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Abstract: Models which describe a two-way flow of influence among dependent variables are called
simultaneous equation models. Simultaneous equation models using panel data, especially for fixed effect
where there are spatial autoregressive with exact solutions, still few of their development and require to be
developed. This paper proposed feasible generalized least squares-three-stage least squares (FGLS-3SLS) to
find all the estimators with exact solution. The proposed estimators are proved to be consistent.
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1 Introduction

Single-equation methods and system methods are
two methods to find the estimators of parameter in
simultaneous equation models. Single-equation
methods are applied to one equation of the system at
a time meanwhile system methods are applied to all
equations of the system simultaneously as revealed
by [15]. The latter are the methods which are much
more efficient than the former because they use
much more informations [15].

Three-stage least squares (3SLS) and full
information maximum likelihood (FIML) are
solution techniques of system methods. However,
the estimators of 3SLS are more robust than of
FIML [8]. Consequently, solution technique by
means of 3SLS is much more advantageous than the
one by FIML because it is both time saving and cost
saving.

Unfortunately, the limited observations can be an
obstacle to obtain the estimators of parameter of
simultaneous equation models. However, we have
still a chance to overcome these problems by means
of panel data. One of many advantages of panel data
is their ability to increase the sampel size [4,10,11].

Model which contains spatial correlation among
dependent variables can be evaluated by spatial
autoregressive model [1]. In this solution, we use
first-order queen contiguity to find row-standardized
spatial weight matrix [17] and Moran Index to
examine spatial influence [3,23,24]. Some papers
about estimation of parameter in simultaneous
equation models for fixed effect are revealed in [5],
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and [16]. But, estimating these parameters has done
by simulation.

In this paper, we are motivated to develop
simultaneous equation models for fixed effect panel
data with one-way error component by means of
3SLS solutions, especially for spatial correlation
among dependent variables. The objective of this
paper is to obtain the closed-form and numerical
approximation estimators of parameter models and
to prove their consistency, especially for closed-
form estimators.

2 Models Development
We refer to [10] with m simultaneous
equations models in m endogenous variables,
namely
y, =1y, +X,a, +Y ,B_, +u,, (D
for h=1,2,3,---,m, where y, denotes the hth
endogenous vector, X, denotes the Ath matrix of
observations including (for example k,) exogenous
variables, Y, the —Ath matrix of

observations including endogenous explanatory
variables except the /ith endogenous explanatory
variables, u, denotes the sth mean parameter, a,

denotes

denotes the Ath parameters vector of exogenous
variables, B_, denotes the —ith parameters vector
of endogenous explanatory variables, u, denotes
the Ath random error vector assuming mean vector
0 and covariance matrix oI, (homoscedasticity)
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in which o, denotes the unknown #Ath error

variance and I, denotes the nxn identity matrix,
and 1 denotes the unit vector. In this context, we
suppose that (1) are over identified.

The next model is fixed effect panel data
regression models with one way error component
[4,11], namely

y,=1lu+Xa+1y, +u,, )
for j=1,2,3,---,7, where y, denotes the jth
time period endogenous vector, X, denotes the jth

time period matrix of observations including (for
example k,) exogenous variables, x denotes the
mean parameter, @ denotes the parameters vector of
exogenous variables, y, denotes the jth time

period time specific effect parameter, u; denotes

the jth time period random error vector assumming

2

mean vector 0 and covariance matrix o’l , o

no

denotes the unknown error variance. Equation (2)

has one restriction, namely ZT:y ;=0.
=1
If equations (1) and (2) are combined, the
following equation is obtained
Y, =lu, + X0, +Y B, +1y, +u,, 3)
h=1,23,,m, j=12.3,-T, where vy,
denotes the jth time period Ath endogenous vector,
X

for

, denotes the jth time period Ath matrix

including (for example k,) exogenous variables,
Y,

including endogenous explanatory variables except
the jth time period Ath endogenous explanatory

denotes the jth time period —Ath matrix

variables, y,. denotes the jth time period Ath time
specific effect parameter, u,; denotes the jth time

period Ath random error vector assuming mean
vector 0 and covariance matrix o, I,. There is one

restriction, namely i 7, =0.
j=1
The furthermore model is spatial autoregressive
model which refers to [1], namely:
y=1u+Xa+ pWy +u, “4)
where y denotes the endogenous vector, X denotes
the matrix of observations including (for example

k) exogenous variables, p denotes the spatial

autoregressive parameter, W denotes the row-
standardized spatial weight matrix, and u denotes
the random error vector assuming normal
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distribution with mean vector 0 and covariance
matrix o’1,.

