= TCMELPI’M, (g), for g varies
underH,.
4.2 Trivariate first-order model

4 Simulation study In this subsection a more general hypothesis and model

are simulated in which the samples are generated based
We now study the power of the KS and CM type j ihe following model

tests via Monte Carlo simulations by considering three

cases. In each case the graph of the empirical power 0L 1+ %12 + % exp{%%}
function TKS%Q and TCM%)M are developed and g ,) | -2+ %z + % 1) exp{%%}
compared each other. The samples are generated over” " 3+ % - % eXp{%%}
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Figure 2. The graphs ofTKS(p) (solid line), and
Figure 1: The graphs ofY Ks®,, (solid line) and ¢ pp,, (dashed line) for testing three-variate first-

TCM%’Q,Q (dashed line) for testlng bivariate constantorder model.
model.
where
for testing the hypothesis that a trivariate first-order % 32t
model is true. Under alternative we consider a trivari- ,p . 2+ o+t ", Tty
ate nonparametric model by adding the model specifie8 ( ) = -1 + 26 + 3’“ +E 2y 5”“
under H, with an exponential terms. The error com- 3+ L Qf + ‘;ff + ffj + 5”“
ponent is generated independently from the trivariate
centered normal distributioN3(0, X), where sm(@)
+p exp{ 2}
0.65 0.31 1.18 exp{ %} sin(£5)
¥=1] 031 0.58 0.81 -
1.18 0.81 2.50 The vector of random erro€ is generated indepen-

dently from the centered three-variate normal distribu-
The scatter plot of the empirical power functionstion N3(0,X) with the covariance matrix as in Sub-
of sizea = 0.01 anda = 0.05 are presented in Figure Section 4.2. As in the preceding scenarios, the simu-
2. It can be concluded that the CM type test (dashetftion result for testing second-order model shows that
line) has larger power than the KS type test (solid line)the CM type test has larger power than the KS type test
The sizes of the tests are achieved wpénset to zero.  has, see Figure 3. Whéfd is true, the powers of the

That is as the observations are frdfy both tests attain tests attain their pre determined sizes. However, when
the pre-signed values of the model is far away fronf,, the power increases

gradually.

4.3 Trivariate second-order model

The last simulation concerns with the problem of test5 Appllcatlon

ing the hypothesis that a second-order model holds trugn this section we demonstrate the application of the
The vector of observations are generated based on thgymptotic test procedures to a multivariate data which

localized model is the corn plant data. The data consist of the mea-
_ g ~ surements of the maximum weight of the corn vyield
Y = Jr—¢ +&, (in gram), the maximum height of the corn plants (in
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alpha=0.01 alpha=0.05

1.0
1.0

] e " e ¢ L
In.Weight. o o's
Do | A |

0.6
0.6

0.4
0.4
|

Probability of Rejections
Probability of Rejections

Figure4: The pairs plot of the Ln Weight, Ln Height
and the Rate of Growth of corn plants data.

0.2

Q
S

T T T T T T T T T T
-150 -50 0 50 150 -100 0 50 100

rho rho

Table 1: The Pearson correlation matrix for the Ln
Figure 3: The graphs ofrm(p) (solid line), and Weight, the Ln Height and the Rate of Growth.
nan

T, @ (dashed line) for testing quadratic model. : Ln Weight Ln Height Growth
CMain, Ln Weight | 1.00000 0.69965 0.18816

Ln Height | 0.69965 1.00000 0.34798
Growth 0.18816  0.34799 1.00000

cm) and the rate of growth (in cm/day) of 21 x 16 corn
plants planted over a rectangular farm region of size
[0,12 m]x[0,15.75 m] running from west to east and

from north to south. The experimental design is givenrap|e2: The Kolmogorov-Smirnov goodness of fit test

by a 0.75 m x 0.75 m dimensional regular lattice, seqJsing the command "ks.gof” in R for the normality of
[21]. The measurements have been conducted fro%e Ln Weiaht. Ln Heiaht and Rate of Growth
August 2018 to October 2018. The goal is to build Variablesg : Criti?:al Values p-values '

a model empirically describing how the values of the :
three variables vary over the region as a function of the LN Weight 0.10330 0.00000
coordinate of any point on the experimental region. ~ Ln Height 0.08000 0.00000

Descriptive investigation using matrix scatter plot Rate of Growth 0.04390 0.50000
and Pearson correlation coefficient regarding the exis-
tence of the correlations among the logarithm of the  Threedimensionascatter plot of each variable pre-
maximum weight (Ln Weight), the logarithm of the sented respectively in Figure 5, Figure 6 and Figure 7
maximum height (Ln Height) and the Rate of Growthindicate that three dimensional polynomial of low order
shows that the three variables are positively correlategre reasonable for describing the regression relation-
each other (Figure 4). In particular, the correlation beship between the observed variables and the coordinate
tween the Ln Weight and the Ln Height is relatively of every position on the experimental region.
strong compared to those between the Ln Weight and  The main objective is to test the validity of the as-
the Rate of Growth and between the Ln Weight and thgumed model based on the partial sums of the recur-
Rate of Growth, see also Table 1. By this preliminarysjve residuals. The test results are presented in Table
diagnostic results, the empirical model building must3. When undef, a three dimensional constant model
be conducted using multivariate analysis without ignoris assumed, both the KS and CCM type tests reject the
ing the inherent correlation among the variables. Furhypothesis by the fact the correspondingalues are
thermore, based on the normal Kolmogorov-Smirnowery small. This conclusion is also supported by the
test presented in Table 2 there is no enough statistiwilk’s lambda test when under the alternative a three
cal evidence to say that the three variables follow a trigimensional first-order model is assumed by the reason
variate normal distribution. the test also has a very smailalue, see the figures in
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the secondrow of Table 3. Thus it can be concluded be rejected forx > 32.093%. Since for these num-
that three dimensional constant model is not plausibléers the probabilities of the rejection of the hypothesis
for the corn plant data. when it is true is large, we decide to accept the hypoth-
esis. The same conclusion is also obtained when under
the alternative a three dimensional second-order model
is considered. By employing the Wilks lambda test,
the hypothesis is also not rejected since the p-value is
RNy 32.093%. We therefor conclude that first-order model
it is a significant model.

n\Weight.

Rate.ot Growth

Figure5: The three dimensional scatter plot of the Ln
Weight observed over B x 21 regular lattice.

Figure7: The three dimensional scatter plot of the Rate
of Growth observed over ¥ x 21 regular lattice.

Table 3: The critical values and the approximated

p-values of thek S, o, cMP . and the Wilk's
lambda tests for the corn plants data.

\n.Height

Model kS eMP Asae
Constant  24.49602 64.51159 25.21487
P-Value 0.00012 0.00035 0.00031
First Order 17.19393 16.85463 10.37576
P-Value 0.21101 0.11236  0.32093

Figure6: The three dimensional scatter plot of the Ln_ _Theleastsquares estimate of the parameter matrix
Height observed over B x 21 regular lattice. B is given by

R 0.24424 4.42890 4.49722
B = 0.15932 0.40387 0.29157
Now we test the hypothesis that three dimensional 0.079320.00587  0.11326

first-order model is significant. The KS as well as theHence, the first-order fitted model associated with the
CM type tests lead to the acceptance of the hypothesigorn plants data is as follows

Referring to the associatedvalues of the tests (see the

third rows of Table 3), the hypothesis will be rejected 1:’1 0.2442 + 0.1593z + 0.0793y
for > 21.101% when the KS type testis used. Sim- | Y5 | = [ 4.49722 + 0.40387x + 0.00587y |,

ilarly, by using the CM type test the hypothesis will \ v, 4.49722 + 0.29157x + 0.11326y
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for (x,y) € D. By this model the values of the Ln and
Weight, Ln Height and Rate of Growth simultaneously - -
increase as the coordinate of the point moves awa$'ov (W]UQ?W]’j/) =E (Enlngaj1j2) (ajijéEnlnz)

from the origin which is put on the south-west corner T g( )

of the region. In fact, when the correlation among the A5, jpCnans

variables are ignored, the one dimensional partial sums = £ : (am/ 6,(111),12, : a i /57(1%2)

method proposed in [21] can be applied to each indi- al g( )

vidual variable. A routine computation gives the result Ajujz Oz

that first-order model is also fit well to the corn plant Uuaﬂplajljz »7t 7ty Olp JTUQI A

data, see [21]. _ 021aijIa]iJ, oy 09 ija]iJ,
From the agricultural perspective, the three ob- = .

served variables (Ln Weight, Ln Height and Rate of ' : '