If (3) contains spatial influence and the spatial
influence comes only through the endogenous
variables, then we can adopt models in equations (4)
and obtain new form equations as follows:

Yy = 1, + th“’h + phWth + Y—h/ﬁ—h + 17%/ tu,. (5

Equation (5) can be simplified as follows:

Ayyy =1, + X0, +Y_ B, +1y, +u,, (6)
for h=1273,--,m, j=12,3,---,T, where
A, =1 -pW, p, denotes the hth spatial

autoregressive parameter, and u, denotes the jth

time period Ahth random error vector assuming
normal distribution with mean vector 0 and

’I,. There is one restriction,

covariance matrix o,

T
namely Z 7,=0.

J=l
We refer to [12] for the properties of kronecker
products, [19] for reparameterization, [8,9,15] for
3SLS estimation, [13] for GLS and FGLS, [17] for
the use first-order queen contiguity to find the row-
standardized spatial weight matrix, [3,23,24] for
examining spatial influence by means of Moran
Index and [18] for consistency.
For the solution of (6) by 3SLS, we obtain the
following equation:
XAy, =X 1y + XX 0, + XY, B, A
+X, 1y, + X,
T
but the restriction Z 7, =0 will not be achieved.
j=1

This is due to X. ; having in general, different

values of the matrix of observations in every jth
time period. This paper overcomes the restrictive
problem by means of average value approach of the
matrix of observations [20-22]. We use this
approach because the estimator of the mean is
unbiased, consistent, and efficient as revealed by [8-
10,15].
As a consequence of this approach, we can write
(7) as follows:
XAy, =Xy, +XX,0,+XY B,

+Xey, + X, ®)

which can be rewritten to obtain new forms of
vectors and matrices as follows:

XLAY, =X.Gp+X.Z 0+ X.Gy, +X.u;, (9)
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where Z, :[X_I. Y__].] and 0 :[a’

B |

having dimensions mnx (Z k, +m(m— l)j and

h=1

(Z k, + m(m— l)j x 1, respectively.

h=1
Explanation of the vectors and matrices from
equations (7)-(9) are X.. denotes the mnxmz k,
h=1

diagonal matrix whose submain diagonal is X.,

_ 1<

X.=—)> X..
72X

matrix including all the exogenous variables in the
system, A denotes the mnxmn diagonal matrix

whose submain diagonal is the nxn matrix A, vy,

where X, denotes the nxzm:kh

h=1

denotes the mnx1 vector including all of the nx1
vectors y,, G denotes the mnxm diagonal matrix

whose submain diagonal is 1, p denotes the mx1

vector including all of g, X, denotes the

mnx Yk, diagonal matrix whose submain diagonal
h=1

is the nxk, matrix X,, o denotes the Zkhxl

h=1
vector including all of the &, x1 vectors @, Y_,
denotes the mnxm(m—1) diagonal matrix whose
submain diagonal is the nx (m—1) matrix Y_,, B_
denotes the m(m—1)x1 vector including all of the
(m—1)x1 vectors B_,, v, denotes the mx1 vector
including all of y,,, and u, denotes the mnxl
vector including all of the nx1 vectors u,;, as well

as n denotes the sampel size of observations. For

T
j=1,2,3,---,T, the restriction 2711/ =0 is changed

=1
2., =0

=

3 Estimating the Parameters
Now, we pay attention to equation (9).
Estimation all of the parameter models is done in
three stages. At the first-stage, we estimate all the
endogenous explanatory variables in the system in

every time period as follows:
Yy = X0+ Vi,

(10)
where Xj. denotes the matrix of observations

including intercept and all the exogenous variables
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in the system in every jth time period, o, denotes

the Ath parameter vector of the exogenous variables
in the system in every jth time period, and v,

denotes the Ath error random vector in every jth
time period assuming mean vector 0 and covariance
matrix o1, in which o denotes the unknown
v,th error variance.