Growth) can be regarded as indicators of the fertility Op1 mQIaJ’Jg 77Ty Op2 sza 135

level of a farm land. The larger the values of these

variables, the better the fertility level of the land is andSincea; ;a; ;= 1 for j;1 = ji andj» = j5 and

viceversa, the smaller the values of these variables, the 5, = 0, for ji # Jji or jo # j5, the result

worst the fertility level of the land is. Hence, by ob- follows establlshlng the proof.
serving the fitted model presented above, it can be con-
cluded that the fertility level of the region gets large as

the position moves away from the origin. Proof of Theorem 3: By the multivariate version of

Donsker’s theorem (cf. [3]) we need to show that the
6 Conclusion finite dimensional distribution of the sequence

In this paper asymptotic procedure for testing model #2 1/2g(p) W
validity in multivariate linear regression based on the vimng —q mnz—a(Wrnana)
partial sums process of the recursive residuals has been Nverges to that o » and the sequence is tight. It
established. The method is derived for the case whef 9 Po q 9

the probability distribution model of the vector of the 's noticed that the sum is defined component-wise. Let
observations is unknown. The limit process undigr Y- Ym AN AL, -, A, be arbltrarym constants
oo S . . nd convex subsets ilij, respectively. Let

is given by the multivariate set-indexed Brownian sheef

independent to whatever the assumed regression mod- m 5-1/26() (Win) (A7)
elsis. This result gives an advantage in that, the compuy,, .= ZW ning—g\ Wnina 1)
tation of the quantiles of the test statistic theoretically -1 Vning —q
becomes easier. The application of the test method to

the corn plants data give the similar result as that off hen,by Proposition Al, we get

the Wilk's lambda test. Three dimensional first-order

polynomial model is fitted well to the corn plants data. Cov(Upyny—q) = E (Unlnz ¢Uping— q)
= 2051 2k njf;zliq X

Appendix 2 (G192, 74 74) €T —a LAe (B2 ) Lag (b5754)

Proposition AL For the vector of recursive residuals xE~12E (lejQWjTj,) x-1/2

~ (1) () \ " . . 12

Wjijs = (wj1j2, . .,wjm) defined in Definition 1, =S n?fgk—q

It hO|dSE(Wj1j2) =0and X Z(ﬁ,jz )ET 1 ny—q 1AeﬁAk (tjle)Ip

_ O ; ji1 #j1orje # jh = 2 2= ks g
Cov (Wj1j27wj'J§) = S =il and o = il
yJ1 =71 J2 = J2 X (fAeﬁAk Pnlxng(dmady)—i_o(l)) Ipv
for every(ji,72), (41, 75) € Tning—q- wherel,, is thep x p dimensional identity matrix and

P, xn, is the discrete probability measure #{D),

Proof: Let (j1,j2), (j1,J2) € Tnin,—q be arbitrary.  such that for everyl € B(D),
By Proposition 2, we have
1

nin

> La(ty)-

T Pnl XMn2 (A) =
) - O’ 2 (j17j2)€Tn1n2

E(ﬁ/’jle):E(aT’g(l) aT g(p)

J1J2 7 nin2? » Fi1529ning
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Sincefor n; andny simultaneouslyarge, P, x,, CONn-
verges weakly to the Lebesque meastyand the ratio

~n2_ corverges tol, then we have

ninz2—q

lim  Cov (Upiny—q)

ni,ny— oo

=> D wn / Po(dz, dy)T,,
AyNAy

=1
m m
= Z Z Yoy Po(Ag N Ak)Ip.

The right-hand side is the covariance of the linear com-

bination>~y", v/Zp,(As). Next, we show that

lim E
ni,ng—oo
(41 1]2)€T711n27q

Hbjlj2H2 =0.

Since, for(j1, j2) € Trin,—q, the vectorb;, ;, has the

form
Tie . (n1,1m2) T (n1,m2)\ 71 < (n1,02) T
(—f (tJ1J2) (Xj1—1j2 Xj1—1j2) Xj1—1j2 ’

1,0,...,0,0,0,...,0)" € Rmn2,

it holds

Hbjljz H2

n2)T m2)\ 7 m2)T
£7 (t5,5) (X2 TG ) Xyt

V/ning ning V/ning

+o(1).