Estimator for a, is obtained by minimizing

residual sum of squares (v;jvhj) in least squares

method. To minimize this residual sum of squares,
we first differentiate with respect to a,,, then by

setting this derivative equal to zero, we obtain the
estimator of a,, which is given by

&, =(X'X)) Xy, (11)

R
Next, we estimate y,; by
Vi =X, (12)

and then we obtain

Y—U = [5'2; Vi Y 9,,,,-],
Y—zj = [5’.,- Vs; Vu y,,,,.],
Y, =[9, 9., 9. i RO
Y—mj = [ylj Yo, V3, ym—w}

At the second-stage, we estimate parameters of
t,,0,,B_,, dan y, to obtain ﬁzj of (6). We first

A

substitute Y W by Y. " in (6), where
Y, = Y_ y \7_ W and obtain new equations as
follows:

Ay, =1, +Z,8, +1y, +u, (13)
where Z,, :[Xh_l. Y_h/.] and 0, =[a§1 ﬁﬂh]
having  dimensions nx(k, +m-1) and

1><(kh +m—1), respectively, and “Zf denotes the

composite random error with uzj =V_,B,+u,. By

using the results of (12), we apply least squares
method to find the parameter estimators of
#,,9,, and y,.. Because the matrix in the right-hand
side is less than full rank, to obtain the estimator of
0,, we use nxn dimensional transformation matrix
Q in which Q1=0. We note in passing that

1
Q=I,——11' is symmetrical and idempotent.
n

Premultiplying (13) by Q  we  have
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QA,y,,

squares method the estimator of 0, is as follows:

{ZZ QZ,U} {ZZ QAhyhj} (14)

By (13) the estimators of z, and y,, are

R 11‘ T T A
:_{Athhj—(Zijeh:‘, (15)
T J=1 j=1

:QZhj0h+Qqu and by means of least

A 1 t fo t 0

Vi :;(1 Ay, —np, -1 Zhjeh)’ (16)
respectively.
By (14) to (16) we can estimate u:y. as follows

i, =A,y, —1(4,+7,)-Z,9,. (17)

But, in case p, is not known, we can estimate it by

means of concentrated log-likelihood.
The likelihood function of w,,i=1,2,3,---,n,

j=12,3,--,T, denoted by L,

T n 1
L, = H(Zim‘f) 2 exp(—y‘zu;juw} and by
J=1 h

Jacobian transformation, we obtain the natural
logarithm of L, as

1s as follows:

T
Z(Ahyh_,- -, )t

InL, :——ln(2 o)) —— !
20'h
(Ahyhj ahj)+T1n||Ah||
where ||Ah|| is the absolute of the determinant of
A,.
We take Setting this
derivative equal to zero, we obtain the estimator of
o}, namely

T
6, ZLZ(Ahyhj —ay )t(Ahyh./ _ah./)- (18)
nT ‘3

By (18), we obtain concentrated log-likelihood as
follows:

derivative for o;.

In L = C—ﬂln[ii(Ahyh. ~a,)
2 \nT5 Voo (19)
X(Athj —a, ))
where C_——ln(2 )—%
Let W have eigenvalues o,,w,,-,®,. The

acceptable spatial autoregressive parameter is

< p, <1 [2]. We use numerical method for
a)minimum

InZ?" to find estimator of p,, namely method of
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forming sequence of p, by means of R program
[20-22]. Its procedure is as follows.

1. We make sequence values of p,, where
P, =seq(start value, end value, increasing).

2. For every y,, and a,, h=1,2,3,---m, we insert

values of p, in (19). Because the values of a,,

are unknown, we use the estimator, a,;, where

a, =1(4,+7,)+2,9,, with
Z,= [th Y—h./]'

3. Finding the value of p, that gives the largest
InLZ.

Based on the estimate p,, the equations (14) to
(16) can be rewritten as follows:

{ZZ QZJ {ZZ QAhyh,}, (20)
{A th, [ZZJG} (1)

A 1 A ~ t N
7 =;(1 Ay —niy, ~1Z,8,), (22)

respectively, where A, =1 — 5, W.
The furthermore, the equation (17) can be rewritten
as follows:
i, =A,y, ~1(4,+7,)-2,9,. (23)
We then use (23) and (18) to find the estimated
covariance matrix of the estimator ﬁ;j, namely

M A2 A A A
O, O Oy Oim
N ) A A
0, 0, Opn Oom
“ _ | 2 A ) A A2 oA : _ ¥
X=\¢, 6, G, Gy, |» 01 =0, ifth=h
a N a )
_O-ml O-mZ O-m3 O-m _
. N _ Nkf oA K
with & . ——Zuhj .

where &} denotes the Ath estimated error variance,
G, denotes the h'th and the hth estimated error

covariance, and X denotes mxm estimated
covariance matrix.

From (9), we have error covariance matrix
Var()_(i*u/.) =X, Var(u/. ) X... This
shows that random errors are heteroscedastic, where

Var(uj)zE(uju’j) h=h"=1,2,3,--,m

covariance

for
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t_ t t t t
u;= |:ul.1’ U, Uy “m/}

t — “ee
u, = [”m,- Uppj Uy, ”hn.f]’

in which we assumed that

o . ifi=i
E(uh..u ) =< M .
vk 0 ifizi

t _ .
so that F (u Y h*j) =o .1, We  obtain

Var(u ; ) =X®I, with mnxmn as its dimension.

Consequently, Var()_(i*u ; ) =X®X!X, =X, which

m m
is m» k,xm) k, symmetrical matrix.
h=1 h=1

Because X is unknown, we use the estimator of X, .

The estimator of X, is as follows:
L, =XeXX,

In the above results, we see that the error
variance in equation (9) is not constant and the
matrix in the right-hand side is less than full rank.
For the last-stage, we overcome those problems
again by means of reparameterization and GLS. The
estimators are as follows:

-1
T
= {Z Z’jHMZj} ZZ’ HMAy, (24)

J=1

~

i=[TG'HG| ¢ Y (Ay,~20). @9

5 = [G’ﬁGT G'A(Ay,-Gi-2,0), (26)

where H=X.X,'X. and
A A -1 A

M= G[G’ HG] G'H-1,,. They have dimensions

mn xmn, respectively.

In this paper, the estimators of 0,a, and y; are

called the estimators of feasible generalized least
squares-multivariate spatial autoregressive three-
stage least squares fixed effect panel simultaneous
models (FGLS-MSAR3SLSFEPSM).

4 Properties of Estimators

Theorem (Consistency). If

XLAy, =X.Gp+XLZ 0+ X.Gy, + X,

as defined in (9), then G, B, and §, are consistent

estimators.
Proof. Recall (9). This can be rewritten as

=Gpn+Z0+Gy; +u,. However, we use the

estimate p,. The equation (9) can be rewritten as
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Ay ;=Gn+Z0+Gy; +u,. Estimators of equation

(9) are as follows:

-1
{jz;ﬁmj} 7 fivthy,

Jj=1 j=1
-1
:9+{ZT:Z‘ICII\7IZ } {ZZ’HMu } MG =0,
Jj=1
T
ZG’ (ij )

1

ji=[TG'HG |

~.
LN

=
+
I_I
—
M~
C)
Mw
:>
¥_./

where Z;yj =0,
7, =[(;ﬁ(;]'l G'H(Ay, -Gi-Z,0)
=(n-p)+[G'HG| G'HZ (0-8)+y,
+[GAG] G'Hu,.