The result follows by the continuity of the norm

2
—1
(n1,m2)T 5 (n1,n2) (n1,m2)T
£7(t5,5,) (anjg Xnm) X1 =14

Wayan Somayasa

(n1,12) T (n1,m2)\ 71 <7 (n1,02) Tx 7 (n11,12)
(le_m Xi-1, ) XjiZ1js Y-t
djy jo
St - g
8(t)ij,) 4 Shg2 fT(tjljz) %

a \/dj1j2 (n1n2 — q) \/djljz
(X(nl,ng)TX('n1,n2)) -1 X<n17n2)TG('n1,n2)

Jj1—1j2 Jj1—1j2 J1—1j2 J1—1j2

dj1j2 (nln? - q)
—f 7 (t5,5,) X

(n1,n2) T (n1,n2)\ 1~ (n1,12) Ty (121,122)
(le—ljz Xi-1, ) K-y, By,

V djljz

SinceProposition2 ensures that

~ (n1,12) T (n1,n2)\ 1 < (n1,12) T (n1,122)
i (XSETXGE) X T

+
\% dj1j2 V dj1j2

= V~Vj1j27
whichis the vector of recursive residual undéy, then
the last expression can be simplified as

1 gt ) T
e = — — £ (t5) %
dj, j,(n1ng — q)

J1—1j2 j1—1j2 Jj1—1j2 Jj1—1j2

(X(.nl,ng)TX(‘nl,ng)) -1 x (n1m2) T g (m1.m2) )
T Wi

dj, j,(n1n2 — q)

— L ~1 ni,n2
Let WP, = (w 06)]‘1:1 i be then; x ny array

of the p-dimensional vector of the recursive residuals
associated with the localized model. By considering
the linearity of the partial sums operator we get for ev-
ery A € A,

operator and the regression functions. So, following

and extending the technique in [15], the first assertion 1 5(®) (Wzgc )(A)
follows. Jning — g mMneTa i mxns

Proof of Theorem 5: For the localized model, sup-
pose thatH, does not hold true. Then fdy, j2) €
T, n,—q, We get the correspondingdimensional vec-

tor of recursive residuals as

V.. T/r . \pn1,n2)

e _ Vi = (452)B5, 7
Jije2 — ST, .
djl]Z

interpreting w;

1J2

B2 e further get

Ji—1j2°
g(tjljz) gN .
~loc __ vnina2—q J1J2 Tre . .
Witje = Ao —f (tﬂ]z) X
J1J2

E-ISSN: 2224-2880

and Y, ;, as the row vectors.
By substituting the vector of observatioyi,,;, and

g(tﬁjz)
(nin2 — q)\/dj,j,

= 2

(jl 7j2)ETn1n27q

-

(jl 7]‘2)6Tn1n27q

1a(t)),)
]-I‘X(tjljz)fT (tjljz)

(nl,ng)T (’nl,ng) -1 (nl,’nz)—r (’nl,ng)
(Xj1—1j2 Xm—m) X1 G-t
(nin2 — q)\/dj, j,

1 —
+\/W7_qsr(ﬁ)nrq(wm xnz) (A).

Thefirstterm on the right-hand side of the last equation

can be re-written as

ning 14(t;,5,)8(t)5,)

(ning — q)\/djyj, (Z nin2

j17j2)
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ning

_= o :L',
(nin2 — q)\/djy 5, JA g(=-9)

Pryn, (daz, d?/)

where the sum is ovérF,,, ,,—,. Since the components

of g has bounded variation o® and P,,,,,, = Fo,

then by the definition of integral component-wise and

the fact thaly < ni1ns, we get by applying the similar
argument as in the univariate case (cf. [21]), that

i n1n28(,y)
1m
mnz=e0 J4 (ning — q)

| &) (s, dy)
For the second term we have

> La(tjz)f " (8,52)

(jl’j2)€Tn1n2fq

1. Priny (dz, dy)
152

(X(nl,nz)TX(nl,n2)> -1 X (m1:12)T 3 (n1,n2)

J1—1j2 J1—1j2 J1—1j2 J1—1j2
(n1n2 — q) djy jo
_ 1 3 (n1n2) LA (t,5)F " ()15,)
nin2 ( (n1ng — C])\/m

jlij)eTnlnzfq

(n1,n2) T~ (n1,n2) -1 (n1,n2)T ~(n1,n2)
y (leljz X5 ~1js X5 -1js Gy

ning

ning

ning fT(u, U)

T (nz —q) Ja Vg
-1
</B (fu(@, ) fol, )Py =1 Prins (de, dy))

q,p

x / fk<a:,y>ge<x,y)Pmux,dy))
Buw

Py, (du, dv).

k=1,=1
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