We refer to [6-9,14,15,18].
expectation and variance of 0, fi, and ¥, are as

Asymptotic

follows:
-1
E{8}=1lim £ = B{E}EH—ZZ HMZ, ]
T—o T—

{hm—ZZfHME{ }]
e =

- -1
~0+|lim——s 11m—ZZ’HM><0
KL e

-1
-0+ 313;5} x0=0+[§]_1x0=0,
_TAoo

where S and S are constant nonsingular matrices.
T T
asy.var{O} = asy.varﬂz Z;HMZ}} [ZZ’}HMuJ}}
=1 =1
T R T . n
= ZI:Z_I.HMZ_I. Z}Z/HM(E@In)
J= J=
r -1
xHMZj][Z;Z’jHMZj} :
=

where H and HM are symmetrical. Now,
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T A T A
Z::Z’/.HMZ_I} {Z::Z’/.HM}

J=1 J=1

lim asy. var {6} = {
T
x{liml(z@aln)}ﬁlﬁz

n—o0
T—w n

n—o0 .
T—w nT J=1

-1
T
x[hlez;Hle

T
=[s]" [ZZ_’,ﬁM x 0% I:II\A/[Z_,}

J=1

-1
x| lim S
ot

=S"'x0x [§]_1
=0.

This shows that @ is asymptotically unbiased
estimator. If n—> o or T— o or both of n— o0

and 7 — oo, then asy.var{é} — 0. Therefore, 0isa
consistent estimator. Next,
E{j) = lim E{j)

n—>0

T—w

1T T a
=pn+| lim—| —-G'HG G'HZ .
H ';j;nT[n } ,ZZI: /

n—on n—o “
T—o T—o0 J=1

x [e ~ lim E{é}} + limZT:G’I:IE{uj }]
_ u+[nmLle}l](Zﬁ;G’ﬁZ, (0-0)

n—o0 “
T J=1

1=
:u+[31_1}’1;ﬁ|:sl]1]x0

T—o©

T
+1im )" G'H x 0]

=p+0x0

= ll”
where S, and S, are constant nonsingular matrices.
We have

R
asy.var{fi} =asy.var{[TG’I:IG] 1Z:G’HZJ.G}
j=1
a4z A
> G'Hu
Jj=1

}

+ asy. var {[T G’I:IG]
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asy.var{[TG’I:IG]l S Gz jé} -[r¢'RG]

X {ZT:G’I:IZJ. asy.var{é} Z;.I:IG}[TG’I:IG]_1 ,

J=1

asy.var {[TG’I:IG]_1 ZT:G’I:Iu = [ GII:IG]_1

lim asy.valr{[TG’ICIG]l ZT:G’I:IZ_,(;}

T—ow

R N PPN |
=[hm—T[—G HG} J{ZG HZ,

Tom LN I
. o t a
x[hm asy.var{ﬂ}]ZjHG]

T—wx

1[1 -
x lim—{—G’HG}
vzl L

A B S | S A
=[;1£%ﬁ[51] JLZ‘G HZJxOxZZHG}

-
X{Jﬂgﬁ[sl]lJ

T—o

:0,

A 1< A
liﬁrgasy.var{[TG’HG] ZG’HuJ}

T—o

-1
x{limlG’ﬁG}

n—w
T—>w n

-1
=[8,]"[ G'Hx0x ﬁc]{lggi}
T—x

— -1

=S, x0x [SJ
=0.
Consequently,
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limasy. var {fi} = lim asy. var {[T G‘I:IG]_1

T—o T —w

xi GII:IZ_I.(A)}

Jj=1

+ }Lrg asy.var {[T GtI:IG]i1
T—>w

T
x> G'Hu,
Jj=1
=0.
This shows that j
estimator. If n—>o0 or 7 —o or both of n—> o

is asymptotically unbiased

and 7 — oo, then asy.var{;l} — 0. Therefore, i is
a consistent estimator. Now,
Bl =lim (i)

T—ow

_ [u - limE{ﬁ}J +[GHG] Gz,

T
-1
x[o - limE{é}J Ty, + liml{lG’ﬁG}
T 7w LI
XG’I:IE{uj}

=(n-p)+[s,]" G'HZ,(0-0)+7,

+ i%%%ﬁl]l G'Hx0

.
asy.var {§ jl} —asy.var{ji} +asy. Var{[(;fﬁ(;]'1
xG'HZ 0} + asy.var{[G’I:IG]_l
xG'Hu, |,
asy. var{[cfﬁc;]l Gfﬁzjé} -[G'G] Gz,
xasy.var (6} Z,AG[ G'HG] ',

1

asy.Var{[cfﬁc]_1 G'Au j}z[cfﬁc “G'R

-1

x(£®1,)AG|G'HG | ,
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lim asy. var{[GfﬁG]l Gfﬁz_,é} -[chG]
T—w®

n—»w
T—o

xG’ICIZ/. {lim asy.var{é}}

xZ/HG[G'HG|’
=[s,] 'G'HZ, x0xZ'HG[S,]"
= 0’

n—»ow
T—w

lim asy.valr{[G’I:IG]_1 G’ICIu/.}

n—o0
T—x n

-[GhG] Gtﬁ{lim%(z ®I, )}
-1
N IR S I
X HG{hm——G HG]

n—wo T’ n
T—>o

n—o0
T—x

-1
= [Sl]f1 G'Hx0x I:IG{limlS]
=0x[0]"
= oo (infinit),
therefore, convergenity be satisfied only if n — oo,
namely

A -1 A
limasy. var {[G’HG] G’Huj}
1

n—>0

:[G’ICIG]_ Gfﬁ{liml@@l,,)}ﬁ(;

n—% pn

-1
x[limthI:IG}

n—won

=[S, ]_1 G'Hx0x I:IG[limg1 ]l

=8'x0x[S, |

=0.
Consequently,
limasy.var { Y, }

H—>0

=limasy. var{ji}

+ lim asy. var

n—o0

[GfﬁGT G'HZ }

9
) A -l A
+ limasy. var {[G’HG] G'Hu, }

=0.
This shows that §, is asymptotically unbiased

estimator. If n—oo, then asy.var{? /}—)0.

Therefore, ¥, is a consistent estimator.
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5 Illustration 0L L 00000 0 O]
Suppose there are three endogenous variables 101 1000000
. bl
ViV Vs and  six  exogenous Varlal? es 1101000000
X1 X125 X5, X005 X3,X;, Observed for two time 0 1L 1 o L 1 1 1 1
. . . 7 7 7 7 7 7 7
periods and the number of observation being 10 | |
) L ) .. 000+ 04 0000
locations (this illustration uses fictitious data and W = . .
there is no conflict of interest regarding the 0005 300000
publication of this paper). Data are presented in 0001 0O0O0T3TO0O
Table 1 and Table 2. The equation models are as 000 L 00 Lo L L
follows: ? : ' : ?
, 00035 0003 0 3
Ny = My 00X, X, + OWY +:f12y2ij _0 00000011 0_
T By 1y F sty N (O,07), The formulation of Moran Index is as follows:
Yoy = H +axi'+axi'+pW; '+:Byi' O — —
2if 2 21%2155 2% hW:Y2, 2 2115 27 ZZWH* (yhij _yhj)(yh,-*_/ _yhj) y*{wy*'
+ﬂ23y3ij + 7oty Uy U N(0,075), ]h/_ _ =il _ _ hl*t ’ hj ’
Vaj = My + Qg X5 + Qg X + p3WEY3_/ + ﬂ31y1g/ Zl(yhii - yh/‘) S
+ B Yy + Vs ity iy 0 N(0,07), for h=1,2,3, j=1,2,
where 1 & .
r . where y,, =— ~and y, =y, —y, 1
Wi W Wi o Wi % 10 ;yhy Yo =Yy =V
Woy Wy o Wy Wa 10 .
W= Table 1: Data for endogenous variables
=| Wi W.32 Wis Ws10 Endogenous
Time Location Variables
| W04 W2 Moz " Moo | 3 Y2 s
L 1 1 15 25 20
t
W, 2 17 28 23
W) 3 14 27 21
=| w, 4 12 26 24
: 5 18 29 22
6 19 28 26
_Wio
7 20 31 29
[Wi:l, 121329337107 8 13 33 31
and 9 14 29 28
10 16 27 25
VI X 2 1 16 24 21
Vv IX 2 17 29 27
v VIII 3 15 27 23
4 14 26 22
II 111 VII 5 17 30 28
" 6 20 29 27
7 18 32 31
. . . . . 8 14 32 30
Fig.1: llustration of the 10 neighboring locations.
9 15 29 27
Then from Fig.1, we obtain row-standardized spatial 10 18 26 23
weight matrix as follows: Note: data illustration (fictitious data)
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Table 2: Data for exogenous variables

Time cha- Exogenous Variables

tion Xy X1z X1 X2 X310 X3

1 1 45 51 46 49 47 48
2 40 55 42 56 45 53

3 41 56 40 58 42 51

4 42 58 43 57 40 55

5 47 57 45 58 42 51

6 46 54 44 55 43 54

7 45 56 47 54 49 57

8 43 57 46 59 45 52

9 47 59 48 60 46 59

10 44 52 43 53 44 52

2 1 50 65 51 64 53 65
2 51 66 52 67 54 63

3 59 66 58 68 57 71

4 58 64 59 66 54 73

5 57 63 60 62 56 61

6 61 67 61 68 60 67

7 63 68 62 65 61 64

8 62 68 64 66 59 71

9 64 69 65 68 53 59

10 58 65 57 69 58 67

Note: data illustration (fictitious data)

we
the

If there is at least one Ihj >F (1 ), then

conclude that there is a spatial influence for
equation models.
v, =15.80; »,, =28.30; y,, =24.90;
Yy =28.40; y,, =25.90;
1,,=-0.2442; 1,, =0.0539; I,, =0.4586;
1, =-0.2317; 1,, =-0.0878; I,, =-0.1078;

-1 -1
and E([,, )=E(l)=——=——=-0.1111L
(1,)=£(1) n-1 10-1
Based on the above result, by means of R Program
version 3.0.3, we obtain that there is a spatial
influence for the equation models.

We then continue to estimate parameters by
means of FGLS-3SLS. For the first-stage, we
estimate all the endogenous expalanatory variables
in the system in every time period and the results are
as in Table 3.
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Table 3: Estimated values for endogenous

explanatory variables
Endogenous explanatory
Time Lgca- variables
tion - Y- V3

estimate estimate  estimate

1 1 16.5625 26.5828  21.7290
2 15.0373 28.5890  25.1588

3 16.1904 27.6672  20.7955

4 12.3775 26.0621  23.9145

5 16.1804 28.3403  22.0819

6 17.2918 26.9959  24.8593

7 18.7007 29.1060  26.5129

8 12.3543  31.5231  28.7592

9 16.4805 31.4345  30.8012

10 16.8246 26.6991  24.3877

2 1 15.5100 25.9073  23.1069
2 17.3247 27.0314  24.7638

3 15.8433 26.3597  22.8089

4 13.3019 25.4562  21.0773

5 17.3259 29.7492  27.8872

6 18.1930 30.2621  28.3106

7 18.0785 31.1379  29.8797

8 14.7653 32.0924  30.1569

9 14.9671 293371  27.3870

10 18.6902 26.6667  23.6217

For the second-stage we estimate X,. But, we

first estimate spatial autoregressive by means of
equation (19). By W, we have the acceptable
spatial ~ autoregressive  parameter to  be
-1.6242< p, <1. By the method of forming

sequence of p, with increasing 0.01, we obtain
1. p, =seq(-1.6142,0.99, 0.01).
2. For every y, and a,, h=1,23, we insert

values of p, to (19). Because a,; unknown, we

use the estimate, a,, where
a, =1(f,+7,)+Z,9,, with
Z, = [th : Y—h/}'

3. We obtain p =02658, p,=-1.6042 and

0, =-1.5842 that gives the largest InL”,
InL7" and In LY, respectively.
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Graph of function of rho 1
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Graph of function of rho 3
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Fig.2: Graphs of function of rho

And by the method of forming sequence of p, with
increasing 0.01, we can also make graphs between
the values of rho and the values of concentrated log-

likelihood as presented in Fig.2.
From (20) to (22), we obtain
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=43.0006; 1, =-4.3468

1.2130;

Py =2.5188; 7,, =-2.5188;

75 =2.0259; 7., =

-2.0259.

Table 4: Estimate values for residual errors

Residual errors

Time Lgca - Y- e
tion 1 "z Us
estimate  estimate estimate
1 1 22422 -3.1123  -5.0391
2 1.6481 -3.0250 -7.3850
3 -0.6623 -0.7777 -6.3261
4 -3.0902  0.7119  3.4309
5 2.6486  0.1127 -2.1118
6 2.3310 -1.2024 -0.6691
7 45791  3.1835  4.8456
8 29752 2.6659  4.7162
9 -1.5409 -2.5683 -1.4361
10 -0.6962  4.0118 9.9744
2 1 03667 -0.6427 -0.9871
2 1.6319  -0.6768 -0.9082
3 -1.0635  -2.3864 -4.8065
4 2.6379  2.7829  1.8581
5 -1.0336  -0.6903  0.7926
6 3.3020  -1.5430 -2.7742
7 1.6052  2.0132  2.7448
8 29123 0.2430 -2.4101
9 -1.1280  -2.1098  2.4048
10 1.8695  3.0098  4.0858
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Next, from (23), we obtain the estimate values
for residual errors being presented in Tabel 5.3.
We then use the estimate values for residual

errors (in Table 4) to find £ as follow:
6.7696 0.3747 -0.4183

£=]0.3747 64086 10.0961 |,
-0.4183 10.0961 23.7600

and we obtain

177,677.50 210,733.62
210,733.62 250,442.60

¥, =|179,376.68 212,838.98
| -12,769.99  -15,178.10
179,376.68 -12,769.99
212,838.98 -15,178.10
181,177.40 -12,894.44
-12,894.44 846,645.42 |

For the last-stage, we estimate the parameters of
equation models (27). By (24) to (26), we
obtain

a, | [0.2237]
o, | |-0.7310
a,, 0.2296
a, | |-0.1024
o, | |-0.6446
b| % || 02366
B, 0.1374
By | |-0.0086
B | [-0.0032
B 0.5628
B, 0.5789
| By | | 22122
] [41.4296
fi=|u, |=|53.5816 |;
| A 11.5225
7o | [-2.4323
¥, = ]/21] 1.3741;
7o | |-2.8309
7 2.4323
¥, = 722] -1.3741 ;
Vs 2.8309
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and the estimated equation models (27) are
$,, =41.4296+0.2237x,,, —0.7310x,,,,

+0.2658w'y,, +0.1374y,,, —0.0086y,,
~2.4323
1 =53.5816+0.2296x,,, —0.1024x,,.,

—1.6042w'y,, —0.0032y,, +0.5628y,
+1.3741
5, =11.5225-0.6446x,,, +0.2366x,,,

—1.5842w'y,, +0.5789y,, +2.2122p,.
~2.8309,
11y = 41.4296+0.2237x,,, —0.7310x,,,,

+0.2658W'y,, +0.1374y,,, —0.0086y,,
+2.4323

9y, =53.5816+0.2296x,,, — 0.1024x,,,,
~1.6042w'y,, —0.0032y,, +0.5628y, ,
~1.3741

9y, =11.5225—0.6446x;, , + 0.2366x,,,,

~1.5842w'y,, +0.5789y,, +2.2122y, ,
+2.8309.

6 Conclusion

In this paper, we are motivated to develop
simultaneous equation models for fixed effect panel
data with one-way error component by means of
3SLS solutions, especially for spatial correlation
among dependent variables.

The estimators are called the estimators of
feasible generalized least squares-multivariate
spatial autoregressive three-stage least squares fixed
effect panel simultaneous models (FGLS-
MSAR3SLSFEPSM). All estimators are consistent
estimators.

In future research, we encourage to develop
models for both spatial correlation among dependent
variables and spatial correlation among errors
(general spatial).
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